| #ifndef FRC971_CONTROL_LOOPS_C2D_H_ |
| #define FRC971_CONTROL_LOOPS_C2D_H_ |
| |
| #include <chrono> |
| |
| #include <Eigen/Dense> |
| #include "aos/time/time.h" |
| // We need to include MatrixFunctions for the matrix exponential. |
| #include "unsupported/Eigen/MatrixFunctions" |
| |
| namespace frc971 { |
| namespace controls { |
| |
| template <typename Scalar, int num_states, int num_inputs> |
| void C2D(const ::Eigen::Matrix<Scalar, num_states, num_states> &A_continuous, |
| const ::Eigen::Matrix<Scalar, num_states, num_inputs> &B_continuous, |
| ::std::chrono::nanoseconds dt, |
| ::Eigen::Matrix<Scalar, num_states, num_states> *A, |
| ::Eigen::Matrix<Scalar, num_states, num_inputs> *B) { |
| // Trick from |
| // https://en.wikipedia.org/wiki/Discretization#Discretization_of_linear_state_space_models |
| // to solve for A and B more efficiently. |
| Eigen::Matrix<Scalar, num_states + num_inputs, num_states + num_inputs> |
| M_state_continuous; |
| M_state_continuous.setZero(); |
| M_state_continuous.template block<num_states, num_states>(0, 0) = |
| A_continuous * ::aos::time::TypedDurationInSeconds<Scalar>(dt); |
| M_state_continuous.template block<num_states, num_inputs>(0, num_states) = |
| B_continuous * ::aos::time::TypedDurationInSeconds<Scalar>(dt); |
| |
| Eigen::Matrix<Scalar, num_states + num_inputs, num_states + num_inputs> |
| M_state = M_state_continuous.exp(); |
| *A = M_state.template block<num_states, num_states>(0, 0); |
| *B = M_state.template block<num_states, num_inputs>(0, num_states); |
| } |
| |
| template <typename Scalar, int num_states> |
| void DiscretizeQ( |
| const Eigen::Matrix<Scalar, num_states, num_states> &Q_continuous, |
| const Eigen::Matrix<Scalar, num_states, num_states> &A_continuous, |
| ::std::chrono::nanoseconds dt, |
| Eigen::Matrix<Scalar, num_states, num_states> *Q_d) { |
| Eigen::Matrix<Scalar, num_states, num_states> Qtemp = |
| (Q_continuous + Q_continuous.transpose()) / static_cast<Scalar>(2.0); |
| Eigen::Matrix<Scalar, 2 * num_states, 2 * num_states> M_gain; |
| M_gain.setZero(); |
| // Set up the matrix M = [[-A, Q], [0, A.T]] |
| M_gain.template block<num_states, num_states>(0, 0) = -A_continuous; |
| M_gain.template block<num_states, num_states>(0, num_states) = Qtemp; |
| M_gain.template block<num_states, num_states>(num_states, num_states) = |
| A_continuous.transpose(); |
| |
| Eigen::Matrix<Scalar, 2 * num_states, 2 *num_states> phi = |
| (M_gain * ::aos::time::TypedDurationInSeconds<Scalar>(dt)).exp(); |
| |
| // Phi12 = phi[0:num_states, num_states:2*num_states] |
| // Phi22 = phi[num_states:2*num_states, |
| // num_states:2*num_states] |
| Eigen::Matrix<Scalar, num_states, num_states> phi12 = |
| phi.block(0, num_states, num_states, num_states); |
| Eigen::Matrix<Scalar, num_states, num_states> phi22 = |
| phi.block(num_states, num_states, num_states, num_states); |
| |
| Qtemp = phi22.transpose() * phi12; |
| *Q_d = (Qtemp + Qtemp.transpose()) / static_cast<Scalar>(2.0); |
| } |
| |
| // Does a faster approximation for the discretizing A/Q, for if solving a 2Nx2N |
| // matrix exponential is too expensive. |
| // Basic reasoning/method: |
| // The original algorithm does a matrix exponential on a 2N x 2N matrix (the |
| // block matrix made of of A and Q). This is extremely expensive for larg-ish |
| // matrices. This function takes advantage of the structure of the matrix |
| // we are taking the exponential and notes that we care about two things: |
| // 1) The exponential of A*t, which is only NxN and so is relatively cheap. |
| // 2) The upper-right quarter of the 2Nx2N matrix, which we can approximate |
| // using a taylor series to several terms and still be substantially cheaper |
| // than taking the big exponential. |
| template <typename Scalar, int num_states> |
| void DiscretizeQAFast( |
| const Eigen::Matrix<Scalar, num_states, num_states> &Q_continuous, |
| const Eigen::Matrix<Scalar, num_states, num_states> &A_continuous, |
| ::std::chrono::nanoseconds dt, |
| Eigen::Matrix<Scalar, num_states, num_states> *Q_d, |
| Eigen::Matrix<Scalar, num_states, num_states> *A_d) { |
| Eigen::Matrix<Scalar, num_states, num_states> Qtemp = |
| (Q_continuous + Q_continuous.transpose()) / static_cast<Scalar>(2.0); |
| Scalar dt_d = ::aos::time::TypedDurationInSeconds<Scalar>(dt); |
| Eigen::Matrix<Scalar, num_states, num_states> last_term = Qtemp; |
| double last_coeff = dt_d; |
| const Eigen::Matrix<Scalar, num_states, num_states> At = |
| A_continuous.transpose(); |
| Eigen::Matrix<Scalar, num_states, num_states> Atn = At; |
| Eigen::Matrix<Scalar, num_states, num_states> phi12 = last_term * last_coeff; |
| Eigen::Matrix<Scalar, num_states, num_states> phi22 = |
| At.Identity() + Atn * last_coeff; |
| // TODO(james): Tune this once we have the robot up; ii < 6 is enough to get |
| // beyond any real numerical issues. 5 should be fine, but just happened to |
| // kick a test over to failing. 4 would probably work. |
| for (int ii = 2; ii < 6; ++ii) { |
| Eigen::Matrix<Scalar, num_states, num_states> next_term = |
| -A_continuous * last_term + Qtemp * Atn; |
| last_coeff *= dt_d / static_cast<Scalar>(ii); |
| phi12 += next_term * last_coeff; |
| |
| last_term = next_term; |
| |
| Atn *= At; |
| phi22 += last_coeff * Atn; |
| } |
| Eigen::Matrix<Scalar, num_states, num_states> phi22t = phi22.transpose(); |
| |
| Qtemp = phi22t * phi12; |
| *Q_d = (Qtemp + Qtemp.transpose()) / static_cast<Scalar>(2.0); |
| *A_d = phi22t; |
| } |
| |
| } // namespace controls |
| } // namespace frc971 |
| |
| #endif // FRC971_CONTROL_LOOPS_C2D_H_ |