blob: 783dd1c3f60a17d1756b8ff0e1bb5db551b8de18 [file] [log] [blame]
/* cddio.c: Basic Input and Output Procedures for cddlib
written by Komei Fukuda, fukuda@math.ethz.ch
Version 0.94h, April 30, 2015
*/
/* cddlib : C-library of the double description method for
computing all vertices and extreme rays of the polyhedron
P= {x : b - A x >= 0}.
Please read COPYING (GNU General Public Licence) and
the manual cddlibman.tex for detail.
*/
#include "setoper.h" /* set operation library header (Ver. June 1, 2000 or later) */
#include "cdd.h"
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>
#include <string.h>
/* void dd_fread_rational_value (FILE *, mytype *); */
void dd_SetLinearity(dd_MatrixPtr, char *);
void dd_SetInputFile(FILE **f,dd_DataFileType inputfile,dd_ErrorType *Error)
{
int opened=0,stop,quit=0;
int i,dotpos=0,trial=0;
char ch;
char *tempname;
*Error=dd_NoError;
while (!opened && !quit) {
fprintf(stderr,"\n>> Input file: ");
scanf("%s",inputfile);
ch=getchar();
stop=dd_FALSE;
for (i=0; i<dd_filenamelen && !stop; i++){
ch=inputfile[i];
switch (ch) {
case '.':
dotpos=i+1;
break;
case ';': case ' ': case '\0': case '\n': case '\t':
stop=dd_TRUE;
tempname=(char*)calloc(dd_filenamelen,sizeof(ch));
strncpy(tempname,inputfile,i);
strcpy(inputfile,tempname);
free(tempname);
break;
}
}
if ( ( *f = fopen(inputfile,"r") )!= NULL) {
fprintf(stderr,"input file %s is open\n",inputfile);
opened=1;
*Error=dd_NoError;
}
else{
fprintf(stderr,"The file %s not found\n",inputfile);
trial++;
if (trial>5) {
*Error=dd_IFileNotFound;
quit=1;
}
}
}
}
void dd_SetWriteFileName(dd_DataFileType inputfile, dd_DataFileType outfile, char cflag, dd_RepresentationType rep)
{
const char *extension;
dd_DataFileType ifilehead="";
int i,dotpos;
switch (cflag) {
case 'o':
switch (rep) {
case dd_Generator:
extension=".ine"; break; /* output file for ine data */
case dd_Inequality:
extension=".ext"; break; /* output file for ext data */
default:
extension=".xxx";break;
}
break;
case 'a': /* decide for output adjacence */
if (rep==dd_Inequality)
extension=".ead"; /* adjacency file for ext data */
else
extension=".iad"; /* adjacency file for ine data */
break;
case 'i': /* decide for output incidence */
if (rep==dd_Inequality)
extension=".ecd"; /* ext incidence file */
else
extension=".icd"; /* ine incidence file */
break;
case 'n': /* decide for input incidence */
if (rep==dd_Inequality)
extension=".icd"; /* ine incidence file */
else
extension=".ecd"; /* ext incidence file */
break;
case 'j': /* decide for input adjacency */
if (rep==dd_Inequality)
extension=".iad"; /* ine adjacency file */
else
extension=".ead"; /* ext adjacency file */
break;
case 'l':
extension=".ddl";break; /* log file */
case 'd':
extension=".dex";break; /* decomposition output */
case 'p':
extension="sub.ine";break; /* preprojection sub inequality file */
case 'v':
extension=".solved";break; /* verify_input file */
case 's':
extension=".lps";break; /* LP solution file */
default:
extension=".xxx";break;
}
dotpos=-1;
for (i=0; i< strlen(inputfile); i++){
if (inputfile[i]=='.') dotpos=i;
}
if (dotpos>1) strncpy(ifilehead, inputfile, dotpos);
else strcpy(ifilehead,inputfile);
if (strlen(inputfile)<=0) strcpy(ifilehead,"tempcdd");
strcpy(outfile,ifilehead);
strcat(outfile,extension);
if (strcmp(inputfile, outfile)==0) {
strcpy(outfile,inputfile);
strcat(outfile,extension);
}
/* fprintf(stderr,"outfile name = %s\n",outfile); */
}
dd_NumberType dd_GetNumberType(const char *line)
{
dd_NumberType nt;
if (strncmp(line, "integer", 7)==0) {
nt = dd_Integer;
}
else if (strncmp(line, "rational", 8)==0) {
nt = dd_Rational;
}
else if (strncmp(line, "real", 4)==0) {
nt = dd_Real;
}
else {
nt=dd_Unknown;
}
return nt;
}
void dd_ProcessCommandLine(FILE *f, dd_MatrixPtr M, const char *line)
{
char newline[dd_linelenmax];
dd_colrange j;
mytype value;
dd_init(value);
if (strncmp(line, "hull", 4)==0) {
M->representation = dd_Generator;
}
if (strncmp(line, "debug", 5)==0) {
dd_debug = dd_TRUE;
#ifdef GMPRATIONAL
ddf_debug = ddf_TRUE;
#endif
}
if (strncmp(line, "partial_enum", 12)==0 ||
strncmp(line, "equality", 8)==0 ||
strncmp(line, "linearity", 9)==0 ) {
fgets(newline,dd_linelenmax,f);
dd_SetLinearity(M,newline);
}
if (strncmp(line, "maximize", 8)==0 ||
strncmp(line, "minimize", 8)==0) {
if (strncmp(line, "maximize", 8)==0) M->objective=dd_LPmax;
else M->objective=dd_LPmin;
for (j = 1; j <= M->colsize; j++) {
if (M->numbtype==dd_Real) {
#if !defined(GMPRATIONAL)
double rvalue;
fscanf(f, "%lf", &rvalue);
dd_set_d(value, rvalue);
#endif
} else {
dd_fread_rational_value (f, value);
}
dd_set(M->rowvec[j - 1],value);
if (dd_debug) {fprintf(stderr,"cost(%5ld) =",j); dd_WriteNumber(stderr,value);}
} /*of j*/
}
dd_clear(value);
}
dd_boolean dd_AppendMatrix2Poly(dd_PolyhedraPtr *poly, dd_MatrixPtr M)
{
dd_boolean success=dd_FALSE;
dd_MatrixPtr Mpoly,Mnew=NULL;
dd_ErrorType err;
if ((*poly)!=NULL && (*poly)->m >=0 && (*poly)->d>=0 &&
(*poly)->d==M->colsize && M->rowsize>0){
Mpoly=dd_CopyInput(*poly);
Mnew=dd_AppendMatrix(Mpoly, M);
dd_FreePolyhedra(*poly);
*poly=dd_DDMatrix2Poly(Mnew,&err);
dd_FreeMatrix(Mpoly);
dd_FreeMatrix(Mnew);
if (err==dd_NoError) success=dd_TRUE;
}
return success;
}
dd_MatrixPtr dd_MatrixCopy(dd_MatrixPtr M)
{
dd_MatrixPtr Mcopy=NULL;
dd_rowrange m;
dd_colrange d;
m= M->rowsize;
d= M->colsize;
if (m >=0 && d >=0){
Mcopy=dd_CreateMatrix(m, d);
dd_CopyAmatrix(Mcopy->matrix, M->matrix, m, d);
dd_CopyArow(Mcopy->rowvec, M->rowvec, d);
set_copy(Mcopy->linset,M->linset);
Mcopy->numbtype=M->numbtype;
Mcopy->representation=M->representation;
Mcopy->objective=M->objective;
}
return Mcopy;
}
dd_MatrixPtr dd_CopyMatrix(dd_MatrixPtr M)
{
return dd_MatrixCopy(M);
}
dd_MatrixPtr dd_MatrixNormalizedCopy(dd_MatrixPtr M)
{
dd_MatrixPtr Mcopy=NULL;
dd_rowrange m;
dd_colrange d;
m= M->rowsize;
d= M->colsize;
if (m >=0 && d >=0){
Mcopy=dd_CreateMatrix(m, d);
dd_CopyNormalizedAmatrix(Mcopy->matrix, M->matrix, m, d);
dd_CopyArow(Mcopy->rowvec, M->rowvec, d);
set_copy(Mcopy->linset,M->linset);
Mcopy->numbtype=M->numbtype;
Mcopy->representation=M->representation;
Mcopy->objective=M->objective;
}
return Mcopy;
}
dd_MatrixPtr dd_MatrixAppend(dd_MatrixPtr M1, dd_MatrixPtr M2)
{
dd_MatrixPtr M=NULL;
dd_rowrange i, m,m1,m2;
dd_colrange j, d,d1,d2;
m1=M1->rowsize;
d1=M1->colsize;
m2=M2->rowsize;
d2=M2->colsize;
m=m1+m2;
d=d1;
if (d1>=0 && d1==d2 && m1>=0 && m2>=0){
M=dd_CreateMatrix(m, d);
dd_CopyAmatrix(M->matrix, M1->matrix, m1, d);
dd_CopyArow(M->rowvec, M1->rowvec, d);
for (i=0; i<m1; i++){
if (set_member(i+1,M1->linset)) set_addelem(M->linset,i+1);
}
for (i=0; i<m2; i++){
for (j=0; j<d; j++)
dd_set(M->matrix[m1+i][j],M2->matrix[i][j]);
/* append the second matrix */
if (set_member(i+1,M2->linset)) set_addelem(M->linset,m1+i+1);
}
M->numbtype=M1->numbtype;
}
return M;
}
dd_MatrixPtr dd_MatrixNormalizedSortedCopy(dd_MatrixPtr M,dd_rowindex *newpos) /* 094 */
{
/* Sort the rows of Amatrix lexicographically, and return a link to this sorted copy.
The vector newpos is allocated, where newpos[i] returns the new row index
of the original row i (i=1,...,M->rowsize). */
dd_MatrixPtr Mcopy=NULL,Mnorm=NULL;
dd_rowrange m,i;
dd_colrange d;
dd_rowindex roworder;
/* if (newpos!=NULL) free(newpos); */
m= M->rowsize;
d= M->colsize;
roworder=(long *)calloc(m+1,sizeof(long));
*newpos=(long *)calloc(m+1,sizeof(long));
if (m >=0 && d >=0){
Mnorm=dd_MatrixNormalizedCopy(M);
Mcopy=dd_CreateMatrix(m, d);
for(i=1; i<=m; i++) roworder[i]=i;
dd_RandomPermutation(roworder, m, 123);
dd_QuickSort(roworder,1,m,Mnorm->matrix,d);
dd_PermuteCopyAmatrix(Mcopy->matrix, Mnorm->matrix, m, d, roworder);
dd_CopyArow(Mcopy->rowvec, M->rowvec, d);
for(i=1; i<=m; i++) {
if (set_member(roworder[i],M->linset)) set_addelem(Mcopy->linset, i);
(*newpos)[roworder[i]]=i;
}
Mcopy->numbtype=M->numbtype;
Mcopy->representation=M->representation;
Mcopy->objective=M->objective;
dd_FreeMatrix(Mnorm);
}
free(roworder);
return Mcopy;
}
dd_MatrixPtr dd_MatrixUniqueCopy(dd_MatrixPtr M,dd_rowindex *newpos)
{
/* Remove row duplicates, and return a link to this sorted copy.
Linearity rows have priority over the other rows.
It is better to call this after sorting with dd_MatrixNormalizedSortedCopy.
The vector newpos is allocated, where *newpos[i] returns the new row index
of the original row i (i=1,...,M->rowsize). *newpos[i] is negative if the original
row is dominated by -*newpos[i] and eliminated in the new copy.
*/
dd_MatrixPtr Mcopy=NULL;
dd_rowrange m,i,uniqrows;
dd_rowset preferredrows;
dd_colrange d;
dd_rowindex roworder;
/* if (newpos!=NULL) free(newpos); */
m= M->rowsize;
d= M->colsize;
preferredrows=M->linset;
roworder=(long *)calloc(m+1,sizeof(long));
if (m >=0 && d >=0){
for(i=1; i<=m; i++) roworder[i]=i;
dd_UniqueRows(roworder, 1, m, M->matrix, d,preferredrows, &uniqrows);
Mcopy=dd_CreateMatrix(uniqrows, d);
dd_PermutePartialCopyAmatrix(Mcopy->matrix, M->matrix, m, d, roworder,1,m);
dd_CopyArow(Mcopy->rowvec, M->rowvec, d);
for(i=1; i<=m; i++) {
if (roworder[i]>0 && set_member(i,M->linset)) set_addelem(Mcopy->linset, roworder[i]);
}
Mcopy->numbtype=M->numbtype;
Mcopy->representation=M->representation;
Mcopy->objective=M->objective;
}
*newpos=roworder;
return Mcopy;
}
dd_MatrixPtr dd_MatrixNormalizedSortedUniqueCopy(dd_MatrixPtr M,dd_rowindex *newpos) /* 094 */
{
/* Sort and remove row duplicates, and return a link to this sorted copy.
Linearity rows have priority over the other rows.
It is better to call this after sorting with dd_MatrixNormalizedSortedCopy.
The vector newpos is allocated, where *newpos[i] returns the new row index
of the original row i (i=1,...,M->rowsize). *newpos[i] is negative if the original
row is dominated by -*newpos[i] and eliminated in the new copy.
*/
dd_MatrixPtr M1=NULL,M2=NULL;
dd_rowrange m,i;
dd_colrange d;
dd_rowindex newpos1=NULL,newpos1r=NULL,newpos2=NULL;
/* if (newpos!=NULL) free(newpos); */
m= M->rowsize;
d= M->colsize;
*newpos=(long *)calloc(m+1,sizeof(long));
newpos1r=(long *)calloc(m+1,sizeof(long));
if (m>=0 && d>=0){
M1=dd_MatrixNormalizedSortedCopy(M,&newpos1);
for (i=1; i<=m;i++) newpos1r[newpos1[i]]=i; /* reverse of newpos1 */
M2=dd_MatrixUniqueCopy(M1,&newpos2);
set_emptyset(M2->linset);
for(i=1; i<=m; i++) {
if (newpos2[newpos1[i]]>0){
printf("newpos1[%ld]=%ld, newpos2[newpos1[%ld]]=%ld\n",i,newpos1[i], i,newpos2[newpos1[i]]);
if (set_member(i,M->linset)) set_addelem(M2->linset, newpos2[newpos1[i]]);
(*newpos)[i]=newpos2[newpos1[i]];
} else {
(*newpos)[i]=-newpos1r[-newpos2[newpos1[i]]];
}
}
dd_FreeMatrix(M1);free(newpos1);free(newpos2);free(newpos1r);
}
return M2;
}
dd_MatrixPtr dd_MatrixSortedUniqueCopy(dd_MatrixPtr M,dd_rowindex *newpos) /* 094 */
{
/* Same as dd_MatrixNormalizedSortedUniqueCopy except that it returns a unnormalized origial data
with original ordering.
*/
dd_MatrixPtr M1=NULL,M2=NULL;
dd_rowrange m,i,k,ii;
dd_colrange d;
dd_rowindex newpos1=NULL,newpos1r=NULL,newpos2=NULL;
/* if (newpos!=NULL) free(newpos); */
m= M->rowsize;
d= M->colsize;
*newpos=(long *)calloc(m+1,sizeof(long));
newpos1r=(long *)calloc(m+1,sizeof(long));
if (m>=0 && d>=0){
M1=dd_MatrixNormalizedSortedCopy(M,&newpos1);
for (i=1; i<=m;i++) newpos1r[newpos1[i]]=i; /* reverse of newpos1 */
M2=dd_MatrixUniqueCopy(M1,&newpos2);
dd_FreeMatrix(M1);
set_emptyset(M2->linset);
for(i=1; i<=m; i++) {
if (newpos2[newpos1[i]]>0){
if (set_member(i,M->linset)) set_addelem(M2->linset, newpos2[newpos1[i]]);
(*newpos)[i]=newpos2[newpos1[i]];
} else {
(*newpos)[i]=-newpos1r[-newpos2[newpos1[i]]];
}
}
ii=0;
set_emptyset(M2->linset);
for (i = 1; i<=m ; i++) {
k=(*newpos)[i];
if (k>0) {
ii+=1;
(*newpos)[i]=ii;
dd_CopyArow(M2->matrix[ii-1],M->matrix[i-1],d);
if (set_member(i,M->linset)) set_addelem(M2->linset, ii);
}
}
free(newpos1);free(newpos2);free(newpos1r);
}
return M2;
}
dd_MatrixPtr dd_AppendMatrix(dd_MatrixPtr M1, dd_MatrixPtr M2)
{
return dd_MatrixAppend(M1,M2);
}
int dd_MatrixAppendTo(dd_MatrixPtr *M1, dd_MatrixPtr M2)
{
dd_MatrixPtr M=NULL;
dd_rowrange i, m,m1,m2;
dd_colrange j, d,d1,d2;
dd_boolean success=0;
m1=(*M1)->rowsize;
d1=(*M1)->colsize;
m2=M2->rowsize;
d2=M2->colsize;
m=m1+m2;
d=d1;
if (d1>=0 && d1==d2 && m1>=0 && m2>=0){
M=dd_CreateMatrix(m, d);
dd_CopyAmatrix(M->matrix, (*M1)->matrix, m1, d);
dd_CopyArow(M->rowvec, (*M1)->rowvec, d);
for (i=0; i<m1; i++){
if (set_member(i+1,(*M1)->linset)) set_addelem(M->linset,i+1);
}
for (i=0; i<m2; i++){
for (j=0; j<d; j++)
dd_set(M->matrix[m1+i][j],M2->matrix[i][j]);
/* append the second matrix */
if (set_member(i+1,M2->linset)) set_addelem(M->linset,m1+i+1);
}
M->numbtype=(*M1)->numbtype;
dd_FreeMatrix(*M1);
*M1=M;
success=1;
}
return success;
}
int dd_MatrixRowRemove(dd_MatrixPtr *M, dd_rowrange r) /* 092 */
{
dd_rowrange i,m;
dd_colrange d;
dd_boolean success=0;
m=(*M)->rowsize;
d=(*M)->colsize;
if (r >= 1 && r <=m){
(*M)->rowsize=m-1;
dd_FreeArow(d, (*M)->matrix[r-1]);
set_delelem((*M)->linset,r);
/* slide the row headers */
for (i=r; i<m; i++){
(*M)->matrix[i-1]=(*M)->matrix[i];
if (set_member(i+1, (*M)->linset)){
set_delelem((*M)->linset,i+1);
set_addelem((*M)->linset,i);
}
}
success=1;
}
return success;
}
int dd_MatrixRowRemove2(dd_MatrixPtr *M, dd_rowrange r, dd_rowindex *newpos) /* 094 */
{
dd_rowrange i,m;
dd_colrange d;
dd_boolean success=0;
dd_rowindex roworder;
m=(*M)->rowsize;
d=(*M)->colsize;
if (r >= 1 && r <=m){
roworder=(long *)calloc(m+1,sizeof(long));
(*M)->rowsize=m-1;
dd_FreeArow(d, (*M)->matrix[r-1]);
set_delelem((*M)->linset,r);
/* slide the row headers */
for (i=1; i<r; i++) roworder[i]=i;
roworder[r]=0; /* meaning it is removed */
for (i=r; i<m; i++){
(*M)->matrix[i-1]=(*M)->matrix[i];
roworder[i+1]=i;
if (set_member(i+1, (*M)->linset)){
set_delelem((*M)->linset,i+1);
set_addelem((*M)->linset,i);
}
}
success=1;
}
return success;
}
dd_MatrixPtr dd_MatrixSubmatrix(dd_MatrixPtr M, dd_rowset delset) /* 092 */
{
dd_MatrixPtr Msub=NULL;
dd_rowrange i,isub=1, m,msub;
dd_colrange d;
m= M->rowsize;
d= M->colsize;
msub=m;
if (m >=0 && d >=0){
for (i=1; i<=m; i++) {
if (set_member(i,delset)) msub-=1;
}
Msub=dd_CreateMatrix(msub, d);
for (i=1; i<=m; i++){
if (!set_member(i,delset)){
dd_CopyArow(Msub->matrix[isub-1], M->matrix[i-1], d);
if (set_member(i, M->linset)){
set_addelem(Msub->linset,isub);
}
isub++;
}
}
dd_CopyArow(Msub->rowvec, M->rowvec, d);
Msub->numbtype=M->numbtype;
Msub->representation=M->representation;
Msub->objective=M->objective;
}
return Msub;
}
dd_MatrixPtr dd_MatrixSubmatrix2(dd_MatrixPtr M, dd_rowset delset,dd_rowindex *newpos) /* 092 */
{ /* returns a pointer to a new matrix which is a submatrix of M with rows in delset
removed. *newpos[i] returns the position of the original row i in the new matrix.
It is -1 if and only if it is deleted.
*/
dd_MatrixPtr Msub=NULL;
dd_rowrange i,isub=1, m,msub;
dd_colrange d;
dd_rowindex roworder;
m= M->rowsize;
d= M->colsize;
msub=m;
if (m >=0 && d >=0){
roworder=(long *)calloc(m+1,sizeof(long));
for (i=1; i<=m; i++) {
if (set_member(i,delset)) msub-=1;
}
Msub=dd_CreateMatrix(msub, d);
for (i=1; i<=m; i++){
if (set_member(i,delset)){
roworder[i]=0; /* zero means the row i is removed */
} else {
dd_CopyArow(Msub->matrix[isub-1], M->matrix[i-1], d);
if (set_member(i, M->linset)){
set_addelem(Msub->linset,isub);
}
roworder[i]=isub;
isub++;
}
}
*newpos=roworder;
dd_CopyArow(Msub->rowvec, M->rowvec, d);
Msub->numbtype=M->numbtype;
Msub->representation=M->representation;
Msub->objective=M->objective;
}
return Msub;
}
dd_MatrixPtr dd_MatrixSubmatrix2L(dd_MatrixPtr M, dd_rowset delset,dd_rowindex *newpos) /* 094 */
{ /* This is same as dd_MatrixSubmatrix2 except that the linearity rows will be shifted up
so that they are at the top of the matrix.
*/
dd_MatrixPtr Msub=NULL;
dd_rowrange i,iL, iI, m,msub;
dd_colrange d;
dd_rowindex roworder;
m= M->rowsize;
d= M->colsize;
msub=m;
if (m >=0 && d >=0){
roworder=(long *)calloc(m+1,sizeof(long));
for (i=1; i<=m; i++) {
if (set_member(i,delset)) msub-=1;
}
Msub=dd_CreateMatrix(msub, d);
iL=1; iI=set_card(M->linset)+1; /* starting positions */
for (i=1; i<=m; i++){
if (set_member(i,delset)){
roworder[i]=0; /* zero means the row i is removed */
} else {
if (set_member(i,M->linset)){
dd_CopyArow(Msub->matrix[iL-1], M->matrix[i-1], d);
set_delelem(Msub->linset,i);
set_addelem(Msub->linset,iL);
roworder[i]=iL;
iL+=1;
} else {
dd_CopyArow(Msub->matrix[iI-1], M->matrix[i-1], d);
roworder[i]=iI;
iI+=1;
}
}
}
*newpos=roworder;
dd_CopyArow(Msub->rowvec, M->rowvec, d);
Msub->numbtype=M->numbtype;
Msub->representation=M->representation;
Msub->objective=M->objective;
}
return Msub;
}
int dd_MatrixRowsRemove(dd_MatrixPtr *M, dd_rowset delset) /* 094 */
{
dd_MatrixPtr Msub=NULL;
int success;
Msub=dd_MatrixSubmatrix(*M, delset);
dd_FreeMatrix(*M);
*M=Msub;
success=1;
return success;
}
int dd_MatrixRowsRemove2(dd_MatrixPtr *M, dd_rowset delset,dd_rowindex *newpos) /* 094 */
{
dd_MatrixPtr Msub=NULL;
int success;
Msub=dd_MatrixSubmatrix2(*M, delset,newpos);
dd_FreeMatrix(*M);
*M=Msub;
success=1;
return success;
}
int dd_MatrixShiftupLinearity(dd_MatrixPtr *M,dd_rowindex *newpos) /* 094 */
{
dd_MatrixPtr Msub=NULL;
int success;
dd_rowset delset;
set_initialize(&delset,(*M)->rowsize); /* emptyset */
Msub=dd_MatrixSubmatrix2L(*M, delset,newpos);
dd_FreeMatrix(*M);
*M=Msub;
set_free(delset);
success=1;
return success;
}
dd_PolyhedraPtr dd_CreatePolyhedraData(dd_rowrange m, dd_colrange d)
{
dd_rowrange i;
dd_PolyhedraPtr poly=NULL;
poly=(dd_PolyhedraPtr) malloc (sizeof(dd_PolyhedraType));
poly->child =NULL; /* this links the homogenized cone data */
poly->m =m;
poly->d =d;
poly->n =-1; /* the size of output is not known */
poly->m_alloc =m+2; /* the allocated row size of matrix A */
poly->d_alloc =d; /* the allocated col size of matrix A */
poly->ldim =0; /* initialize the linearity dimension */
poly->numbtype=dd_Real;
dd_InitializeAmatrix(poly->m_alloc,poly->d_alloc,&(poly->A));
dd_InitializeArow(d,&(poly->c)); /* cost vector */
poly->representation =dd_Inequality;
poly->homogeneous =dd_FALSE;
poly->EqualityIndex=(int *)calloc(m+2, sizeof(int));
/* size increased to m+2 in 092b because it is used by the child cone,
This is a bug fix suggested by Thao Dang. */
/* ith component is 1 if it is equality, -1 if it is strict inequality, 0 otherwise. */
for (i = 0; i <= m+1; i++) poly->EqualityIndex[i]=0;
poly->IsEmpty = -1; /* initially set to -1, neither TRUE nor FALSE, meaning unknown */
poly->NondegAssumed = dd_FALSE;
poly->InitBasisAtBottom = dd_FALSE;
poly->RestrictedEnumeration = dd_FALSE;
poly->RelaxedEnumeration = dd_FALSE;
poly->AincGenerated=dd_FALSE; /* Ainc is a set array to store the input incidence. */
return poly;
}
dd_boolean dd_InitializeConeData(dd_rowrange m, dd_colrange d, dd_ConePtr *cone)
{
dd_boolean success=dd_TRUE;
dd_colrange j;
(*cone)=(dd_ConePtr)calloc(1, sizeof(dd_ConeType));
/* INPUT: A given representation of a cone: inequality */
(*cone)->m=m;
(*cone)->d=d;
(*cone)->m_alloc=m+2; /* allocated row size of matrix A */
(*cone)->d_alloc=d; /* allocated col size of matrix A, B and Bsave */
(*cone)->numbtype=dd_Real;
(*cone)->parent=NULL;
/* CONTROL: variables to control computation */
(*cone)->Iteration=0;
(*cone)->HalfspaceOrder=dd_LexMin;
(*cone)->ArtificialRay=NULL;
(*cone)->FirstRay=NULL;
(*cone)->LastRay=NULL; /* The second description: Generator */
(*cone)->PosHead=NULL;
(*cone)->ZeroHead=NULL;
(*cone)->NegHead=NULL;
(*cone)->PosLast=NULL;
(*cone)->ZeroLast=NULL;
(*cone)->NegLast=NULL;
(*cone)->RecomputeRowOrder = dd_TRUE;
(*cone)->PreOrderedRun = dd_FALSE;
set_initialize(&((*cone)->GroundSet),(*cone)->m_alloc);
set_initialize(&((*cone)->EqualitySet),(*cone)->m_alloc);
set_initialize(&((*cone)->NonequalitySet),(*cone)->m_alloc);
set_initialize(&((*cone)->AddedHalfspaces),(*cone)->m_alloc);
set_initialize(&((*cone)->WeaklyAddedHalfspaces),(*cone)->m_alloc);
set_initialize(&((*cone)->InitialHalfspaces),(*cone)->m_alloc);
(*cone)->RayCount=0;
(*cone)->FeasibleRayCount=0;
(*cone)->WeaklyFeasibleRayCount=0;
(*cone)->TotalRayCount=0;
(*cone)->ZeroRayCount=0;
(*cone)->EdgeCount=0;
(*cone)->TotalEdgeCount=0;
(*cone)->count_int=0;
(*cone)->count_int_good=0;
(*cone)->count_int_bad=0;
(*cone)->rseed=1; /* random seed for random row permutation */
dd_InitializeBmatrix((*cone)->d_alloc, &((*cone)->B));
dd_InitializeBmatrix((*cone)->d_alloc, &((*cone)->Bsave));
dd_InitializeAmatrix((*cone)->m_alloc,(*cone)->d_alloc,&((*cone)->A));
(*cone)->Edges
=(dd_AdjacencyType**) calloc((*cone)->m_alloc,sizeof(dd_AdjacencyType*));
for (j=0; j<(*cone)->m_alloc; j++) (*cone)->Edges[j]=NULL; /* 094h */
(*cone)->InitialRayIndex=(long*)calloc(d+1,sizeof(long));
(*cone)->OrderVector=(long*)calloc((*cone)->m_alloc+1,sizeof(long));
(*cone)->newcol=(long*)calloc(((*cone)->d)+1,sizeof(long));
for (j=0; j<=(*cone)->d; j++) (*cone)->newcol[j]=j; /* identity map, initially */
(*cone)->LinearityDim = -2; /* -2 if it is not computed */
(*cone)->ColReduced = dd_FALSE;
(*cone)->d_orig = d;
/* STATES: variables to represent current state. */
/*(*cone)->Error;
(*cone)->CompStatus;
(*cone)->starttime;
(*cone)->endtime;
*/
return success;
}
dd_ConePtr dd_ConeDataLoad(dd_PolyhedraPtr poly)
{
dd_ConePtr cone=NULL;
dd_colrange d,j;
dd_rowrange m,i;
m=poly->m;
d=poly->d;
if (!(poly->homogeneous) && poly->representation==dd_Inequality){
m=poly->m+1;
}
poly->m1=m;
dd_InitializeConeData(m, d, &cone);
cone->representation=poly->representation;
/* Points to the original polyhedra data, and reversely */
cone->parent=poly;
poly->child=cone;
for (i=1; i<=poly->m; i++)
for (j=1; j<=cone->d; j++)
dd_set(cone->A[i-1][j-1],poly->A[i-1][j-1]);
if (poly->representation==dd_Inequality && !(poly->homogeneous)){
dd_set(cone->A[m-1][0],dd_one);
for (j=2; j<=d; j++) dd_set(cone->A[m-1][j-1],dd_purezero);
}
return cone;
}
void dd_SetLinearity(dd_MatrixPtr M, char *line)
{
int i=0;
dd_rowrange eqsize,var;
char *next;
const char ct[]=", "; /* allows separators "," and " ". */
next=strtok(line,ct);
eqsize=atol(next);
while (i < eqsize && (next=strtok(NULL,ct))!=NULL) {
var=atol(next);
set_addelem(M->linset,var); i++;
}
if (i!=eqsize) {
fprintf(stderr,"* Warning: there are inconsistencies in linearity setting.\n");
}
return;
}
dd_MatrixPtr dd_PolyFile2Matrix (FILE *f, dd_ErrorType *Error)
{
dd_MatrixPtr M=NULL;
dd_rowrange m_input,i;
dd_colrange d_input,j;
dd_RepresentationType rep=dd_Inequality;
mytype value;
dd_boolean found=dd_FALSE, newformat=dd_FALSE, successful=dd_FALSE, linearity=dd_FALSE;
char command[dd_linelenmax], comsave[dd_linelenmax], numbtype[dd_wordlenmax];
dd_NumberType NT;
#if !defined(GMPRATIONAL)
double rvalue;
#endif
dd_init(value);
(*Error)=dd_NoError;
while (!found)
{
if (fscanf(f,"%s",command)==EOF) {
(*Error)=dd_ImproperInputFormat;
goto _L99;
}
else {
if (strncmp(command, "V-representation", 16)==0) {
rep=dd_Generator; newformat=dd_TRUE;
}
if (strncmp(command, "H-representation", 16)==0){
rep=dd_Inequality; newformat=dd_TRUE;
}
if (strncmp(command, "partial_enum", 12)==0 ||
strncmp(command, "equality", 8)==0 ||
strncmp(command, "linearity", 9)==0 ) {
linearity=dd_TRUE;
fgets(comsave,dd_linelenmax,f);
}
if (strncmp(command, "begin", 5)==0) found=dd_TRUE;
}
}
fscanf(f, "%ld %ld %s", &m_input, &d_input, numbtype);
fprintf(stderr,"size = %ld x %ld\nNumber Type = %s\n", m_input, d_input, numbtype);
NT=dd_GetNumberType(numbtype);
if (NT==dd_Unknown) {
(*Error)=dd_ImproperInputFormat;
goto _L99;
}
M=dd_CreateMatrix(m_input, d_input);
M->representation=rep;
M->numbtype=NT;
for (i = 1; i <= m_input; i++) {
for (j = 1; j <= d_input; j++) {
if (NT==dd_Real) {
#if defined GMPRATIONAL
*Error=dd_NoRealNumberSupport;
goto _L99;
#else
fscanf(f, "%lf", &rvalue);
dd_set_d(value, rvalue);
#endif
} else {
dd_fread_rational_value (f, value);
}
dd_set(M->matrix[i-1][j - 1],value);
if (dd_debug) {fprintf(stderr,"a(%3ld,%5ld) = ",i,j); dd_WriteNumber(stderr,value);}
} /*of j*/
} /*of i*/
if (fscanf(f,"%s",command)==EOF) {
(*Error)=dd_ImproperInputFormat;
goto _L99;
}
else if (strncmp(command, "end", 3)!=0) {
if (dd_debug) fprintf(stderr,"'end' missing or illegal extra data: %s\n",command);
(*Error)=dd_ImproperInputFormat;
goto _L99;
}
successful=dd_TRUE;
if (linearity) {
dd_SetLinearity(M,comsave);
}
while (!feof(f)) {
fscanf(f,"%s", command);
dd_ProcessCommandLine(f, M, command);
fgets(command,dd_linelenmax,f); /* skip the CR/LF */
}
_L99: ;
dd_clear(value);
/* if (f!=NULL) fclose(f); */
return M;
}
dd_PolyhedraPtr dd_DDMatrix2Poly(dd_MatrixPtr M, dd_ErrorType *err)
{
dd_rowrange i;
dd_colrange j;
dd_PolyhedraPtr poly=NULL;
*err=dd_NoError;
if (M->rowsize<0 || M->colsize<0){
*err=dd_NegativeMatrixSize;
goto _L99;
}
poly=dd_CreatePolyhedraData(M->rowsize, M->colsize);
poly->representation=M->representation;
poly->homogeneous=dd_TRUE;
for (i = 1; i <= M->rowsize; i++) {
if (set_member(i, M->linset)) {
poly->EqualityIndex[i]=1;
}
for (j = 1; j <= M->colsize; j++) {
dd_set(poly->A[i-1][j-1], M->matrix[i-1][j-1]);
if (j==1 && dd_Nonzero(M->matrix[i-1][j-1])) poly->homogeneous = dd_FALSE;
} /*of j*/
} /*of i*/
dd_DoubleDescription(poly,err);
_L99:
return poly;
}
dd_PolyhedraPtr dd_DDMatrix2Poly2(dd_MatrixPtr M, dd_RowOrderType horder, dd_ErrorType *err)
{
dd_rowrange i;
dd_colrange j;
dd_PolyhedraPtr poly=NULL;
*err=dd_NoError;
if (M->rowsize<0 || M->colsize<0){
*err=dd_NegativeMatrixSize;
goto _L99;
}
poly=dd_CreatePolyhedraData(M->rowsize, M->colsize);
poly->representation=M->representation;
poly->homogeneous=dd_TRUE;
for (i = 1; i <= M->rowsize; i++) {
if (set_member(i, M->linset)) {
poly->EqualityIndex[i]=1;
}
for (j = 1; j <= M->colsize; j++) {
dd_set(poly->A[i-1][j-1], M->matrix[i-1][j-1]);
if (j==1 && dd_Nonzero(M->matrix[i-1][j-1])) poly->homogeneous = dd_FALSE;
} /*of j*/
} /*of i*/
dd_DoubleDescription2(poly, horder, err);
_L99:
return poly;
}
void dd_MatrixIntegerFilter(dd_MatrixPtr M)
{ /* setting an almost integer to the integer. */
dd_rowrange i;
dd_colrange j;
mytype x;
dd_init(x);
for (i=0; i< M->rowsize; i++)
for (j=0; j< M->colsize; j++){
dd_SnapToInteger(x, M->matrix[i][j]);
dd_set(M->matrix[i][j],x);
}
dd_clear(x);
}
void dd_CopyRay(mytype *a, dd_colrange d_origsize, dd_RayPtr RR,
dd_RepresentationType rep, dd_colindex reducedcol)
{
long j,j1;
mytype b;
dd_init(b);
for (j = 1; j <= d_origsize; j++){
j1=reducedcol[j];
if (j1>0){
dd_set(a[j-1],RR->Ray[j1-1]);
/* the original column j is mapped to j1, and thus
copy the corresponding component */
} else {
dd_set(a[j-1],dd_purezero);
/* original column is redundant and removed for computation */
}
}
dd_set(b,a[0]);
if (rep==dd_Generator && dd_Nonzero(b)){
dd_set(a[0],dd_one);
for (j = 2; j <= d_origsize; j++)
dd_div(a[j-1],a[j-1],b); /* normalization for generators */
}
dd_clear(b);
}
void dd_WriteRay(FILE *f, dd_colrange d_origsize, dd_RayPtr RR, dd_RepresentationType rep, dd_colindex reducedcol)
{
dd_colrange j;
static dd_colrange d_last=0;
static dd_Arow a;
if (d_last< d_origsize){
if (d_last>0) free(a);
dd_InitializeArow(d_origsize+1, &a);
d_last=d_origsize+1;
}
dd_CopyRay(a, d_origsize, RR, rep, reducedcol);
for (j = 0; j < d_origsize; j++) dd_WriteNumber(f, a[j]);
fprintf(f, "\n");
}
void dd_WriteArow(FILE *f, dd_Arow a, dd_colrange d)
{
dd_colrange j;
for (j = 0; j < d; j++) dd_WriteNumber(f, a[j]);
fprintf(f, "\n");
}
void dd_WriteAmatrix(FILE *f, dd_Amatrix A, long rowmax, long colmax)
{
long i,j;
if (A==NULL){
fprintf(f, "WriteAmatrix: The requested matrix is empty\n");
goto _L99;
}
fprintf(f, "begin\n");
#if defined GMPRATIONAL
fprintf(f, " %ld %ld rational\n",rowmax, colmax);
#else
fprintf(f, " %ld %ld real\n",rowmax, colmax);
#endif
for (i=1; i <= rowmax; i++) {
for (j=1; j <= colmax; j++) {
dd_WriteNumber(f, A[i-1][j-1]);
}
fprintf(f,"\n");
}
fprintf(f, "end\n");
_L99:;
}
void dd_WriteBmatrix(FILE *f, dd_colrange d_size, dd_Bmatrix B)
{
dd_colrange j1, j2;
if (B==NULL){
fprintf(f, "WriteBmatrix: The requested matrix is empty\n");
goto _L99;
}
for (j1 = 0; j1 < d_size; j1++) {
for (j2 = 0; j2 < d_size; j2++) {
dd_WriteNumber(f, B[j1][j2]);
} /*of j2*/
putc('\n', f);
} /*of j1*/
putc('\n', f);
_L99:;
}
void dd_WriteSetFamily(FILE *f, dd_SetFamilyPtr F)
{
dd_bigrange i;
if (F==NULL){
fprintf(f, "WriteSetFamily: The requested family is empty\n");
goto _L99;
}
fprintf(f,"begin\n");
fprintf(f," %ld %ld\n", F->famsize, F->setsize);
for (i=0; i<F->famsize; i++) {
fprintf(f, " %ld %ld : ", i+1, set_card(F->set[i]));
set_fwrite(f, F->set[i]);
}
fprintf(f,"end\n");
_L99:;
}
void dd_WriteSetFamilyCompressed(FILE *f, dd_SetFamilyPtr F)
{
dd_bigrange i,card;
if (F==NULL){
fprintf(f, "WriteSetFamily: The requested family is empty\n");
goto _L99;
}
fprintf(f,"begin\n");
fprintf(f," %ld %ld\n", F->famsize, F->setsize);
for (i=0; i<F->famsize; i++) {
card=set_card(F->set[i]);
if (F->setsize - card >= card){
fprintf(f, " %ld %ld : ", i+1, card);
set_fwrite(f, F->set[i]);
} else {
fprintf(f, " %ld %ld : ", i+1, -card);
set_fwrite_compl(f, F->set[i]);
}
}
fprintf(f,"end\n");
_L99:;
}
void dd_WriteMatrix(FILE *f, dd_MatrixPtr M)
{
dd_rowrange i, linsize;
if (M==NULL){
fprintf(f, "WriteMatrix: The requested matrix is empty\n");
goto _L99;
}
switch (M->representation) {
case dd_Inequality:
fprintf(f, "H-representation\n"); break;
case dd_Generator:
fprintf(f, "V-representation\n"); break;
case dd_Unspecified:
break;
}
linsize=set_card(M->linset);
if (linsize>0) {
fprintf(f, "linearity %ld ", linsize);
for (i=1; i<=M->rowsize; i++)
if (set_member(i, M->linset)) fprintf(f, " %ld", i);
fprintf(f, "\n");
}
dd_WriteAmatrix(f, M->matrix, M->rowsize, M->colsize);
if (M->objective!=dd_LPnone){
if (M->objective==dd_LPmax)
fprintf(f, "maximize\n");
else
fprintf(f, "minimize\n");
dd_WriteArow(f, M->rowvec, M->colsize);
}
_L99:;
}
void dd_WriteLP(FILE *f, dd_LPPtr lp)
{
if (lp==NULL){
fprintf(f, "WriteLP: The requested lp is empty\n");
goto _L99;
}
fprintf(f, "H-representation\n");
dd_WriteAmatrix(f, lp->A, (lp->m)-1, lp->d);
if (lp->objective!=dd_LPnone){
if (lp->objective==dd_LPmax)
fprintf(f, "maximize\n");
else
fprintf(f, "minimize\n");
dd_WriteArow(f, lp->A[lp->objrow-1], lp->d);
}
_L99:;
}
void dd_SnapToInteger(mytype y, mytype x)
{
/* this is broken. It does nothing. */
dd_set(y,x);
}
void dd_WriteReal(FILE *f, mytype x)
{
long ix1,ix2,ix;
double ax;
ax=dd_get_d(x);
ix1= (long) (fabs(ax) * 10000. + 0.5);
ix2= (long) (fabs(ax) + 0.5);
ix2= ix2*10000;
if ( ix1 == ix2) {
if (dd_Positive(x)) {
ix = (long)(ax + 0.5);
} else {
ix = (long)(-ax + 0.5);
ix = -ix;
}
fprintf(f, " %2ld", ix);
} else
fprintf(f, " % .9E",ax);
}
void dd_WriteNumber(FILE *f, mytype x)
{
#if defined GMPRATIONAL
fprintf(f," ");
mpq_out_str(f, 10, x);
#else
dd_WriteReal(f, x);
#endif
}
void dd_WriteIncidence(FILE *f, dd_PolyhedraPtr poly)
{
dd_SetFamilyPtr I;
switch (poly->representation) {
case dd_Inequality:
fprintf(f, "ecd_file: Incidence of generators and inequalities\n");
break;
case dd_Generator:
fprintf(f, "icd_file: Incidence of inequalities and generators\n");
break;
default:
break;
}
I=dd_CopyIncidence(poly);
dd_WriteSetFamilyCompressed(f,I);
dd_FreeSetFamily(I);
}
void dd_WriteAdjacency(FILE *f, dd_PolyhedraPtr poly)
{
dd_SetFamilyPtr A;
switch (poly->representation) {
case dd_Inequality:
fprintf(f, "ead_file: Adjacency of generators\n");
break;
case dd_Generator:
fprintf(f, "iad_file: Adjacency of inequalities\n");
break;
default:
break;
}
A=dd_CopyAdjacency(poly);
dd_WriteSetFamilyCompressed(f,A);
dd_FreeSetFamily(A);
}
void dd_ComputeAinc(dd_PolyhedraPtr poly)
{
/* This generates the input incidence array poly->Ainc, and
two sets: poly->Ared, poly->Adom.
*/
dd_bigrange k;
dd_rowrange i,m1;
dd_colrange j;
dd_boolean redundant;
dd_MatrixPtr M=NULL;
mytype sum,temp;
dd_init(sum); dd_init(temp);
if (poly->AincGenerated==dd_TRUE) goto _L99;
M=dd_CopyOutput(poly);
poly->n=M->rowsize;
m1=poly->m1;
/* this number is same as poly->m, except when
poly is given by nonhomogeneous inequalty:
!(poly->homogeneous) && poly->representation==Inequality,
it is poly->m+1. See dd_ConeDataLoad.
*/
poly->Ainc=(set_type*)calloc(m1, sizeof(set_type));
for(i=1; i<=m1; i++) set_initialize(&(poly->Ainc[i-1]),poly->n);
set_initialize(&(poly->Ared), m1);
set_initialize(&(poly->Adom), m1);
for (k=1; k<=poly->n; k++){
for (i=1; i<=poly->m; i++){
dd_set(sum,dd_purezero);
for (j=1; j<=poly->d; j++){
dd_mul(temp,poly->A[i-1][j-1],M->matrix[k-1][j-1]);
dd_add(sum,sum,temp);
}
if (dd_EqualToZero(sum)) {
set_addelem(poly->Ainc[i-1], k);
}
}
if (!(poly->homogeneous) && poly->representation==dd_Inequality){
if (dd_EqualToZero(M->matrix[k-1][0])) {
set_addelem(poly->Ainc[m1-1], k); /* added infinity inequality (1,0,0,...,0) */
}
}
}
for (i=1; i<=m1; i++){
if (set_card(poly->Ainc[i-1])==M->rowsize){
set_addelem(poly->Adom, i);
}
}
for (i=m1; i>=1; i--){
if (set_card(poly->Ainc[i-1])==0){
redundant=dd_TRUE;
set_addelem(poly->Ared, i);
}else {
redundant=dd_FALSE;
for (k=1; k<=m1; k++) {
if (k!=i && !set_member(k, poly->Ared) && !set_member(k, poly->Adom) &&
set_subset(poly->Ainc[i-1], poly->Ainc[k-1])){
if (!redundant){
redundant=dd_TRUE;
}
set_addelem(poly->Ared, i);
}
}
}
}
dd_FreeMatrix(M);
poly->AincGenerated=dd_TRUE;
_L99:;
dd_clear(sum); dd_clear(temp);
}
dd_boolean dd_InputAdjacentQ(dd_PolyhedraPtr poly,
dd_rowrange i1, dd_rowrange i2)
/* Before calling this function, RedundantSet must be
a set of row indices whose removal results in a minimal
nonredundant system to represent the input polyhedron,
DominantSet must be the set of row indices which are
active at every extreme points/rays.
*/
{
dd_boolean adj=dd_TRUE;
dd_rowrange i;
static set_type common;
static long lastn=0;
if (poly->AincGenerated==dd_FALSE) dd_ComputeAinc(poly);
if (lastn!=poly->n){
if (lastn >0) set_free(common);
set_initialize(&common, poly->n);
lastn=poly->n;
}
if (set_member(i1, poly->Ared) || set_member(i2, poly->Ared)){
adj=dd_FALSE;
goto _L99;
}
if (set_member(i1, poly->Adom) || set_member(i2, poly->Adom)){
// dominant inequality is considered adjacencent to all others.
adj=dd_TRUE;
goto _L99;
}
set_int(common, poly->Ainc[i1-1], poly->Ainc[i2-1]);
i=0;
while (i<poly->m1 && adj==dd_TRUE){
i++;
if (i!=i1 && i!=i2 && !set_member(i, poly->Ared) &&
!set_member(i, poly->Adom) && set_subset(common,poly->Ainc[i-1])){
adj=dd_FALSE;
}
}
_L99:;
return adj;
}
void dd_WriteInputIncidence(FILE *f, dd_PolyhedraPtr poly)
{
dd_SetFamilyPtr I;
if (poly->AincGenerated==dd_FALSE) dd_ComputeAinc(poly);
switch (poly->representation) {
case dd_Inequality:
fprintf(f,"icd_file: Incidence of inequalities and generators\n");
break;
case dd_Generator:
fprintf(f,"ecd_file: Incidence of generators and inequalities\n");
break;
default:
break;
}
I=dd_CopyInputIncidence(poly);
dd_WriteSetFamilyCompressed(f,I);
dd_FreeSetFamily(I);
}
void dd_WriteInputAdjacency(FILE *f, dd_PolyhedraPtr poly)
{
dd_SetFamilyPtr A;
if (poly->AincGenerated==dd_FALSE){
dd_ComputeAinc(poly);
}
switch (poly->representation) {
case dd_Inequality:
fprintf(f, "iad_file: Adjacency of inequalities\n");
break;
case dd_Generator:
fprintf(f, "ead_file: Adjacency of generators\n");
break;
default:
break;
}
A=dd_CopyInputAdjacency(poly);
dd_WriteSetFamilyCompressed(f,A);
dd_FreeSetFamily(A);
}
void dd_WriteProgramDescription(FILE *f)
{
fprintf(f, "* cddlib: a double description library:%s\n", dd_DDVERSION);
fprintf(f, "* compiled for %s arithmetic.\n", dd_ARITHMETIC);
fprintf(f,"* %s\n",dd_COPYRIGHT);
}
void dd_WriteTimes(FILE *f, time_t starttime, time_t endtime)
{
long ptime,ptime_sec,ptime_minu, ptime_hour;
/*
ptime=difftime(endtime,starttime);
This function is ANSI standard, but not available sometime
*/
ptime=(endtime - starttime);
/* This is to replace the line above, but it may not give
correct time in seconds */
ptime_hour=ptime/3600;
ptime_minu=(ptime-ptime_hour*3600)/60;
ptime_sec=ptime%60;
fprintf(f,"* Computation started at %s",asctime(localtime(&starttime)));
fprintf(f,"* ended at %s",asctime(localtime(&endtime)));
fprintf(f,"* Total processor time = %ld seconds\n",ptime);
fprintf(f,"* = %ld h %ld m %ld s\n",ptime_hour, ptime_minu, ptime_sec);
}
void dd_WriteDDTimes(FILE *f, dd_PolyhedraPtr poly)
{
dd_WriteTimes(f,poly->child->starttime,poly->child->endtime);
}
void dd_WriteLPTimes(FILE *f, dd_LPPtr lp)
{
dd_WriteTimes(f,lp->starttime,lp->endtime);
}
void dd_WriteLPStats(FILE *f)
{
time_t currenttime;
time(&currenttime);
fprintf(f, "\n*--- Statistics of pivots ---\n");
#if defined GMPRATIONAL
fprintf(f, "* f0 = %ld (float basis finding pivots)\n",ddf_statBApivots);
fprintf(f, "* fc = %ld (float CC pivots)\n",ddf_statCCpivots);
fprintf(f, "* f1 = %ld (float dual simplex phase I pivots)\n",ddf_statDS1pivots);
fprintf(f, "* f2 = %ld (float dual simplex phase II pivots)\n",ddf_statDS2pivots);
fprintf(f, "* f3 = %ld (float anticycling CC pivots)\n",ddf_statACpivots);
fprintf(f, "* e0 = %ld (exact basis finding pivots)\n",dd_statBApivots);
fprintf(f, "* ec = %ld (exact CC pivots)\n",dd_statCCpivots);
fprintf(f, "* e1 = %ld (exact dual simplex phase I pivots)\n",dd_statDS1pivots);
fprintf(f, "* e2 = %ld (exact dual simplex phase II pivots)\n",dd_statDS2pivots);
fprintf(f, "* e3 = %ld (exact anticycling CC pivots)\n",dd_statACpivots);
fprintf(f, "* e4 = %ld (exact basis verification pivots)\n",dd_statBSpivots);
#else
fprintf(f, "f0 = %ld (float basis finding pivots)\n",dd_statBApivots);
fprintf(f, "fc = %ld (float CC pivots)\n",dd_statCCpivots);
fprintf(f, "f1 = %ld (float dual simplex phase I pivots)\n",dd_statDS1pivots);
fprintf(f, "f2 = %ld (float dual simplex phase II pivots)\n",dd_statDS2pivots);
fprintf(f, "f3 = %ld (float anticycling CC pivots)\n",dd_statACpivots);
#endif
dd_WriteLPMode(f);
dd_WriteTimes(f,dd_statStartTime, currenttime);
}
void dd_WriteLPMode(FILE *f)
{
fprintf(f, "\n* LP solver: ");
switch (dd_choiceLPSolverDefault) {
case dd_DualSimplex:
fprintf(f, "DualSimplex\n");
break;
case dd_CrissCross:
fprintf(f, "Criss-Cross\n");
break;
default: break;
}
fprintf(f, "* Redundancy cheking solver: ");
switch (dd_choiceRedcheckAlgorithm) {
case dd_DualSimplex:
fprintf(f, "DualSimplex\n");
break;
case dd_CrissCross:
fprintf(f, "Criss-Cross\n");
break;
default: break;
}
fprintf(f, "* Lexicographic pivot: ");
if (dd_choiceLexicoPivotQ) fprintf(f, " on\n");
else fprintf(f, " off\n");
}
void dd_WriteRunningMode(FILE *f, dd_PolyhedraPtr poly)
{
if (poly->child!=NULL){
fprintf(f,"* roworder: ");
switch (poly->child->HalfspaceOrder) {
case dd_MinIndex:
fprintf(f, "minindex\n");
break;
case dd_MaxIndex:
fprintf(f, "maxindex\n");
break;
case dd_MinCutoff:
fprintf(f, "mincutoff\n");
break;
case dd_MaxCutoff:
fprintf(f, "maxcutoff\n");
break;
case dd_MixCutoff:
fprintf(f, "mixcutoff\n");
break;
case dd_LexMin:
fprintf(f, "lexmin\n");
break;
case dd_LexMax:
fprintf(f, "lexmax\n");
break;
case dd_RandomRow:
fprintf(f, "random %d\n",poly->child->rseed);
break;
default: break;
}
}
}
void dd_WriteCompletionStatus(FILE *f, dd_ConePtr cone)
{
if (cone->Iteration<cone->m && cone->CompStatus==dd_AllFound) {
fprintf(f,"*Computation completed at Iteration %4ld.\n", cone->Iteration);
}
if (cone->CompStatus == dd_RegionEmpty) {
fprintf(f,"*Computation completed at Iteration %4ld because the region found empty.\n",cone->Iteration);
}
}
void dd_WritePolyFile(FILE *f, dd_PolyhedraPtr poly)
{
dd_WriteAmatrix(f,poly->A,poly->m,poly->d);
}
void dd_WriteErrorMessages(FILE *f, dd_ErrorType Error)
{
switch (Error) {
case dd_DimensionTooLarge:
fprintf(f, "*Input Error: Input matrix is too large:\n");
fprintf(f, "*Please increase MMAX and/or NMAX in the source code and recompile.\n");
break;
case dd_IFileNotFound:
fprintf(f, "*Input Error: Specified input file does not exist.\n");
break;
case dd_OFileNotOpen:
fprintf(f, "*Output Error: Specified output file cannot be opened.\n");
break;
case dd_NegativeMatrixSize:
fprintf(f, "*Input Error: Input matrix has a negative size:\n");
fprintf(f, "*Please check rowsize or colsize.\n");
break;
case dd_ImproperInputFormat:
fprintf(f,"*Input Error: Input format is not correct.\n");
fprintf(f,"*Format:\n");
fprintf(f," begin\n");
fprintf(f," m n NumberType(real, rational or integer)\n");
fprintf(f," b -A\n");
fprintf(f," end\n");
break;
case dd_EmptyVrepresentation:
fprintf(f, "*Input Error: V-representation is empty:\n");
fprintf(f, "*cddlib does not accept this trivial case for which output can be any inconsistent system.\n");
break;
case dd_EmptyHrepresentation:
fprintf(f, "*Input Error: H-representation is empty.\n");
break;
case dd_EmptyRepresentation:
fprintf(f, "*Input Error: Representation is empty.\n");
break;
case dd_NoLPObjective:
fprintf(f, "*LP Error: No LP objective (max or min) is set.\n");
break;
case dd_NoRealNumberSupport:
fprintf(f, "*LP Error: The binary (with GMP Rational) does not support Real number input.\n");
fprintf(f, " : Use a binary compiled without -DGMPRATIONAL option.\n");
break;
case dd_NotAvailForH:
fprintf(f, "*Error: A function is called with H-rep which does not support an H-representation.\n");
break;
case dd_NotAvailForV:
fprintf(f, "*Error: A function is called with V-rep which does not support an V-representation.\n");
break;
case dd_CannotHandleLinearity:
fprintf(f, "*Error: The function called cannot handle linearity.\n");
break;
case dd_RowIndexOutOfRange:
fprintf(f, "*Error: Specified row index is out of range\n");
break;
case dd_ColIndexOutOfRange:
fprintf(f, "*Error: Specified column index is out of range\n");
break;
case dd_LPCycling:
fprintf(f, "*Error: Possibly an LP cycling occurs. Use the Criss-Cross method.\n");
break;
case dd_NumericallyInconsistent:
fprintf(f, "*Error: Numerical inconsistency is found. Use the GMP exact arithmetic.\n");
break;
case dd_NoError:
fprintf(f,"*No Error found.\n");
break;
}
}
dd_SetFamilyPtr dd_CopyIncidence(dd_PolyhedraPtr poly)
{
dd_SetFamilyPtr F=NULL;
dd_bigrange k;
dd_rowrange i;
if (poly->child==NULL || poly->child->CompStatus!=dd_AllFound) goto _L99;
if (poly->AincGenerated==dd_FALSE) dd_ComputeAinc(poly);
F=dd_CreateSetFamily(poly->n, poly->m1);
for (i=1; i<=poly->m1; i++)
for (k=1; k<=poly->n; k++)
if (set_member(k,poly->Ainc[i-1])) set_addelem(F->set[k-1],i);
_L99:;
return F;
}
dd_SetFamilyPtr dd_CopyInputIncidence(dd_PolyhedraPtr poly)
{
dd_rowrange i;
dd_SetFamilyPtr F=NULL;
if (poly->child==NULL || poly->child->CompStatus!=dd_AllFound) goto _L99;
if (poly->AincGenerated==dd_FALSE) dd_ComputeAinc(poly);
F=dd_CreateSetFamily(poly->m1, poly->n);
for(i=0; i< poly->m1; i++){
set_copy(F->set[i], poly->Ainc[i]);
}
_L99:;
return F;
}
dd_SetFamilyPtr dd_CopyAdjacency(dd_PolyhedraPtr poly)
{
dd_RayPtr RayPtr1,RayPtr2;
dd_SetFamilyPtr F=NULL;
long pos1, pos2;
dd_bigrange lstart,k,n;
set_type linset,allset;
dd_boolean adj;
if (poly->n==0 && poly->homogeneous && poly->representation==dd_Inequality){
n=1; /* the origin (the unique vertex) should be output. */
} else n=poly->n;
set_initialize(&linset, n);
set_initialize(&allset, n);
if (poly->child==NULL || poly->child->CompStatus!=dd_AllFound) goto _L99;
F=dd_CreateSetFamily(n, n);
if (n<=0) goto _L99;
poly->child->LastRay->Next=NULL;
for (RayPtr1=poly->child->FirstRay, pos1=1;RayPtr1 != NULL;
RayPtr1 = RayPtr1->Next, pos1++){
for (RayPtr2=poly->child->FirstRay, pos2=1; RayPtr2 != NULL;
RayPtr2 = RayPtr2->Next, pos2++){
if (RayPtr1!=RayPtr2){
dd_CheckAdjacency(poly->child, &RayPtr1, &RayPtr2, &adj);
if (adj){
set_addelem(F->set[pos1-1], pos2);
}
}
}
}
lstart=poly->n - poly->ldim + 1;
set_compl(allset,allset); /* allset is set to the ground set. */
for (k=lstart; k<=poly->n; k++){
set_addelem(linset,k); /* linearity set */
set_copy(F->set[k-1],allset); /* linearity generator is adjacent to all */
}
for (k=1; k<lstart; k++){
set_uni(F->set[k-1],F->set[k-1],linset);
/* every generator is adjacent to all linearity generators */
}
_L99:;
set_free(allset); set_free(linset);
return F;
}
dd_SetFamilyPtr dd_CopyInputAdjacency(dd_PolyhedraPtr poly)
{
dd_rowrange i,j;
dd_SetFamilyPtr F=NULL;
if (poly->child==NULL || poly->child->CompStatus!=dd_AllFound) goto _L99;
if (poly->AincGenerated==dd_FALSE) dd_ComputeAinc(poly);
F=dd_CreateSetFamily(poly->m1, poly->m1);
for (i=1; i<=poly->m1; i++){
for (j=1; j<=poly->m1; j++){
if (i!=j && dd_InputAdjacentQ(poly, i, j)) {
set_addelem(F->set[i-1],j);
}
}
}
_L99:;
return F;
}
dd_MatrixPtr dd_CopyOutput(dd_PolyhedraPtr poly)
{
dd_RayPtr RayPtr;
dd_MatrixPtr M=NULL;
dd_rowrange i=0,total;
dd_colrange j,j1;
mytype b;
dd_RepresentationType outputrep=dd_Inequality;
dd_boolean outputorigin=dd_FALSE;
dd_init(b);
total=poly->child->LinearityDim + poly->child->FeasibleRayCount;
if (poly->child->d<=0 || poly->child->newcol[1]==0) total=total-1;
if (poly->representation==dd_Inequality) outputrep=dd_Generator;
if (total==0 && poly->homogeneous && poly->representation==dd_Inequality){
total=1;
outputorigin=dd_TRUE;
/* the origin (the unique vertex) should be output. */
}
if (poly->child==NULL || poly->child->CompStatus!=dd_AllFound) goto _L99;
M=dd_CreateMatrix(total, poly->d);
RayPtr = poly->child->FirstRay;
while (RayPtr != NULL) {
if (RayPtr->feasible) {
dd_CopyRay(M->matrix[i], poly->d, RayPtr, outputrep, poly->child->newcol);
i++; /* 086 */
}
RayPtr = RayPtr->Next;
}
for (j=2; j<=poly->d; j++){
if (poly->child->newcol[j]==0){
/* original column j is dependent on others and removed for the cone */
dd_set(b,poly->child->Bsave[0][j-1]);
if (outputrep==dd_Generator && dd_Positive(b)){
dd_set(M->matrix[i][0],dd_one); /* dd_Normalize */
for (j1=1; j1<poly->d; j1++)
dd_div(M->matrix[i][j1],(poly->child->Bsave[j1][j-1]),b);
} else {
for (j1=0; j1<poly->d; j1++)
dd_set(M->matrix[i][j1],poly->child->Bsave[j1][j-1]);
}
set_addelem(M->linset, i+1);
i++;
}
}
if (outputorigin){
/* output the origin for homogeneous H-polyhedron with no rays. */
dd_set(M->matrix[0][0],dd_one);
for (j=1; j<poly->d; j++){
dd_set(M->matrix[0][j],dd_purezero);
}
}
dd_MatrixIntegerFilter(M);
if (poly->representation==dd_Inequality)
M->representation=dd_Generator;
else
M->representation=dd_Inequality;
_L99:;
dd_clear(b);
return M;
}
dd_MatrixPtr dd_CopyInput(dd_PolyhedraPtr poly)
{
dd_MatrixPtr M=NULL;
dd_rowrange i;
M=dd_CreateMatrix(poly->m, poly->d);
dd_CopyAmatrix(M->matrix, poly->A, poly->m, poly->d);
for (i=1; i<=poly->m; i++)
if (poly->EqualityIndex[i]==1) set_addelem(M->linset,i);
dd_MatrixIntegerFilter(M);
if (poly->representation==dd_Generator)
M->representation=dd_Generator;
else
M->representation=dd_Inequality;
return M;
}
dd_MatrixPtr dd_CopyGenerators(dd_PolyhedraPtr poly)
{
dd_MatrixPtr M=NULL;
if (poly->representation==dd_Generator){
M=dd_CopyInput(poly);
} else {
M=dd_CopyOutput(poly);
}
return M;
}
dd_MatrixPtr dd_CopyInequalities(dd_PolyhedraPtr poly)
{
dd_MatrixPtr M=NULL;
if (poly->representation==dd_Inequality){
M=dd_CopyInput(poly);
} else {
M=dd_CopyOutput(poly);
}
return M;
}
/****************************************************************************************/
/* rational number (a/b) read is taken from Vinci by Benno Bueeler and Andreas Enge */
/****************************************************************************************/
void dd_sread_rational_value (char *s, mytype value)
/* reads a rational value from the specified string "s" and assigns it to "value" */
{
char *numerator_s=NULL, *denominator_s=NULL, *position;
int sign = 1;
double numerator, denominator;
#if defined GMPRATIONAL
mpz_t znum, zden;
#else
double rvalue;
#endif
/* determine the sign of the number */
numerator_s = s;
if (s [0] == '-')
{ sign = -1;
numerator_s++;
}
else if (s [0] == '+')
numerator_s++;
/* look for a sign '/' and eventually split the number in numerator and denominator */
position = strchr (numerator_s, '/');
if (position != NULL)
{ *position = '\0'; /* terminates the numerator */
denominator_s = position + 1;
};
/* determine the floating point values of numerator and denominator */
numerator=atol (numerator_s);
if (position != NULL)
{
denominator=atol (denominator_s);
}
else denominator = 1;
/*
fprintf(stderr,"\nrational_read: numerator %f\n",numerator);
fprintf(stderr,"rational_read: denominator %f\n",denominator);
fprintf(stderr,"rational_read: sign %d\n",sign);
*/
#if defined GMPRATIONAL
mpz_init_set_str(znum,numerator_s,10);
if (sign<0) mpz_neg(znum,znum);
mpz_init(zden); mpz_set_ui(zden,1);
if (denominator_s!=NULL) mpz_init_set_str(zden,denominator_s,10);
mpq_set_num(value,znum); mpq_set_den(value,zden);
mpq_canonicalize(value);
mpz_clear(znum); mpz_clear(zden);
/* num=(long)sign * numerator; */
/* den=(unsigned long) denominator; */
/* mpq_set_si(value, num, den); */
#elif defined GMPFLOAT
rvalue=sign * numerator/ (signed long) denominator;
mpf_set_d(value, rvalue);
#else
rvalue=sign * numerator/ (signed long) denominator;
ddd_set_d(value, rvalue);
#endif
if (dd_debug) {
fprintf(stderr,"rational_read: ");
dd_WriteNumber(stderr,value); fprintf(stderr,"\n");
}
}
void dd_fread_rational_value (FILE *f, mytype value)
/* reads a rational value from the specified file "f" and assigns it to "value" */
{
char number_s [dd_wordlenmax];
mytype rational_value;
dd_init(rational_value);
fscanf(f, "%s ", number_s);
dd_sread_rational_value (number_s, rational_value);
dd_set(value,rational_value);
dd_clear(rational_value);
}
/****************************************************************************************/
/* end of cddio.c */