blob: ffdf9dacaa1d00a1a61e44a4f47f037b3d0b1275 [file] [log] [blame]
#include "frc971/zeroing/absolute_encoder.h"
#include <cmath>
#include <numeric>
#include "glog/logging.h"
#include "frc971/zeroing/wrap.h"
namespace frc971 {
namespace zeroing {
AbsoluteEncoderZeroingEstimator::AbsoluteEncoderZeroingEstimator(
const constants::AbsoluteEncoderZeroingConstants &constants)
: constants_(constants), move_detector_(constants_.moving_buffer_size) {
relative_to_absolute_offset_samples_.reserve(constants_.average_filter_size);
Reset();
}
void AbsoluteEncoderZeroingEstimator::Reset() {
zeroed_ = false;
error_ = false;
first_offset_ = 0.0;
offset_ = 0.0;
samples_idx_ = 0;
position_ = 0.0;
nan_samples_ = 0;
relative_to_absolute_offset_samples_.clear();
move_detector_.Reset();
}
// The math here is a bit backwards, but I think it'll be less error prone that
// way and more similar to the version with a pot as well.
//
// We start by unwrapping the absolute encoder using the relative encoder. This
// puts us in a non-wrapping space and lets us average a bit easier. From
// there, we can compute an offset and wrap ourselves back such that we stay
// close to the middle value.
//
// To guard against the robot moving while updating estimates, buffer a number
// of samples and check that the buffered samples are not different than the
// zeroing threshold. At any point that the samples differ too much, do not
// update estimates based on those samples.
void AbsoluteEncoderZeroingEstimator::UpdateEstimate(
const AbsolutePosition &info) {
// Check for Abs Encoder NaN value that would mess up the rest of the zeroing
// code below. NaN values are given when the Absolute Encoder is disconnected.
if (::std::isnan(info.absolute_encoder())) {
if (zeroed_) {
VLOG(1) << "NAN on absolute encoder.";
error_ = true;
} else {
++nan_samples_;
VLOG(1) << "NAN on absolute encoder while zeroing " << nan_samples_;
if (nan_samples_ >= constants_.average_filter_size) {
error_ = true;
zeroed_ = true;
}
}
// Throw some dummy values in for now.
filtered_absolute_encoder_ = info.absolute_encoder();
position_ = offset_ + info.encoder();
return;
}
const bool moving = move_detector_.Update(info, constants_.moving_buffer_size,
constants_.zeroing_threshold);
if (!moving) {
const PositionStruct &sample = move_detector_.GetSample();
// Compute the average offset between the absolute encoder and relative
// encoder. If we have 0 samples, assume it is 0.
double average_relative_to_absolute_offset =
relative_to_absolute_offset_samples_.size() == 0
? 0.0
: ::std::accumulate(relative_to_absolute_offset_samples_.begin(),
relative_to_absolute_offset_samples_.end(),
0.0) /
relative_to_absolute_offset_samples_.size();
// Now, compute the estimated absolute position using the previously
// estimated offset and the incremental encoder.
const double adjusted_incremental_encoder =
sample.encoder + average_relative_to_absolute_offset;
// Now, compute the absolute encoder value nearest to the offset relative
// encoder position.
const double adjusted_absolute_encoder =
UnWrap(adjusted_incremental_encoder,
sample.absolute_encoder - constants_.measured_absolute_position,
constants_.one_revolution_distance);
// We can now compute the offset now that we have unwrapped the absolute
// encoder.
const double relative_to_absolute_offset =
adjusted_absolute_encoder - sample.encoder;
// Add the sample and update the average with the new reading.
const size_t relative_to_absolute_offset_samples_size =
relative_to_absolute_offset_samples_.size();
if (relative_to_absolute_offset_samples_size <
constants_.average_filter_size) {
average_relative_to_absolute_offset =
(average_relative_to_absolute_offset *
relative_to_absolute_offset_samples_size +
relative_to_absolute_offset) /
(relative_to_absolute_offset_samples_size + 1);
relative_to_absolute_offset_samples_.push_back(
relative_to_absolute_offset);
} else {
average_relative_to_absolute_offset -=
relative_to_absolute_offset_samples_[samples_idx_] /
relative_to_absolute_offset_samples_size;
relative_to_absolute_offset_samples_[samples_idx_] =
relative_to_absolute_offset;
average_relative_to_absolute_offset +=
relative_to_absolute_offset /
relative_to_absolute_offset_samples_size;
}
// Drop the oldest sample when we run this function the next time around.
samples_idx_ = (samples_idx_ + 1) % constants_.average_filter_size;
// And our offset is the offset that gives us the position within +- ord/2
// of the middle position.
offset_ = Wrap(constants_.middle_position,
average_relative_to_absolute_offset + sample.encoder,
constants_.one_revolution_distance) -
sample.encoder;
// Reverse the math for adjusted_absolute_encoder to compute the absolute
// encoder. Do this by taking the adjusted encoder, and then subtracting off
// the second argument above, and the value that was added by Wrap.
filtered_absolute_encoder_ =
((sample.encoder + average_relative_to_absolute_offset) -
(-constants_.measured_absolute_position +
(adjusted_absolute_encoder -
(sample.absolute_encoder - constants_.measured_absolute_position))));
if (offset_ready()) {
if (!zeroed_) {
first_offset_ = offset_;
}
if (::std::abs(first_offset_ - offset_) >
constants_.allowable_encoder_error *
constants_.one_revolution_distance) {
VLOG(1) << "Offset moved too far. Initial: " << first_offset_
<< ", current " << offset_ << ", allowable change: "
<< constants_.allowable_encoder_error *
constants_.one_revolution_distance;
error_ = true;
}
zeroed_ = true;
}
}
// Update the position.
position_ = offset_ + info.encoder();
}
flatbuffers::Offset<AbsoluteEncoderZeroingEstimator::State>
AbsoluteEncoderZeroingEstimator::GetEstimatorState(
flatbuffers::FlatBufferBuilder *fbb) const {
State::Builder builder(*fbb);
builder.add_error(error_);
builder.add_zeroed(zeroed_);
builder.add_position(position_);
builder.add_absolute_position(filtered_absolute_encoder_);
return builder.Finish();
}
} // namespace zeroing
} // namespace frc971