blob: 473c674bd3ed6f03540490b0e65628283c49d3c3 [file] [log] [blame]
#ifndef FRC971_ZEROING_POT_AND_INDEX_H_
#define FRC971_ZEROING_POT_AND_INDEX_H_
#include <vector>
#include "flatbuffers/flatbuffers.h"
#include "frc971/zeroing/zeroing.h"
namespace frc971 {
namespace zeroing {
// Estimates the position with an incremental encoder with an index pulse and a
// potentiometer.
class PotAndIndexPulseZeroingEstimator
: public ZeroingEstimator<PotAndIndexPosition,
constants::PotAndIndexPulseZeroingConstants,
EstimatorState> {
public:
explicit PotAndIndexPulseZeroingEstimator(
const constants::PotAndIndexPulseZeroingConstants &constants);
// Update the internal logic with the next sensor values.
void UpdateEstimate(const PotAndIndexPosition &info) override;
// Reset the internal logic so it needs to be re-zeroed.
void Reset() override;
// Manually trigger an internal error. This is used for testing the error
// logic.
void TriggerError() override;
bool error() const override { return error_; }
bool zeroed() const override { return zeroed_; }
double offset() const override { return offset_; }
// Returns a number between 0 and 1 that represents the percentage of the
// samples being used in the moving average filter. A value of 0.0 means that
// no samples are being used. A value of 1.0 means that the filter is using
// as many samples as it has room for. For example, after a Reset() this
// value returns 0.0. As more samples get added with UpdateEstimate(...) the
// return value starts increasing to 1.0.
double offset_ratio_ready() const {
return start_pos_samples_.size() /
static_cast<double>(constants_.average_filter_size);
}
// Returns true if the sample buffer is full.
bool offset_ready() const override {
return start_pos_samples_.size() == constants_.average_filter_size;
}
// Returns information about our current state.
virtual flatbuffers::Offset<State> GetEstimatorState(
flatbuffers::FlatBufferBuilder *fbb) const override;
private:
// This function calculates the start position given the internal state and
// the provided `latched_encoder' value.
double CalculateStartPosition(double start_average,
double latched_encoder) const;
// The zeroing constants used to describe the configuration of the system.
const constants::PotAndIndexPulseZeroingConstants constants_;
// The estimated position.
double position_;
// The unzeroed filtered position.
double filtered_position_ = 0.0;
// The next position in 'start_pos_samples_' to be used to store the next
// sample.
int samples_idx_;
// Last 'max_sample_count_' samples for start positions.
std::vector<double> start_pos_samples_;
// The estimated starting position of the mechanism. We also call this the
// 'offset' in some contexts.
double offset_;
// Flag for triggering logic that takes note of the current index pulse count
// after a reset. See `last_used_index_pulse_count_'.
bool wait_for_index_pulse_;
// After a reset we keep track of the index pulse count with this. Only after
// the index pulse count changes (i.e. increments at least once or wraps
// around) will we consider the mechanism zeroed. We also use this to store
// the most recent `PotAndIndexPosition::index_pulses' value when the start
// position was calculated. It helps us calculate the start position only on
// index pulses to reject corrupted intermediate data.
uint32_t last_used_index_pulse_count_;
// Marker to track whether we're fully zeroed yet or not.
bool zeroed_;
// Marker to track whether an error has occurred. This gets reset to false
// whenever Reset() is called.
bool error_;
// Stores the position "start_pos" variable the first time the program
// is zeroed.
double first_start_pos_;
};
} // namespace zeroing
} // namespace frc971
#endif // FRC971_ZEROING_POT_AND_INDEX_H_