| #include "frc971/zeroing/pot_and_absolute_encoder.h" |
| |
| #include <cmath> |
| #include <numeric> |
| |
| #include "glog/logging.h" |
| |
| #include "frc971/zeroing/wrap.h" |
| |
| namespace frc971 { |
| namespace zeroing { |
| |
| PotAndAbsoluteEncoderZeroingEstimator::PotAndAbsoluteEncoderZeroingEstimator( |
| const constants::PotAndAbsoluteEncoderZeroingConstants &constants) |
| : constants_(constants), move_detector_(constants_.moving_buffer_size) { |
| relative_to_absolute_offset_samples_.reserve(constants_.average_filter_size); |
| offset_samples_.reserve(constants_.average_filter_size); |
| Reset(); |
| } |
| |
| void PotAndAbsoluteEncoderZeroingEstimator::Reset() { |
| first_offset_ = 0.0; |
| pot_relative_encoder_offset_ = 0.0; |
| offset_ = 0.0; |
| samples_idx_ = 0; |
| filtered_position_ = 0.0; |
| position_ = 0.0; |
| zeroed_ = false; |
| nan_samples_ = 0; |
| relative_to_absolute_offset_samples_.clear(); |
| offset_samples_.clear(); |
| move_detector_.Reset(); |
| error_ = false; |
| } |
| |
| // So, this needs to be a multistep process. We need to first estimate the |
| // offset between the absolute encoder and the relative encoder. That process |
| // should get us an absolute number which is off by integer multiples of the |
| // distance/rev. In parallel, we can estimate the offset between the pot and |
| // encoder. When both estimates have converged, we can then compute the offset |
| // in a cycle, and which cycle, which gives us the accurate global offset. |
| // |
| // It's tricky to compute the offset between the absolute and relative encoder. |
| // We need to compute this inside 1 revolution. The easiest way to do this |
| // would be to wrap the encoder, subtract the two of them, and then average the |
| // result. That will struggle when they are off by PI. Instead, we need to |
| // wrap the number to +- PI from the current averaged offset. |
| // |
| // To guard against the robot moving while updating estimates, buffer a number |
| // of samples and check that the buffered samples are not different than the |
| // zeroing threshold. At any point that the samples differ too much, do not |
| // update estimates based on those samples. |
| void PotAndAbsoluteEncoderZeroingEstimator::UpdateEstimate( |
| const PotAndAbsolutePosition &info) { |
| // Check for Abs Encoder NaN value that would mess up the rest of the zeroing |
| // code below. NaN values are given when the Absolute Encoder is disconnected. |
| if (::std::isnan(info.absolute_encoder())) { |
| if (zeroed_) { |
| VLOG(1) << "NAN on absolute encoder."; |
| error_ = true; |
| } else { |
| ++nan_samples_; |
| VLOG(1) << "NAN on absolute encoder while zeroing" << nan_samples_; |
| if (nan_samples_ >= constants_.average_filter_size) { |
| error_ = true; |
| zeroed_ = true; |
| } |
| } |
| // Throw some dummy values in for now. |
| filtered_absolute_encoder_ = info.absolute_encoder(); |
| filtered_position_ = pot_relative_encoder_offset_ + info.encoder(); |
| position_ = offset_ + info.encoder(); |
| return; |
| } |
| |
| const bool moving = move_detector_.Update(info, constants_.moving_buffer_size, |
| constants_.zeroing_threshold); |
| |
| if (!moving) { |
| const PositionStruct &sample = move_detector_.GetSample(); |
| |
| // Compute the average offset between the absolute encoder and relative |
| // encoder. If we have 0 samples, assume it is 0. |
| double average_relative_to_absolute_offset = |
| relative_to_absolute_offset_samples_.size() == 0 |
| ? 0.0 |
| : ::std::accumulate(relative_to_absolute_offset_samples_.begin(), |
| relative_to_absolute_offset_samples_.end(), |
| 0.0) / |
| relative_to_absolute_offset_samples_.size(); |
| |
| const double adjusted_incremental_encoder = |
| sample.encoder + average_relative_to_absolute_offset; |
| |
| // Now, compute the nearest absolute encoder value to the offset relative |
| // encoder position. |
| const double adjusted_absolute_encoder = |
| UnWrap(adjusted_incremental_encoder, |
| sample.absolute_encoder - constants_.measured_absolute_position, |
| constants_.one_revolution_distance); |
| |
| // We can now compute the offset now that we have unwrapped the absolute |
| // encoder. |
| const double relative_to_absolute_offset = |
| adjusted_absolute_encoder - sample.encoder; |
| |
| // Add the sample and update the average with the new reading. |
| const size_t relative_to_absolute_offset_samples_size = |
| relative_to_absolute_offset_samples_.size(); |
| if (relative_to_absolute_offset_samples_size < |
| constants_.average_filter_size) { |
| average_relative_to_absolute_offset = |
| (average_relative_to_absolute_offset * |
| relative_to_absolute_offset_samples_size + |
| relative_to_absolute_offset) / |
| (relative_to_absolute_offset_samples_size + 1); |
| |
| relative_to_absolute_offset_samples_.push_back( |
| relative_to_absolute_offset); |
| } else { |
| average_relative_to_absolute_offset -= |
| relative_to_absolute_offset_samples_[samples_idx_] / |
| relative_to_absolute_offset_samples_size; |
| relative_to_absolute_offset_samples_[samples_idx_] = |
| relative_to_absolute_offset; |
| average_relative_to_absolute_offset += |
| relative_to_absolute_offset / |
| relative_to_absolute_offset_samples_size; |
| } |
| |
| // Now compute the offset between the pot and relative encoder. |
| if (offset_samples_.size() < constants_.average_filter_size) { |
| offset_samples_.push_back(sample.pot - sample.encoder); |
| } else { |
| offset_samples_[samples_idx_] = sample.pot - sample.encoder; |
| } |
| |
| // Drop the oldest sample when we run this function the next time around. |
| samples_idx_ = (samples_idx_ + 1) % constants_.average_filter_size; |
| |
| pot_relative_encoder_offset_ = |
| ::std::accumulate(offset_samples_.begin(), offset_samples_.end(), 0.0) / |
| offset_samples_.size(); |
| |
| offset_ = UnWrap(sample.encoder + pot_relative_encoder_offset_, |
| average_relative_to_absolute_offset + sample.encoder, |
| constants_.one_revolution_distance) - |
| sample.encoder; |
| |
| // Reverse the math for adjusted_absolute_encoder to compute the absolute |
| // encoder. Do this by taking the adjusted encoder, and then subtracting off |
| // the second argument above, and the value that was added by Wrap. |
| filtered_absolute_encoder_ = |
| ((sample.encoder + average_relative_to_absolute_offset) - |
| (-constants_.measured_absolute_position + |
| (adjusted_absolute_encoder - |
| (sample.absolute_encoder - constants_.measured_absolute_position)))); |
| |
| if (offset_ready()) { |
| if (!zeroed_) { |
| first_offset_ = offset_; |
| } |
| |
| if (::std::abs(first_offset_ - offset_) > |
| constants_.allowable_encoder_error * |
| constants_.one_revolution_distance) { |
| VLOG(1) << "Offset moved too far. Initial: " << first_offset_ |
| << ", current " << offset_ << ", allowable change: " |
| << constants_.allowable_encoder_error * |
| constants_.one_revolution_distance; |
| error_ = true; |
| } |
| |
| zeroed_ = true; |
| } |
| } |
| |
| // Update the position. |
| filtered_position_ = pot_relative_encoder_offset_ + info.encoder(); |
| position_ = offset_ + info.encoder(); |
| } |
| |
| flatbuffers::Offset<PotAndAbsoluteEncoderZeroingEstimator::State> |
| PotAndAbsoluteEncoderZeroingEstimator::GetEstimatorState( |
| flatbuffers::FlatBufferBuilder *fbb) const { |
| State::Builder builder(*fbb); |
| builder.add_error(error_); |
| builder.add_zeroed(zeroed_); |
| builder.add_position(position_); |
| builder.add_pot_position(filtered_position_); |
| builder.add_absolute_position(filtered_absolute_encoder_); |
| return builder.Finish(); |
| } |
| |
| } // namespace zeroing |
| } // namespace frc971 |