| /* |
| # |
| # File : mcf_levelsets3d.cpp |
| # ( C++ source file ) |
| # |
| # Description : Implementation of the Mean Curvature Flow on Surfaces |
| # using the framework of Level Sets 3D. |
| # This file is a part of the CImg Library project. |
| # ( http://cimg.eu ) |
| # |
| # Copyright : David Tschumperle |
| # ( http://tschumperle.users.greyc.fr/ ) |
| # |
| # License : CeCILL v2.0 |
| # ( http://www.cecill.info/licences/Licence_CeCILL_V2-en.html ) |
| # |
| # This software is governed by the CeCILL license under French law and |
| # abiding by the rules of distribution of free software. You can use, |
| # modify and/ or redistribute the software under the terms of the CeCILL |
| # license as circulated by CEA, CNRS and INRIA at the following URL |
| # "http://www.cecill.info". |
| # |
| # As a counterpart to the access to the source code and rights to copy, |
| # modify and redistribute granted by the license, users are provided only |
| # with a limited warranty and the software's author, the holder of the |
| # economic rights, and the successive licensors have only limited |
| # liability. |
| # |
| # In this respect, the user's attention is drawn to the risks associated |
| # with loading, using, modifying and/or developing or reproducing the |
| # software by the user in light of its specific status of free software, |
| # that may mean that it is complicated to manipulate, and that also |
| # therefore means that it is reserved for developers and experienced |
| # professionals having in-depth computer knowledge. Users are therefore |
| # encouraged to load and test the software's suitability as regards their |
| # requirements in conditions enabling the security of their systems and/or |
| # data to be ensured and, more generally, to use and operate it in the |
| # same conditions as regards security. |
| # |
| # The fact that you are presently reading this means that you have had |
| # knowledge of the CeCILL license and that you accept its terms. |
| # |
| */ |
| |
| #include "CImg.h" |
| using namespace cimg_library; |
| #undef min |
| #undef max |
| |
| // Apply the Mean curvature flow PDE |
| //----------------------------------- |
| template<typename T> CImg<T>& mcf_PDE(CImg<T>& img, const unsigned int nb_iterations, |
| const float dt=0.25f, const float narrow=4.0f) { |
| CImg<float> velocity(img.width(),img.height(),img.depth(),img.spectrum()); |
| CImg_3x3x3(I,float); |
| for (unsigned int iteration = 0; iteration<nb_iterations; ++iteration) { |
| float *ptrd = velocity.data(), veloc_max = 0; |
| cimg_for3x3x3(img,x,y,z,0,I,float) if (cimg::abs(Iccc)<narrow) { |
| const float |
| ix = (Incc - Ipcc)/2, |
| iy = (Icnc - Icpc)/2, |
| iz = (Iccn - Iccp)/2, |
| norm = (float)std::sqrt(1e-5f + ix*ix + iy*iy + iz*iz), |
| ixx = Incc + Ipcc - 2*Iccc, |
| ixy = (Ippc + Innc - Inpc - Ipnc)/4, |
| ixz = (Ipcp + Incn - Incp - Ipcn)/4, |
| iyy = Icnc + Icpc - 2*Iccc, |
| iyz = (Icpp + Icnn - Icnp - Icpn)/4, |
| izz = Iccn + Iccp - 2*Iccc, |
| a = ix/norm, |
| b = iy/norm, |
| c = iz/norm, |
| inn = a*a*ixx + b*b*iyy + c*c*izz + 2*a*b*ixy + 2*a*c*ixz + 2*b*c*iyz, |
| veloc = ixx + iyy + izz - inn; |
| *(ptrd++) = veloc; |
| if (veloc>veloc_max) veloc_max = veloc; else if (-veloc>veloc_max) veloc_max = -veloc; |
| } else *(ptrd++) = 0; |
| if (veloc_max>0) img+=(velocity*=dt/veloc_max); |
| } |
| return img; |
| } |
| |
| /*---------------------- |
| |
| Main procedure |
| |
| --------------------*/ |
| int main(int argc,char **argv) { |
| cimg_usage("Mean curvature flow of a surface, using 3D level sets"); |
| const char *file_i = cimg_option("-i",(char*)0,"Input image"); |
| const float dt = cimg_option("-dt",0.05f,"PDE Time step"); |
| const float narrow = cimg_option("-band",5.0f,"Size of the narrow band"); |
| const bool both = cimg_option("-both",false,"Show both evolving and initial surface"); |
| |
| // Define the signed distance map of the initial surface. |
| CImg<> img; |
| if (file_i) { |
| const float sigma = cimg_option("-sigma",1.2f,"Segmentation regularity"); |
| const float alpha = cimg_option("-alpha",5.0f,"Region growing tolerance"); |
| img.load(file_i).channel(0); |
| CImg<int> s; |
| CImgDisplay disp(img,"Please select a starting point"); |
| while (!s || s[0]<0) s = img.get_select(0,disp); |
| CImg<> region; |
| float tmp[] = { 0 }; |
| img.draw_fill(s[0],s[1],s[2],tmp,1,region,alpha); |
| ((img = region.normalize(-1,1))*=-1).blur(sigma); |
| } |
| else { // Create synthetic implicit function |
| img.assign(60,60,60); |
| const float exte[] = { 1 }, inte[] = { -1 }; |
| img.fill(*exte).draw_rectangle(15,15,15,45,45,45,inte).draw_rectangle(25,25,0,35,35,img.depth() - 1,exte). |
| draw_rectangle(0,25,25,img.width() - 1,35,35,exte).draw_rectangle(25,0,25,35,img.height() - 1,35,exte).noise(0.7); |
| } |
| img.distance_eikonal(10,0,0.1f); |
| |
| // Compute corresponding surface triangularization by the marching cube algorithm (isovalue 0). |
| CImg<> points0; |
| CImgList<unsigned int> faces0; |
| if (both) points0 = img.get_isosurface3d(faces0,0); |
| const CImgList<unsigned char> colors0(faces0.size(),CImg<unsigned char>::vector(100,200,255)); |
| const CImgList<> opacities0(faces0.size(),1,1,1,1,0.2f); |
| |
| // Perform MCF evolution. |
| CImgDisplay disp(256,256,0,1), disp3d(512,512,0,0); |
| float alpha = 0, beta = 0; |
| for (unsigned int iteration = 0; !disp.is_closed() && !disp3d.is_closed() && |
| !disp.is_keyESC() && !disp3d.is_keyESC() && !disp.is_keyQ() && !disp3d.is_keyQ(); ++iteration) { |
| disp.set_title("3D implicit Function (iter. %u)",iteration); |
| disp3d.set_title("Mean curvature flow 3D - Isosurface (iter. %u)",iteration); |
| |
| // Apply PDE on the distance function. |
| mcf_PDE(img,1,dt,narrow); // Do one iteration of mean curvature flow |
| // Every 10 steps, do one iteration of distance function re-initialization. |
| if (!(iteration%10)) img.distance_eikonal(1,narrow,0.5f); |
| |
| // Compute surface triangularization by the marching cube algorithm (isovalue 0) |
| CImgList<unsigned int> faces; |
| CImg<> points = img.get_isosurface3d(faces,0); |
| CImgList<unsigned char> colors(faces.size(),CImg<unsigned char>::vector(200,128,100)); |
| CImgList<> opacities(faces.size(),CImg<>::vector(1.0f)); |
| const float fact = 3*std::max(disp3d.width(),disp3d.height())/(4.0f*std::max(img.width(),img.height())); |
| |
| // Append initial object if necessary. |
| if (both) { |
| points.append_object3d(faces,points0,faces0); |
| colors.insert(colors0); |
| opacities.insert(opacities0); |
| } |
| |
| // Center and rescale the objects |
| cimg_forX(points,l) { |
| points(l,0)=(points(l,0) - img.width()/2)*fact; |
| points(l,1)=(points(l,1) - img.height()/2)*fact; |
| points(l,2)=(points(l,2) - img.depth()/2)*fact; |
| } |
| |
| // Display 3D object on the display window. |
| CImg<unsigned char> visu(disp3d.width(),disp3d.height(),1,3,0); |
| const CImg<> rot = CImg<>::rotation_matrix(1,0,0,(beta+=0.5f))*CImg<>::rotation_matrix(0,1,1,(alpha+=3)); |
| if (points.size()) { |
| visu.draw_object3d(visu.width()/2.0f,visu.height()/2.0f,0.0f, |
| rot*points,faces,colors,opacities,3, |
| false,500.0,0.0f,0.0f,-8000.0f).display(disp3d); |
| } else visu.fill(0).display(disp3d); |
| img.display(disp.wait(20)); |
| |
| if ((disp3d.button() || disp3d.key()) && points.size() && !disp3d.is_keyESC() && !disp3d.is_keyQ()) { |
| const unsigned char white[3] = { 255, 255, 255 }; |
| visu.fill(0).draw_text(10,10,"Time stopped, press any key to start again",white). |
| display_object3d(disp3d,points,faces,colors,opacities,true,4,3,false,500,0,0,-5000,0.4f,0.3f); |
| disp3d.set_key(); |
| } |
| if (disp.is_resized()) disp.resize(false); |
| if (disp3d.is_resized()) disp3d.resize(false); |
| disp.wait(50); |
| } |
| |
| return 0; |
| } |