blob: 2ef7e7ad9fbd7685795c97e82e0f2d854c866ce8 [file] [log] [blame]
/* cddproj.c: Polyhedral Projections in cddlib
written by Komei Fukuda, fukuda@cs.mcgill.ca
Version 0.94, Aug. 4, 2005
*/
/* cddlib : C-library of the double description method for
computing all vertices and extreme rays of the polyhedron
P= {x : b - A x >= 0}.
Please read COPYING (GNU General Public Licence) and
the manual cddlibman.tex for detail.
*/
#include "setoper.h" /* set operation library header (Ver. June 1, 2000 or later) */
#include "cdd.h"
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>
#include <string.h>
dd_MatrixPtr dd_BlockElimination(dd_MatrixPtr M, dd_colset delset, dd_ErrorType *error)
/* Eliminate the variables (columns) delset by
the Block Elimination with dd_DoubleDescription algorithm.
Given (where y is to be eliminated):
c1 + A1 x + B1 y >= 0
c2 + A2 x + B2 y = 0
1. First construct the dual system: z1^T B1 + z2^T B2 = 0, z1 >= 0.
2. Compute the generators of the dual.
3. Then take the linear combination of the original system with each generator.
4. Remove redundant inequalies.
*/
{
dd_MatrixPtr Mdual=NULL, Mproj=NULL, Gdual=NULL;
dd_rowrange i,h,m,mproj,mdual,linsize;
dd_colrange j,k,d,dproj,ddual,delsize;
dd_colindex delindex;
mytype temp,prod;
dd_PolyhedraPtr dualpoly;
dd_ErrorType err=dd_NoError;
dd_boolean localdebug=dd_FALSE;
*error=dd_NoError;
m= M->rowsize;
d= M->colsize;
delindex=(long*)calloc(d+1,sizeof(long));
dd_init(temp);
dd_init(prod);
k=0; delsize=0;
for (j=1; j<=d; j++){
if (set_member(j, delset)){
k++; delsize++;
delindex[k]=j; /* stores the kth deletion column index */
}
}
if (localdebug) dd_WriteMatrix(stdout, M);
linsize=set_card(M->linset);
ddual=m+1;
mdual=delsize + m - linsize; /* #equalitions + dimension of z1 */
/* setup the dual matrix */
Mdual=dd_CreateMatrix(mdual, ddual);
Mdual->representation=dd_Inequality;
for (i = 1; i <= delsize; i++){
set_addelem(Mdual->linset,i); /* equality */
for (j = 1; j <= m; j++) {
dd_set(Mdual->matrix[i-1][j], M->matrix[j-1][delindex[i]-1]);
}
}
k=0;
for (i = 1; i <= m; i++){
if (!set_member(i, M->linset)){
/* set nonnegativity for the dual variable associated with
each non-linearity inequality. */
k++;
dd_set(Mdual->matrix[delsize+k-1][i], dd_one);
}
}
/* 2. Compute the generators of the dual system. */
dualpoly=dd_DDMatrix2Poly(Mdual, &err);
Gdual=dd_CopyGenerators(dualpoly);
/* 3. Take the linear combination of the original system with each generator. */
dproj=d-delsize;
mproj=Gdual->rowsize;
Mproj=dd_CreateMatrix(mproj, dproj);
Mproj->representation=dd_Inequality;
set_copy(Mproj->linset, Gdual->linset);
for (i=1; i<=mproj; i++){
k=0;
for (j=1; j<=d; j++){
if (!set_member(j, delset)){
k++; /* new index of the variable x_j */
dd_set(prod, dd_purezero);
for (h = 1; h <= m; h++){
dd_mul(temp,M->matrix[h-1][j-1],Gdual->matrix[i-1][h]);
dd_add(prod,prod,temp);
}
dd_set(Mproj->matrix[i-1][k-1],prod);
}
}
}
if (localdebug) printf("Size of the projection system: %ld x %ld\n", mproj, dproj);
dd_FreePolyhedra(dualpoly);
free(delindex);
dd_clear(temp);
dd_clear(prod);
dd_FreeMatrix(Mdual);
dd_FreeMatrix(Gdual);
return Mproj;
}
dd_MatrixPtr dd_FourierElimination(dd_MatrixPtr M,dd_ErrorType *error)
/* Eliminate the last variable (column) from the given H-matrix using
the standard Fourier Elimination.
*/
{
dd_MatrixPtr Mnew=NULL;
dd_rowrange i,inew,ip,in,iz,m,mpos=0,mneg=0,mzero=0,mnew;
dd_colrange j,d,dnew;
dd_rowindex posrowindex, negrowindex,zerorowindex;
mytype temp1,temp2;
dd_boolean localdebug=dd_FALSE;
*error=dd_NoError;
m= M->rowsize;
d= M->colsize;
if (d<=1){
*error=dd_ColIndexOutOfRange;
if (localdebug) {
printf("The number of column is too small: %ld for Fourier's Elimination.\n",d);
}
goto _L99;
}
if (M->representation==dd_Generator){
*error=dd_NotAvailForV;
if (localdebug) {
printf("Fourier's Elimination cannot be applied to a V-polyhedron.\n");
}
goto _L99;
}
if (set_card(M->linset)>0){
*error=dd_CannotHandleLinearity;
if (localdebug) {
printf("The Fourier Elimination function does not handle equality in this version.\n");
}
goto _L99;
}
/* Create temporary spaces to be removed at the end of this function */
posrowindex=(long*)calloc(m+1,sizeof(long));
negrowindex=(long*)calloc(m+1,sizeof(long));
zerorowindex=(long*)calloc(m+1,sizeof(long));
dd_init(temp1);
dd_init(temp2);
for (i = 1; i <= m; i++) {
if (dd_Positive(M->matrix[i-1][d-1])){
mpos++;
posrowindex[mpos]=i;
} else if (dd_Negative(M->matrix[i-1][d-1])) {
mneg++;
negrowindex[mneg]=i;
} else {
mzero++;
zerorowindex[mzero]=i;
}
} /*of i*/
if (localdebug) {
dd_WriteMatrix(stdout, M);
printf("No of (+ - 0) rows = (%ld, %ld, %ld)\n", mpos,mneg, mzero);
}
/* The present code generates so many redundant inequalities and thus
is quite useless, except for very small examples
*/
mnew=mzero+mpos*mneg; /* the total number of rows after elimination */
dnew=d-1;
Mnew=dd_CreateMatrix(mnew, dnew);
dd_CopyArow(Mnew->rowvec, M->rowvec, dnew);
/* set_copy(Mnew->linset,M->linset); */
Mnew->numbtype=M->numbtype;
Mnew->representation=M->representation;
Mnew->objective=M->objective;
/* Copy the inequalities independent of x_d to the top of the new matrix. */
for (iz = 1; iz <= mzero; iz++){
for (j = 1; j <= dnew; j++) {
dd_set(Mnew->matrix[iz-1][j-1], M->matrix[zerorowindex[iz]-1][j-1]);
}
}
/* Create the new inequalities by combining x_d positive and negative ones. */
inew=mzero; /* the index of the last x_d zero inequality */
for (ip = 1; ip <= mpos; ip++){
for (in = 1; in <= mneg; in++){
inew++;
dd_neg(temp1, M->matrix[negrowindex[in]-1][d-1]);
for (j = 1; j <= dnew; j++) {
dd_LinearComb(temp2,M->matrix[posrowindex[ip]-1][j-1],temp1,\
M->matrix[negrowindex[in]-1][j-1],\
M->matrix[posrowindex[ip]-1][d-1]);
dd_set(Mnew->matrix[inew-1][j-1],temp2);
}
dd_Normalize(dnew,Mnew->matrix[inew-1]);
}
}
free(posrowindex);
free(negrowindex);
free(zerorowindex);
dd_clear(temp1);
dd_clear(temp2);
_L99:
return Mnew;
}
/* end of cddproj.c */