| #ifndef FRC971_CONTROL_LOOPS_ZEROED_JOINT_H_ |
| #define FRC971_CONTROL_LOOPS_ZEROED_JOINT_H_ |
| |
| #include <memory> |
| |
| #include "aos/controls/control_loop.h" |
| #include "frc971/control_loops/state_feedback_loop.h" |
| |
| namespace frc971 { |
| namespace control_loops { |
| namespace testing { |
| class WristTest_NoWindupPositive_Test; |
| class WristTest_NoWindupNegative_Test; |
| }; |
| |
| // Note: Everything in this file assumes that there is a 1 cycle delay between |
| // power being requested and it showing up at the motor. It assumes that |
| // X_hat(2, 1) is the voltage being applied as well. It will go unstable if |
| // that isn't true. |
| |
| template<int kNumZeroSensors> |
| class ZeroedJoint; |
| |
| // This class implements the CapU function correctly given all the extra |
| // information that we know about from the wrist motor. |
| template<int kNumZeroSensors> |
| class ZeroedStateFeedbackLoop : public StateFeedbackLoop<3, 1, 1> { |
| public: |
| ZeroedStateFeedbackLoop(StateFeedbackLoop<3, 1, 1> loop, |
| ZeroedJoint<kNumZeroSensors> *zeroed_joint) |
| : StateFeedbackLoop<3, 1, 1>(loop), |
| zeroed_joint_(zeroed_joint), |
| voltage_(0.0), |
| last_voltage_(0.0) { |
| } |
| |
| // Caps U, but this time respects the state of the wrist as well. |
| virtual void CapU(); |
| |
| // Returns the accumulated voltage. |
| double voltage() const { return voltage_; } |
| |
| // Returns the uncapped voltage. |
| double uncapped_voltage() const { return uncapped_voltage_; } |
| |
| // Zeros the accumulator. |
| void ZeroPower() { voltage_ = 0.0; } |
| private: |
| ZeroedJoint<kNumZeroSensors> *zeroed_joint_; |
| |
| // The accumulated voltage to apply to the motor. |
| double voltage_; |
| double last_voltage_; |
| double uncapped_voltage_; |
| }; |
| |
| template<int kNumZeroSensors> |
| void ZeroedStateFeedbackLoop<kNumZeroSensors>::CapU() { |
| const double old_voltage = voltage_; |
| voltage_ += U(0, 0); |
| |
| uncapped_voltage_ = voltage_; |
| |
| // Do all our computations with the voltage, and then compute what the delta |
| // is to make that happen. |
| if (zeroed_joint_->state_ == ZeroedJoint<kNumZeroSensors>::READY) { |
| if (Y(0, 0) >= zeroed_joint_->config_data_.upper_limit) { |
| voltage_ = std::min(0.0, voltage_); |
| } |
| if (Y(0, 0) <= zeroed_joint_->config_data_.lower_limit) { |
| voltage_ = std::max(0.0, voltage_); |
| } |
| } |
| |
| const bool is_ready = |
| zeroed_joint_->state_ == ZeroedJoint<kNumZeroSensors>::READY; |
| double limit = is_ready ? |
| 12.0 : zeroed_joint_->config_data_.max_zeroing_voltage; |
| |
| // Make sure that reality and the observer can't get too far off. There is a |
| // delay by one cycle between the applied voltage and X_hat(2, 0), so compare |
| // against last cycle's voltage. |
| if (X_hat(2, 0) > last_voltage_ + 2.0) { |
| //X_hat(2, 0) = last_voltage_ + 2.0; |
| voltage_ -= X_hat(2, 0) - (last_voltage_ + 2.0); |
| LOG(DEBUG, "X_hat(2, 0) = %f\n", X_hat(2, 0)); |
| } else if (X_hat(2, 0) < last_voltage_ -2.0) { |
| //X_hat(2, 0) = last_voltage_ - 2.0; |
| voltage_ += X_hat(2, 0) - (last_voltage_ - 2.0); |
| LOG(DEBUG, "X_hat(2, 0) = %f\n", X_hat(2, 0)); |
| } |
| |
| voltage_ = std::min(limit, voltage_); |
| voltage_ = std::max(-limit, voltage_); |
| U(0, 0) = voltage_ - old_voltage; |
| LOG(DEBUG, "abc %f\n", X_hat(2, 0) - voltage_); |
| LOG(DEBUG, "error %f\n", X_hat(0, 0) - R(0, 0)); |
| |
| last_voltage_ = voltage_; |
| } |
| |
| |
| // Class to zero and control a joint with any number of zeroing sensors with a |
| // state feedback controller. |
| template<int kNumZeroSensors> |
| class ZeroedJoint { |
| public: |
| // Sturcture to hold the hardware configuration information. |
| struct ConfigurationData { |
| // Angle at the lower hardware limit. |
| double lower_limit; |
| // Angle at the upper hardware limit. |
| double upper_limit; |
| // Speed (and direction) to move while zeroing. |
| double zeroing_speed; |
| // Speed (and direction) to move while moving off the sensor. |
| double zeroing_off_speed; |
| // Maximum voltage to apply when zeroing. |
| double max_zeroing_voltage; |
| // Deadband voltage. |
| double deadband_voltage; |
| // Angles where we see a positive edge from the hall effect sensors. |
| double hall_effect_start_angle[kNumZeroSensors]; |
| }; |
| |
| // Current position data for the encoder and hall effect information. |
| struct PositionData { |
| // Current encoder position. |
| double position; |
| // Array of hall effect values. |
| bool hall_effects[kNumZeroSensors]; |
| // Array of the last positive edge position for the sensors. |
| double hall_effect_positions[kNumZeroSensors]; |
| }; |
| |
| ZeroedJoint(StateFeedbackLoop<3, 1, 1> loop) |
| : loop_(new ZeroedStateFeedbackLoop<kNumZeroSensors>(loop, this)), |
| last_good_time_(::aos::monotonic_clock::min_time()), |
| state_(UNINITIALIZED), |
| error_count_(0), |
| zero_offset_(0.0), |
| capped_goal_(false) {} |
| |
| // Copies the provided configuration data locally. |
| void set_config_data(const ConfigurationData &config_data) { |
| config_data_ = config_data; |
| } |
| |
| // Clips the goal to be inside the limits and returns the clipped goal. |
| // Requires the constants to have already been fetched. |
| double ClipGoal(double goal) const { |
| return ::std::min(config_data_.upper_limit, |
| std::max(config_data_.lower_limit, goal)); |
| } |
| |
| // Updates the loop and state machine. |
| // position is null if the position data is stale, output_enabled is true if |
| // the output will actually go to the motors, and goal_angle and goal_velocity |
| // are the goal position and velocities. |
| double Update(const ::aos::monotonic_clock::time_point monotonic_now, |
| const ZeroedJoint<kNumZeroSensors>::PositionData *position, |
| bool output_enabled, double goal_angle, double goal_velocity); |
| |
| // True if the code is zeroing. |
| bool is_zeroing() const { return state_ == ZEROING; } |
| |
| // True if the code is moving off the hall effect. |
| bool is_moving_off() const { return state_ == MOVING_OFF; } |
| |
| // True if the state machine is uninitialized. |
| bool is_uninitialized() const { return state_ == UNINITIALIZED; } |
| |
| // True if the state machine is ready. |
| bool is_ready() const { return state_ == READY; } |
| |
| // Returns the uncapped voltage. |
| double U_uncapped() const { return loop_->U_uncapped(0, 0); } |
| |
| // True if the goal was moved to avoid goal windup. |
| bool capped_goal() const { return capped_goal_; } |
| |
| // Timestamp |
| static const double dt; |
| |
| double absolute_position() const { return loop_->X_hat(0, 0); } |
| |
| private: |
| friend class ZeroedStateFeedbackLoop<kNumZeroSensors>; |
| // Friend the wrist test cases so that they can simulate windeup. |
| friend class testing::WristTest_NoWindupPositive_Test; |
| friend class testing::WristTest_NoWindupNegative_Test; |
| |
| static constexpr ::aos::monotonic_clock::duration kRezeroTime; |
| |
| // The state feedback control loop to talk to. |
| ::std::unique_ptr<ZeroedStateFeedbackLoop<kNumZeroSensors>> loop_; |
| |
| ConfigurationData config_data_; |
| |
| ::aos::monotonic_clock::time_point last_good_time_; |
| |
| // Returns the index of the first active sensor, or -1 if none are active. |
| int ActiveSensorIndex( |
| const ZeroedJoint<kNumZeroSensors>::PositionData *position) { |
| if (!position) { |
| return -1; |
| } |
| int active_index = -1; |
| for (int i = 0; i < kNumZeroSensors; ++i) { |
| if (position->hall_effects[i]) { |
| if (active_index != -1) { |
| LOG(ERROR, "More than one hall effect sensor is active\n"); |
| } else { |
| active_index = i; |
| } |
| } |
| } |
| return active_index; |
| } |
| // Returns true if any of the sensors are active. |
| bool AnySensorsActive( |
| const ZeroedJoint<kNumZeroSensors>::PositionData *position) { |
| return ActiveSensorIndex(position) != -1; |
| } |
| |
| // Enum to store the state of the internal zeroing state machine. |
| enum State { |
| UNINITIALIZED, |
| MOVING_OFF, |
| ZEROING, |
| READY, |
| ESTOP |
| }; |
| |
| // Internal state for zeroing. |
| State state_; |
| |
| // Missed position packet count. |
| int error_count_; |
| // Offset from the raw encoder value to the absolute angle. |
| double zero_offset_; |
| // Position that gets incremented when zeroing the wrist to slowly move it to |
| // the hall effect sensor. |
| double zeroing_position_; |
| // Last position at which the hall effect sensor was off. |
| double last_off_position_; |
| |
| // True if the zeroing goal was capped during this cycle. |
| bool capped_goal_; |
| |
| // Returns true if number is between first and second inclusive. |
| bool is_between(double first, double second, double number) { |
| if ((number >= first || number >= second) && |
| (number <= first || number <= second)) { |
| return true; |
| } |
| return false; |
| } |
| |
| DISALLOW_COPY_AND_ASSIGN(ZeroedJoint); |
| }; |
| |
| template <int kNumZeroSensors> |
| constexpr ::aos::monotonic_clock::duration |
| ZeroedJoint<kNumZeroSensors>::kRezeroTime = ::std::chrono::seconds(2); |
| |
| template <int kNumZeroSensors> |
| /*static*/ const double ZeroedJoint<kNumZeroSensors>::dt = 0.01; |
| |
| // Updates the zeroed joint controller and state machine. |
| template <int kNumZeroSensors> |
| double ZeroedJoint<kNumZeroSensors>::Update( |
| const ::aos::monotonic_clock::time_point monotonic_now, |
| const ZeroedJoint<kNumZeroSensors>::PositionData *position, |
| bool output_enabled, double goal_angle, double goal_velocity) { |
| // Uninitialize the bot if too many cycles pass without an encoder. |
| if (position == NULL) { |
| LOG(WARNING, "no new pos given\n"); |
| error_count_++; |
| } |
| if (error_count_ >= 4) { |
| output_enabled = false; |
| LOG(WARNING, "err_count is %d so disabling\n", error_count_); |
| |
| if (monotonic_now > kRezeroTime + last_good_time_) { |
| LOG(WARNING, "err_count is %d (or 1st time) so forcing a re-zero\n", |
| error_count_); |
| state_ = UNINITIALIZED; |
| loop_->Reset(); |
| } |
| } |
| if (position != NULL) { |
| last_good_time_ = monotonic_now; |
| error_count_ = 0; |
| } |
| |
| // Compute the absolute position of the wrist. |
| double absolute_position; |
| if (position) { |
| absolute_position = position->position; |
| if (state_ == READY) { |
| absolute_position -= zero_offset_; |
| } |
| loop_->Y << absolute_position; |
| if (!AnySensorsActive(position)) { |
| last_off_position_ = position->position; |
| } |
| } else { |
| // Dead recon for now. |
| absolute_position = loop_->X_hat(0, 0); |
| } |
| |
| switch (state_) { |
| case UNINITIALIZED: |
| LOG(DEBUG, "UNINITIALIZED\n"); |
| if (position) { |
| // Reset the zeroing goal. |
| zeroing_position_ = absolute_position; |
| // Clear the observer state. |
| loop_->X_hat << absolute_position, 0.0, 0.0; |
| loop_->ZeroPower(); |
| // Set the goal to here to make it so it doesn't move when disabled. |
| loop_->R = loop_->X_hat; |
| // Only progress if we are enabled. |
| if (::aos::joystick_state->enabled) { |
| if (AnySensorsActive(position)) { |
| state_ = MOVING_OFF; |
| } else { |
| state_ = ZEROING; |
| } |
| } |
| } |
| break; |
| case MOVING_OFF: |
| LOG(DEBUG, "MOVING_OFF\n"); |
| { |
| // Move off the hall effect sensor. |
| if (!::aos::joystick_state->enabled) { |
| // Start over if disabled. |
| state_ = UNINITIALIZED; |
| } else if (position && !AnySensorsActive(position)) { |
| // We are now off the sensor. Time to zero now. |
| state_ = ZEROING; |
| } else { |
| // Slowly creep off the sensor. |
| zeroing_position_ -= config_data_.zeroing_off_speed * dt; |
| loop_->R << zeroing_position_, -config_data_.zeroing_off_speed, 0.0; |
| break; |
| } |
| } |
| case ZEROING: |
| LOG(DEBUG, "ZEROING\n"); |
| { |
| int active_sensor_index = ActiveSensorIndex(position); |
| if (!::aos::joystick_state->enabled) { |
| // Start over if disabled. |
| state_ = UNINITIALIZED; |
| } else if (position && active_sensor_index != -1) { |
| state_ = READY; |
| // Verify that the calibration number is between the last off position |
| // and the current on position. If this is not true, move off and try |
| // again. |
| const double calibration = |
| position->hall_effect_positions[active_sensor_index]; |
| if (!is_between(last_off_position_, position->position, |
| calibration)) { |
| LOG(ERROR, "Got a bogus calibration number. Trying again.\n"); |
| LOG(ERROR, |
| "Last off position was %f, current is %f, calibration is %f\n", |
| last_off_position_, position->position, |
| position->hall_effect_positions[active_sensor_index]); |
| state_ = MOVING_OFF; |
| } else { |
| // Save the zero, and then offset the observer to deal with the |
| // phantom step change. |
| const double old_zero_offset = zero_offset_; |
| zero_offset_ = |
| position->hall_effect_positions[active_sensor_index] - |
| config_data_.hall_effect_start_angle[active_sensor_index]; |
| loop_->X_hat(0, 0) += old_zero_offset - zero_offset_; |
| loop_->Y(0, 0) += old_zero_offset - zero_offset_; |
| } |
| } else { |
| // Slowly creep towards the sensor. |
| zeroing_position_ += config_data_.zeroing_speed * dt; |
| loop_->R << zeroing_position_, config_data_.zeroing_speed, 0.0; |
| } |
| break; |
| } |
| |
| case READY: |
| LOG(DEBUG, "READY\n"); |
| { |
| const double limited_goal = ClipGoal(goal_angle); |
| loop_->R << limited_goal, goal_velocity, 0.0; |
| break; |
| } |
| |
| case ESTOP: |
| LOG(DEBUG, "ESTOP\n"); |
| LOG(WARNING, "have already given up\n"); |
| return 0.0; |
| } |
| |
| // Update the observer. |
| loop_->Update(position != NULL, !output_enabled); |
| |
| LOG(DEBUG, "X_hat={%f, %f, %f}\n", |
| loop_->X_hat(0, 0), loop_->X_hat(1, 0), loop_->X_hat(2, 0)); |
| |
| capped_goal_ = false; |
| // Verify that the zeroing goal hasn't run away. |
| switch (state_) { |
| case UNINITIALIZED: |
| case READY: |
| case ESTOP: |
| // Not zeroing. No worries. |
| break; |
| case MOVING_OFF: |
| case ZEROING: |
| // Check if we have cliped and adjust the goal. |
| if (loop_->uncapped_voltage() > config_data_.max_zeroing_voltage) { |
| double dx = (loop_->uncapped_voltage() - |
| config_data_.max_zeroing_voltage) / loop_->K(0, 0); |
| zeroing_position_ -= dx; |
| capped_goal_ = true; |
| } else if(loop_->uncapped_voltage() < -config_data_.max_zeroing_voltage) { |
| double dx = (loop_->uncapped_voltage() + |
| config_data_.max_zeroing_voltage) / loop_->K(0, 0); |
| zeroing_position_ -= dx; |
| capped_goal_ = true; |
| } |
| break; |
| } |
| if (output_enabled) { |
| double voltage = loop_->voltage(); |
| if (voltage > 0) { |
| voltage += config_data_.deadband_voltage; |
| } else if (voltage < 0) { |
| voltage -= config_data_.deadband_voltage; |
| } |
| if (voltage > 12.0) { |
| voltage = 12.0; |
| } else if (voltage < -12.0) { |
| voltage = -12.0; |
| } |
| return voltage; |
| } else { |
| return 0.0; |
| } |
| } |
| |
| } // namespace control_loops |
| } // namespace frc971 |
| |
| #endif // FRC971_CONTROL_LOOPS_ZEROED_JOINT_H_ |