blob: 996cb24369435a1c23a25d88bf539081ec62a4b2 [file] [log] [blame]
lsne-2-240% testlp1
>> Input file: samplelp.ine
input file samplelp.ine is open
size = 20 x 5
Number Type = rational
H-representation
begin
20 5 real
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 3008 20980 -97775 -101225
0 3985 25643 -135871 -130580
0 4324 26978 -133655 -168473
0 3534 25361 -46243 -100407
0 8836 40796 -176661 -2.156160000E+05
0 5376 37562 -182576 -2.176150000E+05
0 4982 33088 -98880 -167278
0 4775 39122 -136701 -193393
0 8046 42958 -2.251380000E+05 -2.565750000E+05
0 8554 48955 -2.573700000E+05 -3.128770000E+05
0 6147 45514 -165274 -2.270990000E+05
0 8366 55140 -203989 -3.216230000E+05
0 13479 68037 -174270 -3.417430000E+05
0 21808 78302 -3.229900000E+05 -4.875390000E+05
1 -8.554000000E-01 -4.895500000E+00 0 0
1 0 0 -2.573700000E+01 -3.128770000E+01
end
--- Running dd_LPSolve ---
* cdd LP solver result
* cdd: a double description code:Version 0.90gmp (May 19, 2000)
* compiled for C double arithmetic.
* Copyright (C) 1996, Komei Fukuda, fukuda@ifor.math.ethz.ch
* #constraints = 20
* #variables = 4
* Algorithm: dual simplex algorithm
* maximization is chosen
* Objective function is
0 + 1 X[ 1] + 5.000000000E-01 X[ 2] + 3.333333333E-01 X[ 3] + 2.500000000E-01 X[ 4]
* LP status: a dual pair (x,y) of optimal solutions found.
begin
primal_solution
1 : 1.169043722E+00
2 : 0
3 : 3.428722268E-02
4 : 0
dual_solution
6 : 0
2 : 5.216094413E+00
19 : 1.180472796E+00
4 : 7.035288374E-02
optimal_value : 1.180472796E+00
end
* number of pivot operations = 10 (ph0 = 4, ph1 = 3, ph2 = 3, ph3 = 0)
*Computation starts at Sun May 21 23:27:48 2000
* terminates at Sun May 21 23:27:48 2000
*Total processor time = 0 seconds
* = 0 h 0 m 0 s
(Iter, #Row, #Total, #Curr, Feas)= 6 5 9 7 3
(Iter, #Row, #Total, #Curr, Feas)= 7 8 9 7 3
(Iter, #Row, #Total, #Curr, Feas)= 8 6 14 9 5
(Iter, #Row, #Total, #Curr, Feas)= 9 7 18 9 5
(Iter, #Row, #Total, #Curr, Feas)= 10 12 21 11 6
(Iter, #Row, #Total, #Curr, Feas)= 11 11 21 11 6
(Iter, #Row, #Total, #Curr, Feas)= 12 10 26 13 10
(Iter, #Row, #Total, #Curr, Feas)= 13 15 26 13 10
(Iter, #Row, #Total, #Curr, Feas)= 14 13 29 15 10
(Iter, #Row, #Total, #Curr, Feas)= 15 16 29 15 10
(Iter, #Row, #Total, #Curr, Feas)= 16 14 34 15 15
All the vertices of the feasible region.
V-representation
begin
15 5 real
1 0 2.042692268E-01 0 0
1 1.169043722E+00 0 0 0
1 0 2.042692268E-01 3.855183066E-02 0
1 1.169043722E+00 0 3.428722268E-02 0
1 1.169043722E+00 0 0 2.886445618E-02
1 1.169043722E+00 0 3.372276744E-02 5.873265255E-04
1 8.111787329E-01 6.253042833E-02 0 3.083273128E-02
1 1.169043722E+00 0 1.196520568E-04 2.877987941E-02
1 1.166003676E+00 5.311931127E-04 0 2.889685194E-02
1 0 2.042692268E-01 0 3.196144172E-02
1 3.234924268E-01 1.477447816E-01 0 3.196144172E-02
1 5.190526428E-01 1.135741741E-01 2.836850964E-02 8.625743259E-03
1 5.503719639E-01 1.081016897E-01 1.794595623E-02 1.719924841E-02
1 0 2.042692268E-01 3.740911780E-02 1.189014700E-03
1 0 0 0 0
end