| #include "frc971/zeroing/zeroing.h" |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <limits> |
| #include <numeric> |
| #include <vector> |
| |
| #include "frc971/zeroing/wrap.h" |
| |
| #include "flatbuffers/flatbuffers.h" |
| #include "glog/logging.h" |
| |
| namespace frc971 { |
| namespace zeroing { |
| |
| PotAndIndexPulseZeroingEstimator::PotAndIndexPulseZeroingEstimator( |
| const constants::PotAndIndexPulseZeroingConstants &constants) |
| : constants_(constants) { |
| start_pos_samples_.reserve(constants_.average_filter_size); |
| Reset(); |
| } |
| |
| void PotAndIndexPulseZeroingEstimator::Reset() { |
| samples_idx_ = 0; |
| offset_ = 0; |
| start_pos_samples_.clear(); |
| zeroed_ = false; |
| wait_for_index_pulse_ = true; |
| last_used_index_pulse_count_ = 0; |
| error_ = false; |
| } |
| |
| void PotAndIndexPulseZeroingEstimator::TriggerError() { |
| if (!error_) { |
| VLOG(1) << "Manually triggered zeroing error."; |
| error_ = true; |
| } |
| } |
| |
| double PotAndIndexPulseZeroingEstimator::CalculateStartPosition( |
| double start_average, double latched_encoder) const { |
| // We calculate an aproximation of the value of the last index position. |
| // Also account for index pulses not lining up with integer multiples of the |
| // index_diff. |
| double index_pos = |
| start_average + latched_encoder - constants_.measured_index_position; |
| // We round index_pos to the closest valid value of the index. |
| double accurate_index_pos = (round(index_pos / constants_.index_difference)) * |
| constants_.index_difference; |
| // Now we reverse the first calculation to get the accurate start position. |
| return accurate_index_pos - latched_encoder + |
| constants_.measured_index_position; |
| } |
| |
| void PotAndIndexPulseZeroingEstimator::UpdateEstimate( |
| const PotAndIndexPosition &info) { |
| // We want to make sure that we encounter at least one index pulse while |
| // zeroing. So we take the index pulse count from the first sample after |
| // reset and wait for that count to change before we consider ourselves |
| // zeroed. |
| if (wait_for_index_pulse_) { |
| last_used_index_pulse_count_ = info.index_pulses(); |
| wait_for_index_pulse_ = false; |
| } |
| |
| if (start_pos_samples_.size() < constants_.average_filter_size) { |
| start_pos_samples_.push_back(info.pot() - info.encoder()); |
| } else { |
| start_pos_samples_[samples_idx_] = info.pot() - info.encoder(); |
| } |
| |
| // Drop the oldest sample when we run this function the next time around. |
| samples_idx_ = (samples_idx_ + 1) % constants_.average_filter_size; |
| |
| double sample_sum = 0.0; |
| |
| for (size_t i = 0; i < start_pos_samples_.size(); ++i) { |
| sample_sum += start_pos_samples_[i]; |
| } |
| |
| // Calculates the average of the starting position. |
| double start_average = sample_sum / start_pos_samples_.size(); |
| |
| // If there are no index pulses to use or we don't have enough samples yet to |
| // have a well-filtered starting position then we use the filtered value as |
| // our best guess. |
| if (!zeroed_ && |
| (info.index_pulses() == last_used_index_pulse_count_ || !offset_ready())) { |
| offset_ = start_average; |
| } else if (!zeroed_ || last_used_index_pulse_count_ != info.index_pulses()) { |
| // Note the accurate start position and the current index pulse count so |
| // that we only run this logic once per index pulse. That should be more |
| // resilient to corrupted intermediate data. |
| offset_ = CalculateStartPosition(start_average, info.latched_encoder()); |
| last_used_index_pulse_count_ = info.index_pulses(); |
| |
| // TODO(austin): Reject encoder positions which have x% error rather than |
| // rounding to the closest index pulse. |
| |
| // Save the first starting position. |
| if (!zeroed_) { |
| first_start_pos_ = offset_; |
| VLOG(2) << "latching start position" << first_start_pos_; |
| } |
| |
| // Now that we have an accurate starting position we can consider ourselves |
| // zeroed. |
| zeroed_ = true; |
| // Throw an error if first_start_pos is bigger/smaller than |
| // constants_.allowable_encoder_error * index_diff + start_pos. |
| if (::std::abs(first_start_pos_ - offset_) > |
| constants_.allowable_encoder_error * constants_.index_difference) { |
| if (!error_) { |
| VLOG(1) |
| << "Encoder ticks out of range since last index pulse. first start " |
| "position: " |
| << first_start_pos_ << " recent starting position: " << offset_ |
| << ", allowable error: " |
| << constants_.allowable_encoder_error * constants_.index_difference; |
| error_ = true; |
| } |
| } |
| } |
| |
| position_ = offset_ + info.encoder(); |
| filtered_position_ = start_average + info.encoder(); |
| } |
| |
| flatbuffers::Offset<PotAndIndexPulseZeroingEstimator::State> |
| PotAndIndexPulseZeroingEstimator::GetEstimatorState( |
| flatbuffers::FlatBufferBuilder *fbb) const { |
| State::Builder builder(*fbb); |
| builder.add_error(error_); |
| builder.add_zeroed(zeroed_); |
| builder.add_position(position_); |
| builder.add_pot_position(filtered_position_); |
| return builder.Finish(); |
| } |
| |
| HallEffectAndPositionZeroingEstimator::HallEffectAndPositionZeroingEstimator( |
| const ZeroingConstants &constants) |
| : constants_(constants) { |
| Reset(); |
| } |
| |
| void HallEffectAndPositionZeroingEstimator::Reset() { |
| offset_ = 0.0; |
| min_low_position_ = ::std::numeric_limits<double>::max(); |
| max_low_position_ = ::std::numeric_limits<double>::lowest(); |
| zeroed_ = false; |
| initialized_ = false; |
| last_used_posedge_count_ = 0; |
| cycles_high_ = 0; |
| high_long_enough_ = false; |
| first_start_pos_ = 0.0; |
| error_ = false; |
| current_ = 0.0; |
| first_start_pos_ = 0.0; |
| } |
| |
| void HallEffectAndPositionZeroingEstimator::TriggerError() { |
| if (!error_) { |
| VLOG(1) << "Manually triggered zeroing error.\n"; |
| error_ = true; |
| } |
| } |
| |
| void HallEffectAndPositionZeroingEstimator::StoreEncoderMaxAndMin( |
| const HallEffectAndPosition &info) { |
| // If we have a new posedge. |
| if (!info.current()) { |
| if (last_hall_) { |
| min_low_position_ = max_low_position_ = info.encoder(); |
| } else { |
| min_low_position_ = ::std::min(min_low_position_, info.encoder()); |
| max_low_position_ = ::std::max(max_low_position_, info.encoder()); |
| } |
| } |
| last_hall_ = info.current(); |
| } |
| |
| void HallEffectAndPositionZeroingEstimator::UpdateEstimate( |
| const HallEffectAndPosition &info) { |
| // We want to make sure that we encounter at least one posedge while zeroing. |
| // So we take the posedge count from the first sample after reset and wait for |
| // that count to change and for the hall effect to stay high before we |
| // consider ourselves zeroed. |
| if (!initialized_) { |
| last_used_posedge_count_ = info.posedge_count(); |
| initialized_ = true; |
| last_hall_ = info.current(); |
| } |
| |
| StoreEncoderMaxAndMin(info); |
| |
| if (info.current()) { |
| cycles_high_++; |
| } else { |
| cycles_high_ = 0; |
| last_used_posedge_count_ = info.posedge_count(); |
| } |
| |
| high_long_enough_ = cycles_high_ >= constants_.hall_trigger_zeroing_length; |
| |
| bool moving_backward = false; |
| if (constants_.zeroing_move_direction) { |
| moving_backward = info.encoder() > min_low_position_; |
| } else { |
| moving_backward = info.encoder() < max_low_position_; |
| } |
| |
| // If there are no posedges to use or we don't have enough samples yet to |
| // have a well-filtered starting position then we use the filtered value as |
| // our best guess. |
| if (last_used_posedge_count_ != info.posedge_count() && high_long_enough_ && |
| moving_backward) { |
| // Note the offset and the current posedge count so that we only run this |
| // logic once per posedge. That should be more resilient to corrupted |
| // intermediate data. |
| offset_ = -info.posedge_value(); |
| if (constants_.zeroing_move_direction) { |
| offset_ += constants_.lower_hall_position; |
| } else { |
| offset_ += constants_.upper_hall_position; |
| } |
| last_used_posedge_count_ = info.posedge_count(); |
| |
| // Save the first starting position. |
| if (!zeroed_) { |
| first_start_pos_ = offset_; |
| VLOG(2) << "latching start position" << first_start_pos_; |
| } |
| |
| // Now that we have an accurate starting position we can consider ourselves |
| // zeroed. |
| zeroed_ = true; |
| } |
| |
| position_ = info.encoder() - offset_; |
| } |
| |
| flatbuffers::Offset<HallEffectAndPositionZeroingEstimator::State> |
| HallEffectAndPositionZeroingEstimator::GetEstimatorState( |
| flatbuffers::FlatBufferBuilder *fbb) const { |
| State::Builder builder(*fbb); |
| builder.add_error(error_); |
| builder.add_zeroed(zeroed_); |
| builder.add_encoder(position_); |
| builder.add_high_long_enough(high_long_enough_); |
| builder.add_offset(offset_); |
| return builder.Finish(); |
| } |
| |
| PotAndAbsoluteEncoderZeroingEstimator::PotAndAbsoluteEncoderZeroingEstimator( |
| const constants::PotAndAbsoluteEncoderZeroingConstants &constants) |
| : constants_(constants), move_detector_(constants_.moving_buffer_size) { |
| relative_to_absolute_offset_samples_.reserve(constants_.average_filter_size); |
| offset_samples_.reserve(constants_.average_filter_size); |
| Reset(); |
| } |
| |
| void PotAndAbsoluteEncoderZeroingEstimator::Reset() { |
| first_offset_ = 0.0; |
| pot_relative_encoder_offset_ = 0.0; |
| offset_ = 0.0; |
| samples_idx_ = 0; |
| filtered_position_ = 0.0; |
| position_ = 0.0; |
| zeroed_ = false; |
| nan_samples_ = 0; |
| relative_to_absolute_offset_samples_.clear(); |
| offset_samples_.clear(); |
| move_detector_.Reset(); |
| error_ = false; |
| } |
| |
| // So, this needs to be a multistep process. We need to first estimate the |
| // offset between the absolute encoder and the relative encoder. That process |
| // should get us an absolute number which is off by integer multiples of the |
| // distance/rev. In parallel, we can estimate the offset between the pot and |
| // encoder. When both estimates have converged, we can then compute the offset |
| // in a cycle, and which cycle, which gives us the accurate global offset. |
| // |
| // It's tricky to compute the offset between the absolute and relative encoder. |
| // We need to compute this inside 1 revolution. The easiest way to do this |
| // would be to wrap the encoder, subtract the two of them, and then average the |
| // result. That will struggle when they are off by PI. Instead, we need to |
| // wrap the number to +- PI from the current averaged offset. |
| // |
| // To guard against the robot moving while updating estimates, buffer a number |
| // of samples and check that the buffered samples are not different than the |
| // zeroing threshold. At any point that the samples differ too much, do not |
| // update estimates based on those samples. |
| void PotAndAbsoluteEncoderZeroingEstimator::UpdateEstimate( |
| const PotAndAbsolutePosition &info) { |
| // Check for Abs Encoder NaN value that would mess up the rest of the zeroing |
| // code below. NaN values are given when the Absolute Encoder is disconnected. |
| if (::std::isnan(info.absolute_encoder())) { |
| if (zeroed_) { |
| VLOG(1) << "NAN on absolute encoder."; |
| error_ = true; |
| } else { |
| ++nan_samples_; |
| VLOG(1) << "NAN on absolute encoder while zeroing" << nan_samples_; |
| if (nan_samples_ >= constants_.average_filter_size) { |
| error_ = true; |
| zeroed_ = true; |
| } |
| } |
| // Throw some dummy values in for now. |
| filtered_absolute_encoder_ = info.absolute_encoder(); |
| filtered_position_ = pot_relative_encoder_offset_ + info.encoder(); |
| position_ = offset_ + info.encoder(); |
| return; |
| } |
| |
| const bool moving = move_detector_.Update(info, constants_.moving_buffer_size, |
| constants_.zeroing_threshold); |
| |
| if (!moving) { |
| const PositionStruct &sample = move_detector_.GetSample(); |
| |
| // Compute the average offset between the absolute encoder and relative |
| // encoder. If we have 0 samples, assume it is 0. |
| double average_relative_to_absolute_offset = |
| relative_to_absolute_offset_samples_.size() == 0 |
| ? 0.0 |
| : ::std::accumulate(relative_to_absolute_offset_samples_.begin(), |
| relative_to_absolute_offset_samples_.end(), |
| 0.0) / |
| relative_to_absolute_offset_samples_.size(); |
| |
| const double adjusted_incremental_encoder = |
| sample.encoder + average_relative_to_absolute_offset; |
| |
| // Now, compute the nearest absolute encoder value to the offset relative |
| // encoder position. |
| const double adjusted_absolute_encoder = |
| UnWrap(adjusted_incremental_encoder, |
| sample.absolute_encoder - constants_.measured_absolute_position, |
| constants_.one_revolution_distance); |
| |
| // We can now compute the offset now that we have unwrapped the absolute |
| // encoder. |
| const double relative_to_absolute_offset = |
| adjusted_absolute_encoder - sample.encoder; |
| |
| // Add the sample and update the average with the new reading. |
| const size_t relative_to_absolute_offset_samples_size = |
| relative_to_absolute_offset_samples_.size(); |
| if (relative_to_absolute_offset_samples_size < |
| constants_.average_filter_size) { |
| average_relative_to_absolute_offset = |
| (average_relative_to_absolute_offset * |
| relative_to_absolute_offset_samples_size + |
| relative_to_absolute_offset) / |
| (relative_to_absolute_offset_samples_size + 1); |
| |
| relative_to_absolute_offset_samples_.push_back( |
| relative_to_absolute_offset); |
| } else { |
| average_relative_to_absolute_offset -= |
| relative_to_absolute_offset_samples_[samples_idx_] / |
| relative_to_absolute_offset_samples_size; |
| relative_to_absolute_offset_samples_[samples_idx_] = |
| relative_to_absolute_offset; |
| average_relative_to_absolute_offset += |
| relative_to_absolute_offset / |
| relative_to_absolute_offset_samples_size; |
| } |
| |
| // Now compute the offset between the pot and relative encoder. |
| if (offset_samples_.size() < constants_.average_filter_size) { |
| offset_samples_.push_back(sample.pot - sample.encoder); |
| } else { |
| offset_samples_[samples_idx_] = sample.pot - sample.encoder; |
| } |
| |
| // Drop the oldest sample when we run this function the next time around. |
| samples_idx_ = (samples_idx_ + 1) % constants_.average_filter_size; |
| |
| pot_relative_encoder_offset_ = |
| ::std::accumulate(offset_samples_.begin(), offset_samples_.end(), 0.0) / |
| offset_samples_.size(); |
| |
| offset_ = UnWrap(sample.encoder + pot_relative_encoder_offset_, |
| average_relative_to_absolute_offset + sample.encoder, |
| constants_.one_revolution_distance) - |
| sample.encoder; |
| |
| // Reverse the math for adjusted_absolute_encoder to compute the absolute |
| // encoder. Do this by taking the adjusted encoder, and then subtracting off |
| // the second argument above, and the value that was added by Wrap. |
| filtered_absolute_encoder_ = |
| ((sample.encoder + average_relative_to_absolute_offset) - |
| (-constants_.measured_absolute_position + |
| (adjusted_absolute_encoder - |
| (sample.absolute_encoder - constants_.measured_absolute_position)))); |
| |
| if (offset_ready()) { |
| if (!zeroed_) { |
| first_offset_ = offset_; |
| } |
| |
| if (::std::abs(first_offset_ - offset_) > |
| constants_.allowable_encoder_error * |
| constants_.one_revolution_distance) { |
| VLOG(1) << "Offset moved too far. Initial: " << first_offset_ |
| << ", current " << offset_ << ", allowable change: " |
| << constants_.allowable_encoder_error * |
| constants_.one_revolution_distance; |
| error_ = true; |
| } |
| |
| zeroed_ = true; |
| } |
| } |
| |
| // Update the position. |
| filtered_position_ = pot_relative_encoder_offset_ + info.encoder(); |
| position_ = offset_ + info.encoder(); |
| } |
| |
| flatbuffers::Offset<PotAndAbsoluteEncoderZeroingEstimator::State> |
| PotAndAbsoluteEncoderZeroingEstimator::GetEstimatorState( |
| flatbuffers::FlatBufferBuilder *fbb) const { |
| State::Builder builder(*fbb); |
| builder.add_error(error_); |
| builder.add_zeroed(zeroed_); |
| builder.add_position(position_); |
| builder.add_pot_position(filtered_position_); |
| builder.add_absolute_position(filtered_absolute_encoder_); |
| return builder.Finish(); |
| } |
| |
| void PulseIndexZeroingEstimator::Reset() { |
| max_index_position_ = ::std::numeric_limits<double>::lowest(); |
| min_index_position_ = ::std::numeric_limits<double>::max(); |
| offset_ = 0; |
| last_used_index_pulse_count_ = 0; |
| zeroed_ = false; |
| error_ = false; |
| } |
| |
| void PulseIndexZeroingEstimator::StoreIndexPulseMaxAndMin( |
| const IndexPosition &info) { |
| // If we have a new index pulse. |
| if (last_used_index_pulse_count_ != info.index_pulses()) { |
| // If the latest pulses's position is outside the range we've currently |
| // seen, record it appropriately. |
| if (info.latched_encoder() > max_index_position_) { |
| max_index_position_ = info.latched_encoder(); |
| } |
| if (info.latched_encoder() < min_index_position_) { |
| min_index_position_ = info.latched_encoder(); |
| } |
| last_used_index_pulse_count_ = info.index_pulses(); |
| } |
| } |
| |
| int PulseIndexZeroingEstimator::IndexPulseCount() const { |
| if (min_index_position_ > max_index_position_) { |
| // This condition means we haven't seen a pulse yet. |
| return 0; |
| } |
| |
| // Calculate the number of pulses encountered so far. |
| return 1 + static_cast<int>( |
| ::std::round((max_index_position_ - min_index_position_) / |
| constants_.index_difference)); |
| } |
| |
| void PulseIndexZeroingEstimator::UpdateEstimate(const IndexPosition &info) { |
| StoreIndexPulseMaxAndMin(info); |
| const int index_pulse_count = IndexPulseCount(); |
| if (index_pulse_count > constants_.index_pulse_count) { |
| if (!error_) { |
| VLOG(1) << "Got more index pulses than expected. Got " |
| << index_pulse_count << " expected " |
| << constants_.index_pulse_count; |
| error_ = true; |
| } |
| } |
| |
| // TODO(austin): Detect if the encoder or index pulse is unplugged. |
| // TODO(austin): Detect missing counts. |
| |
| if (index_pulse_count == constants_.index_pulse_count && !zeroed_) { |
| offset_ = constants_.measured_index_position - |
| constants_.known_index_pulse * constants_.index_difference - |
| min_index_position_; |
| zeroed_ = true; |
| } else if (zeroed_ && !error_) { |
| // Detect whether the index pulse is somewhere other than where we expect |
| // it to be. First we compute the position of the most recent index pulse. |
| double index_pulse_distance = |
| info.latched_encoder() + offset_ - constants_.measured_index_position; |
| // Second we compute the position of the index pulse in terms of |
| // the index difference. I.e. if this index pulse is two pulses away from |
| // the index pulse that we know about then this number should be positive |
| // or negative two. |
| double relative_distance = |
| index_pulse_distance / constants_.index_difference; |
| // Now we compute how far away the measured index pulse is from the |
| // expected index pulse. |
| double error = relative_distance - ::std::round(relative_distance); |
| // This lets us check if the index pulse is within an acceptable error |
| // margin of where we expected it to be. |
| if (::std::abs(error) > constants_.allowable_encoder_error) { |
| VLOG(1) |
| << "Encoder ticks out of range since last index pulse. known index " |
| "pulse: " |
| << constants_.measured_index_position << ", expected index pulse: " |
| << round(relative_distance) * constants_.index_difference + |
| constants_.measured_index_position |
| << ", actual index pulse: " << info.latched_encoder() + offset_ |
| << ", " |
| "allowable error: " |
| << constants_.allowable_encoder_error * constants_.index_difference; |
| error_ = true; |
| } |
| } |
| |
| position_ = info.encoder() + offset_; |
| } |
| |
| flatbuffers::Offset<PulseIndexZeroingEstimator::State> |
| PulseIndexZeroingEstimator::GetEstimatorState( |
| flatbuffers::FlatBufferBuilder *fbb) const { |
| State::Builder builder(*fbb); |
| builder.add_error(error_); |
| builder.add_zeroed(zeroed_); |
| builder.add_position(position_); |
| builder.add_min_index_position(min_index_position_); |
| builder.add_max_index_position(max_index_position_); |
| builder.add_index_pulses_seen(IndexPulseCount()); |
| return builder.Finish(); |
| } |
| |
| AbsoluteEncoderZeroingEstimator::AbsoluteEncoderZeroingEstimator( |
| const constants::AbsoluteEncoderZeroingConstants &constants) |
| : constants_(constants), move_detector_(constants_.moving_buffer_size) { |
| relative_to_absolute_offset_samples_.reserve(constants_.average_filter_size); |
| Reset(); |
| } |
| |
| void AbsoluteEncoderZeroingEstimator::Reset() { |
| zeroed_ = false; |
| error_ = false; |
| first_offset_ = 0.0; |
| offset_ = 0.0; |
| samples_idx_ = 0; |
| position_ = 0.0; |
| nan_samples_ = 0; |
| relative_to_absolute_offset_samples_.clear(); |
| move_detector_.Reset(); |
| } |
| |
| |
| // The math here is a bit backwards, but I think it'll be less error prone that |
| // way and more similar to the version with a pot as well. |
| // |
| // We start by unwrapping the absolute encoder using the relative encoder. This |
| // puts us in a non-wrapping space and lets us average a bit easier. From |
| // there, we can compute an offset and wrap ourselves back such that we stay |
| // close to the middle value. |
| // |
| // To guard against the robot moving while updating estimates, buffer a number |
| // of samples and check that the buffered samples are not different than the |
| // zeroing threshold. At any point that the samples differ too much, do not |
| // update estimates based on those samples. |
| void AbsoluteEncoderZeroingEstimator::UpdateEstimate( |
| const AbsolutePosition &info) { |
| // Check for Abs Encoder NaN value that would mess up the rest of the zeroing |
| // code below. NaN values are given when the Absolute Encoder is disconnected. |
| if (::std::isnan(info.absolute_encoder())) { |
| if (zeroed_) { |
| VLOG(1) << "NAN on absolute encoder."; |
| error_ = true; |
| } else { |
| ++nan_samples_; |
| VLOG(1) << "NAN on absolute encoder while zeroing " << nan_samples_; |
| if (nan_samples_ >= constants_.average_filter_size) { |
| error_ = true; |
| zeroed_ = true; |
| } |
| } |
| // Throw some dummy values in for now. |
| filtered_absolute_encoder_ = info.absolute_encoder(); |
| position_ = offset_ + info.encoder(); |
| return; |
| } |
| |
| const bool moving = move_detector_.Update(info, constants_.moving_buffer_size, |
| constants_.zeroing_threshold); |
| |
| if (!moving) { |
| const PositionStruct &sample = move_detector_.GetSample(); |
| |
| // Compute the average offset between the absolute encoder and relative |
| // encoder. If we have 0 samples, assume it is 0. |
| double average_relative_to_absolute_offset = |
| relative_to_absolute_offset_samples_.size() == 0 |
| ? 0.0 |
| : ::std::accumulate(relative_to_absolute_offset_samples_.begin(), |
| relative_to_absolute_offset_samples_.end(), |
| 0.0) / |
| relative_to_absolute_offset_samples_.size(); |
| |
| // Now, compute the estimated absolute position using the previously |
| // estimated offset and the incremental encoder. |
| const double adjusted_incremental_encoder = |
| sample.encoder + average_relative_to_absolute_offset; |
| |
| // Now, compute the absolute encoder value nearest to the offset relative |
| // encoder position. |
| const double adjusted_absolute_encoder = |
| UnWrap(adjusted_incremental_encoder, |
| sample.absolute_encoder - constants_.measured_absolute_position, |
| constants_.one_revolution_distance); |
| |
| // We can now compute the offset now that we have unwrapped the absolute |
| // encoder. |
| const double relative_to_absolute_offset = |
| adjusted_absolute_encoder - sample.encoder; |
| |
| // Add the sample and update the average with the new reading. |
| const size_t relative_to_absolute_offset_samples_size = |
| relative_to_absolute_offset_samples_.size(); |
| if (relative_to_absolute_offset_samples_size < |
| constants_.average_filter_size) { |
| average_relative_to_absolute_offset = |
| (average_relative_to_absolute_offset * |
| relative_to_absolute_offset_samples_size + |
| relative_to_absolute_offset) / |
| (relative_to_absolute_offset_samples_size + 1); |
| |
| relative_to_absolute_offset_samples_.push_back( |
| relative_to_absolute_offset); |
| } else { |
| average_relative_to_absolute_offset -= |
| relative_to_absolute_offset_samples_[samples_idx_] / |
| relative_to_absolute_offset_samples_size; |
| relative_to_absolute_offset_samples_[samples_idx_] = |
| relative_to_absolute_offset; |
| average_relative_to_absolute_offset += |
| relative_to_absolute_offset / |
| relative_to_absolute_offset_samples_size; |
| } |
| |
| // Drop the oldest sample when we run this function the next time around. |
| samples_idx_ = (samples_idx_ + 1) % constants_.average_filter_size; |
| |
| // And our offset is the offset that gives us the position within +- ord/2 |
| // of the middle position. |
| offset_ = Wrap(constants_.middle_position, |
| average_relative_to_absolute_offset + sample.encoder, |
| constants_.one_revolution_distance) - |
| sample.encoder; |
| |
| // Reverse the math for adjusted_absolute_encoder to compute the absolute |
| // encoder. Do this by taking the adjusted encoder, and then subtracting off |
| // the second argument above, and the value that was added by Wrap. |
| filtered_absolute_encoder_ = |
| ((sample.encoder + average_relative_to_absolute_offset) - |
| (-constants_.measured_absolute_position + |
| (adjusted_absolute_encoder - |
| (sample.absolute_encoder - constants_.measured_absolute_position)))); |
| |
| if (offset_ready()) { |
| if (!zeroed_) { |
| first_offset_ = offset_; |
| } |
| |
| if (::std::abs(first_offset_ - offset_) > |
| constants_.allowable_encoder_error * |
| constants_.one_revolution_distance) { |
| VLOG(1) << "Offset moved too far. Initial: " << first_offset_ |
| << ", current " << offset_ << ", allowable change: " |
| << constants_.allowable_encoder_error * |
| constants_.one_revolution_distance; |
| error_ = true; |
| } |
| |
| zeroed_ = true; |
| } |
| } |
| |
| // Update the position. |
| position_ = offset_ + info.encoder(); |
| } |
| |
| flatbuffers::Offset<AbsoluteEncoderZeroingEstimator::State> |
| AbsoluteEncoderZeroingEstimator::GetEstimatorState( |
| flatbuffers::FlatBufferBuilder *fbb) const { |
| State::Builder builder(*fbb); |
| builder.add_error(error_); |
| builder.add_zeroed(zeroed_); |
| builder.add_position(position_); |
| builder.add_absolute_position(filtered_absolute_encoder_); |
| return builder.Finish(); |
| } |
| |
| } // namespace zeroing |
| } // namespace frc971 |