| #include "y2020/vision/sift/fast_gaussian.h" |
| |
| #include <opencv2/imgproc.hpp> |
| #include "gtest/gtest.h" |
| |
| #include "y2020/vision/sift/fast_gaussian_all.h" |
| |
| namespace frc971 { |
| namespace vision { |
| namespace testing { |
| |
| class FastGaussianTest : public ::testing::Test { |
| public: |
| cv::Mat RandomImage(int width = 500, int height = 500, int type = CV_8UC3) { |
| cv::Mat result(width, height, type); |
| cv::randu(result, 0, 255); |
| return result; |
| } |
| |
| void ExpectEqual(const cv::Mat &a, const cv::Mat &b, double epsilon = 1e-10) { |
| const cv::Mat difference = a - b; |
| double min, max; |
| cv::minMaxLoc(difference, &min, &max); |
| EXPECT_GE(min, -epsilon); |
| EXPECT_LE(max, epsilon); |
| } |
| }; |
| |
| // Verifies that the default GaussianBlur parameters work out to 15x15 with |
| // sigma of 1.6. |
| TEST_F(FastGaussianTest, DefaultGaussianSize) { |
| const auto image = RandomImage(500, 500, CV_32FC3); |
| cv::Mat default_blurred, explicitly_blurred; |
| cv::GaussianBlur(image, default_blurred, cv::Size(), 1.6, 1.6); |
| cv::GaussianBlur(image, explicitly_blurred, cv::Size(15, 15), 1.6, 1.6); |
| ExpectEqual(default_blurred, explicitly_blurred); |
| } |
| |
| // Verifies that with 8U just a 9x9 blur is as much as you get. |
| TEST_F(FastGaussianTest, GaussianSizeS8) { |
| const auto image = RandomImage(500, 500, CV_8UC3); |
| cv::Mat big_blurred, little_blurred; |
| cv::GaussianBlur(image, big_blurred, cv::Size(15, 15), 1.6, 1.6); |
| cv::GaussianBlur(image, little_blurred, cv::Size(9, 9), 1.6, 1.6); |
| ExpectEqual(big_blurred, little_blurred); |
| } |
| |
| // Verifies that FastGaussian and cv::GaussianBlur give the same result. |
| TEST_F(FastGaussianTest, FastGaussian) { |
| const auto image = RandomImage(480, 640, CV_16SC1); |
| cv::Mat slow, fast, fast_direct; |
| static constexpr double kSigma = 1.9465878414647133; |
| static constexpr int kSize = 13; |
| |
| cv::GaussianBlur(image, slow, cv::Size(kSize, kSize), kSigma, kSigma); |
| FastGaussian(image, &fast, kSigma); |
| |
| // Explicitly call the generated code, to verify that our chosen parameters do |
| // in fact result in using the generated one. |
| fast_direct.create(slow.size(), slow.type()); |
| ASSERT_EQ(0, |
| DoGeneratedFastGaussian(MatToHalide<const int16_t>(image), |
| MatToHalide<int16_t>(fast_direct), kSigma)); |
| |
| |
| // 50/65536 = 0.00076, which is under 1%, which is pretty close. |
| ExpectEqual(slow, fast, 50); |
| // The wrapper should be calling the exact same code, so it should end up with |
| // the exact same result. |
| ExpectEqual(fast, fast_direct, 0); |
| } |
| |
| } // namespace testing |
| } // namespace vision |
| } // namespace frc971 |