| /* cddproj.c: Polyhedral Projections in cddlib |
| written by Komei Fukuda, fukuda@cs.mcgill.ca |
| Version 0.94, Aug. 4, 2005 |
| */ |
| |
| /* cddlib : C-library of the double description method for |
| computing all vertices and extreme rays of the polyhedron |
| P= {x : b - A x >= 0}. |
| Please read COPYING (GNU General Public Licence) and |
| the manual cddlibman.tex for detail. |
| */ |
| |
| #include "setoper.h" /* set operation library header (Ver. June 1, 2000 or later) */ |
| #include "cdd.h" |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <time.h> |
| #include <math.h> |
| #include <string.h> |
| |
| dd_MatrixPtr dd_BlockElimination(dd_MatrixPtr M, dd_colset delset, dd_ErrorType *error) |
| /* Eliminate the variables (columns) delset by |
| the Block Elimination with dd_DoubleDescription algorithm. |
| |
| Given (where y is to be eliminated): |
| c1 + A1 x + B1 y >= 0 |
| c2 + A2 x + B2 y = 0 |
| |
| 1. First construct the dual system: z1^T B1 + z2^T B2 = 0, z1 >= 0. |
| 2. Compute the generators of the dual. |
| 3. Then take the linear combination of the original system with each generator. |
| 4. Remove redundant inequalies. |
| |
| */ |
| { |
| dd_MatrixPtr Mdual=NULL, Mproj=NULL, Gdual=NULL; |
| dd_rowrange i,h,m,mproj,mdual,linsize; |
| dd_colrange j,k,d,dproj,ddual,delsize; |
| dd_colindex delindex; |
| mytype temp,prod; |
| dd_PolyhedraPtr dualpoly; |
| dd_ErrorType err=dd_NoError; |
| dd_boolean localdebug=dd_FALSE; |
| |
| *error=dd_NoError; |
| m= M->rowsize; |
| d= M->colsize; |
| delindex=(long*)calloc(d+1,sizeof(long)); |
| dd_init(temp); |
| dd_init(prod); |
| |
| k=0; delsize=0; |
| for (j=1; j<=d; j++){ |
| if (set_member(j, delset)){ |
| k++; delsize++; |
| delindex[k]=j; /* stores the kth deletion column index */ |
| } |
| } |
| if (localdebug) dd_WriteMatrix(stdout, M); |
| |
| linsize=set_card(M->linset); |
| ddual=m+1; |
| mdual=delsize + m - linsize; /* #equalitions + dimension of z1 */ |
| |
| /* setup the dual matrix */ |
| Mdual=dd_CreateMatrix(mdual, ddual); |
| Mdual->representation=dd_Inequality; |
| for (i = 1; i <= delsize; i++){ |
| set_addelem(Mdual->linset,i); /* equality */ |
| for (j = 1; j <= m; j++) { |
| dd_set(Mdual->matrix[i-1][j], M->matrix[j-1][delindex[i]-1]); |
| } |
| } |
| |
| k=0; |
| for (i = 1; i <= m; i++){ |
| if (!set_member(i, M->linset)){ |
| /* set nonnegativity for the dual variable associated with |
| each non-linearity inequality. */ |
| k++; |
| dd_set(Mdual->matrix[delsize+k-1][i], dd_one); |
| } |
| } |
| |
| /* 2. Compute the generators of the dual system. */ |
| dualpoly=dd_DDMatrix2Poly(Mdual, &err); |
| Gdual=dd_CopyGenerators(dualpoly); |
| |
| /* 3. Take the linear combination of the original system with each generator. */ |
| dproj=d-delsize; |
| mproj=Gdual->rowsize; |
| Mproj=dd_CreateMatrix(mproj, dproj); |
| Mproj->representation=dd_Inequality; |
| set_copy(Mproj->linset, Gdual->linset); |
| |
| for (i=1; i<=mproj; i++){ |
| k=0; |
| for (j=1; j<=d; j++){ |
| if (!set_member(j, delset)){ |
| k++; /* new index of the variable x_j */ |
| dd_set(prod, dd_purezero); |
| for (h = 1; h <= m; h++){ |
| dd_mul(temp,M->matrix[h-1][j-1],Gdual->matrix[i-1][h]); |
| dd_add(prod,prod,temp); |
| } |
| dd_set(Mproj->matrix[i-1][k-1],prod); |
| } |
| } |
| } |
| if (localdebug) printf("Size of the projection system: %ld x %ld\n", mproj, dproj); |
| |
| dd_FreePolyhedra(dualpoly); |
| free(delindex); |
| dd_clear(temp); |
| dd_clear(prod); |
| dd_FreeMatrix(Mdual); |
| dd_FreeMatrix(Gdual); |
| return Mproj; |
| } |
| |
| |
| dd_MatrixPtr dd_FourierElimination(dd_MatrixPtr M,dd_ErrorType *error) |
| /* Eliminate the last variable (column) from the given H-matrix using |
| the standard Fourier Elimination. |
| */ |
| { |
| dd_MatrixPtr Mnew=NULL; |
| dd_rowrange i,inew,ip,in,iz,m,mpos=0,mneg=0,mzero=0,mnew; |
| dd_colrange j,d,dnew; |
| dd_rowindex posrowindex, negrowindex,zerorowindex; |
| mytype temp1,temp2; |
| dd_boolean localdebug=dd_FALSE; |
| |
| *error=dd_NoError; |
| m= M->rowsize; |
| d= M->colsize; |
| if (d<=1){ |
| *error=dd_ColIndexOutOfRange; |
| if (localdebug) { |
| printf("The number of column is too small: %ld for Fourier's Elimination.\n",d); |
| } |
| goto _L99; |
| } |
| |
| if (M->representation==dd_Generator){ |
| *error=dd_NotAvailForV; |
| if (localdebug) { |
| printf("Fourier's Elimination cannot be applied to a V-polyhedron.\n"); |
| } |
| goto _L99; |
| } |
| |
| if (set_card(M->linset)>0){ |
| *error=dd_CannotHandleLinearity; |
| if (localdebug) { |
| printf("The Fourier Elimination function does not handle equality in this version.\n"); |
| } |
| goto _L99; |
| } |
| |
| /* Create temporary spaces to be removed at the end of this function */ |
| posrowindex=(long*)calloc(m+1,sizeof(long)); |
| negrowindex=(long*)calloc(m+1,sizeof(long)); |
| zerorowindex=(long*)calloc(m+1,sizeof(long)); |
| dd_init(temp1); |
| dd_init(temp2); |
| |
| for (i = 1; i <= m; i++) { |
| if (dd_Positive(M->matrix[i-1][d-1])){ |
| mpos++; |
| posrowindex[mpos]=i; |
| } else if (dd_Negative(M->matrix[i-1][d-1])) { |
| mneg++; |
| negrowindex[mneg]=i; |
| } else { |
| mzero++; |
| zerorowindex[mzero]=i; |
| } |
| } /*of i*/ |
| |
| if (localdebug) { |
| dd_WriteMatrix(stdout, M); |
| printf("No of (+ - 0) rows = (%ld, %ld, %ld)\n", mpos,mneg, mzero); |
| } |
| |
| /* The present code generates so many redundant inequalities and thus |
| is quite useless, except for very small examples |
| */ |
| mnew=mzero+mpos*mneg; /* the total number of rows after elimination */ |
| dnew=d-1; |
| |
| Mnew=dd_CreateMatrix(mnew, dnew); |
| dd_CopyArow(Mnew->rowvec, M->rowvec, dnew); |
| /* set_copy(Mnew->linset,M->linset); */ |
| Mnew->numbtype=M->numbtype; |
| Mnew->representation=M->representation; |
| Mnew->objective=M->objective; |
| |
| |
| /* Copy the inequalities independent of x_d to the top of the new matrix. */ |
| for (iz = 1; iz <= mzero; iz++){ |
| for (j = 1; j <= dnew; j++) { |
| dd_set(Mnew->matrix[iz-1][j-1], M->matrix[zerorowindex[iz]-1][j-1]); |
| } |
| } |
| |
| /* Create the new inequalities by combining x_d positive and negative ones. */ |
| inew=mzero; /* the index of the last x_d zero inequality */ |
| for (ip = 1; ip <= mpos; ip++){ |
| for (in = 1; in <= mneg; in++){ |
| inew++; |
| dd_neg(temp1, M->matrix[negrowindex[in]-1][d-1]); |
| for (j = 1; j <= dnew; j++) { |
| dd_LinearComb(temp2,M->matrix[posrowindex[ip]-1][j-1],temp1,\ |
| M->matrix[negrowindex[in]-1][j-1],\ |
| M->matrix[posrowindex[ip]-1][d-1]); |
| dd_set(Mnew->matrix[inew-1][j-1],temp2); |
| } |
| dd_Normalize(dnew,Mnew->matrix[inew-1]); |
| } |
| } |
| |
| |
| free(posrowindex); |
| free(negrowindex); |
| free(zerorowindex); |
| dd_clear(temp1); |
| dd_clear(temp2); |
| |
| _L99: |
| return Mnew; |
| } |
| |
| |
| /* end of cddproj.c */ |