blob: 7c713d93928b81823a667a7e10783d8a044c593f [file] [log] [blame]
#include "frc971/zeroing/pot_and_index.h"
#include <cmath>
#include "glog/logging.h"
namespace frc971 {
namespace zeroing {
PotAndIndexPulseZeroingEstimator::PotAndIndexPulseZeroingEstimator(
const constants::PotAndIndexPulseZeroingConstants &constants)
: constants_(constants) {
start_pos_samples_.reserve(constants_.average_filter_size);
Reset();
}
void PotAndIndexPulseZeroingEstimator::Reset() {
samples_idx_ = 0;
offset_ = 0;
start_pos_samples_.clear();
zeroed_ = false;
wait_for_index_pulse_ = true;
last_used_index_pulse_count_ = 0;
error_ = false;
}
void PotAndIndexPulseZeroingEstimator::TriggerError() {
if (!error_) {
VLOG(1) << "Manually triggered zeroing error.";
error_ = true;
}
}
double PotAndIndexPulseZeroingEstimator::CalculateStartPosition(
double start_average, double latched_encoder) const {
// We calculate an aproximation of the value of the last index position.
// Also account for index pulses not lining up with integer multiples of the
// index_diff.
double index_pos =
start_average + latched_encoder - constants_.measured_index_position;
// We round index_pos to the closest valid value of the index.
double accurate_index_pos = (round(index_pos / constants_.index_difference)) *
constants_.index_difference;
// Now we reverse the first calculation to get the accurate start position.
return accurate_index_pos - latched_encoder +
constants_.measured_index_position;
}
void PotAndIndexPulseZeroingEstimator::UpdateEstimate(
const PotAndIndexPosition &info) {
// We want to make sure that we encounter at least one index pulse while
// zeroing. So we take the index pulse count from the first sample after
// reset and wait for that count to change before we consider ourselves
// zeroed.
if (wait_for_index_pulse_) {
last_used_index_pulse_count_ = info.index_pulses();
wait_for_index_pulse_ = false;
}
if (start_pos_samples_.size() < constants_.average_filter_size) {
start_pos_samples_.push_back(info.pot() - info.encoder());
} else {
start_pos_samples_[samples_idx_] = info.pot() - info.encoder();
}
// Drop the oldest sample when we run this function the next time around.
samples_idx_ = (samples_idx_ + 1) % constants_.average_filter_size;
double sample_sum = 0.0;
for (size_t i = 0; i < start_pos_samples_.size(); ++i) {
sample_sum += start_pos_samples_[i];
}
// Calculates the average of the starting position.
double start_average = sample_sum / start_pos_samples_.size();
// If there are no index pulses to use or we don't have enough samples yet to
// have a well-filtered starting position then we use the filtered value as
// our best guess.
if (!zeroed_ &&
(info.index_pulses() == last_used_index_pulse_count_ || !offset_ready())) {
offset_ = start_average;
} else if (!zeroed_ || last_used_index_pulse_count_ != info.index_pulses()) {
// Note the accurate start position and the current index pulse count so
// that we only run this logic once per index pulse. That should be more
// resilient to corrupted intermediate data.
offset_ = CalculateStartPosition(start_average, info.latched_encoder());
last_used_index_pulse_count_ = info.index_pulses();
// TODO(austin): Reject encoder positions which have x% error rather than
// rounding to the closest index pulse.
// Save the first starting position.
if (!zeroed_) {
first_start_pos_ = offset_;
VLOG(2) << "latching start position" << first_start_pos_;
}
// Now that we have an accurate starting position we can consider ourselves
// zeroed.
zeroed_ = true;
// Throw an error if first_start_pos is bigger/smaller than
// constants_.allowable_encoder_error * index_diff + start_pos.
if (::std::abs(first_start_pos_ - offset_) >
constants_.allowable_encoder_error * constants_.index_difference) {
if (!error_) {
VLOG(1)
<< "Encoder ticks out of range since last index pulse. first start "
"position: "
<< first_start_pos_ << " recent starting position: " << offset_
<< ", allowable error: "
<< constants_.allowable_encoder_error * constants_.index_difference;
error_ = true;
}
}
}
position_ = offset_ + info.encoder();
filtered_position_ = start_average + info.encoder();
}
flatbuffers::Offset<PotAndIndexPulseZeroingEstimator::State>
PotAndIndexPulseZeroingEstimator::GetEstimatorState(
flatbuffers::FlatBufferBuilder *fbb) const {
State::Builder builder(*fbb);
builder.add_error(error_);
builder.add_zeroed(zeroed_);
builder.add_position(position_);
builder.add_pot_position(filtered_position_);
return builder.Finish();
}
} // namespace zeroing
} // namespace frc971