blob: 83d4a01b12ea9fca4c3596c1ff7614a8b29dc71d [file] [log] [blame]
#include "y2019/vision/target_finder.h"
#include "aos/vision/blob/hierarchical_contour_merge.h"
#include "ceres/ceres.h"
using namespace aos::vision;
namespace y2019 {
namespace vision {
TargetFinder::TargetFinder()
: target_template_(Target::MakeTemplate()),
ceres_context_(ceres::Context::Create()) {}
TargetFinder::~TargetFinder() {}
aos::vision::RangeImage TargetFinder::Threshold(aos::vision::ImagePtr image) {
const uint8_t threshold_value = GetThresholdValue();
return aos::vision::ThresholdImageWithFunction(
image, [&](aos::vision::PixelRef px) {
if (px.g > threshold_value && px.b > threshold_value &&
px.r > threshold_value) {
return true;
}
return false;
});
}
int TargetFinder::PixelCount(BlobList *imgs) {
int num_pixels = 0;
for (RangeImage &img : *imgs) {
num_pixels += img.npixels();
}
return num_pixels;
}
// Filter blobs on size.
void TargetFinder::PreFilter(BlobList *imgs) {
imgs->erase(
std::remove_if(imgs->begin(), imgs->end(),
[](RangeImage &img) {
// We can drop images with a small number of
// pixels, but images
// must be over 20px or the math will have issues.
return (img.npixels() < 100 || img.height() < 25);
}),
imgs->end());
}
ContourNode *TargetFinder::GetContour(const RangeImage &blob) {
alloc_.reset();
return RangeImgToContour(blob, &alloc_);
}
// TODO(ben): These values will be moved into the constants.h file.
namespace {
::Eigen::Vector2f AosVectorToEigenVector(Vector<2> in) {
return ::Eigen::Vector2f(in.x(), in.y());
}
constexpr double f_x = 481.4957;
constexpr double c_x = 341.215;
constexpr double f_y = 484.314;
constexpr double c_y = 251.29;
constexpr double f_x_prime = 363.1424;
constexpr double c_x_prime = 337.9895;
constexpr double f_y_prime = 366.4837;
constexpr double c_y_prime = 240.0702;
constexpr double k_1 = -0.2739;
constexpr double k_2 = 0.01583;
constexpr double k_3 = 0.04201;
constexpr int iterations = 7;
}
::Eigen::Vector2f UnWarpPoint(const Point point) {
const double x0 = ((double)point.x - c_x) / f_x;
const double y0 = ((double)point.y - c_y) / f_y;
double x = x0;
double y = y0;
for (int i = 0; i < iterations; i++) {
const double r_sqr = x * x + y * y;
const double coeff = 1.0 + r_sqr * (k_1 + r_sqr * (k_2 + r_sqr * (k_3)));
x = x0 / coeff;
y = y0 / coeff;
}
const double nx = x * f_x_prime + c_x_prime;
const double ny = y * f_y_prime + c_y_prime;
return ::Eigen::Vector2f(nx, ny);
}
::std::vector<::Eigen::Vector2f> TargetFinder::UnWarpContour(
ContourNode *start) const {
::std::vector<::Eigen::Vector2f> result;
ContourNode *node = start;
while (node->next != start) {
result.push_back(UnWarpPoint(node->pt));
node = node->next;
}
result.push_back(UnWarpPoint(node->pt));
return result;
}
// TODO: Try hierarchical merge for this.
// Convert blobs into polygons.
Polygon TargetFinder::FindPolygon(::std::vector<::Eigen::Vector2f> &&contour,
bool verbose) {
if (verbose) printf("Process Polygon.\n");
::std::vector<::Eigen::Vector2f> slopes;
// Collect all slopes from the contour.
::Eigen::Vector2f previous_point = contour[0];
for (size_t i = 0; i < contour.size(); ++i) {
::Eigen::Vector2f next_point = contour[(i + 1) % contour.size()];
slopes.push_back(next_point - previous_point);
previous_point = next_point;
}
const int num_points = slopes.size();
auto get_pt = [&slopes, num_points](int i) {
return slopes[(i + num_points * 2) % num_points];
};
// Bigger objects should be more filtered. Filter roughly proportional to the
// perimeter of the object.
const int range = slopes.size() / 50;
if (verbose) printf("Corner range: %d.\n", range);
::std::vector<::Eigen::Vector2f> filtered_slopes = slopes;
// Three box filter makith a guassian?
// Run gaussian filter over the slopes 3 times. That'll get us pretty close
// to running a gausian over it.
for (int k = 0; k < 3; ++k) {
const int window_size = ::std::max(2, range);
for (size_t i = 0; i < slopes.size(); ++i) {
::Eigen::Vector2f a = ::Eigen::Vector2f::Zero();
for (int j = -window_size; j <= window_size; ++j) {
::Eigen::Vector2f p = get_pt(j + i);
a += p;
}
a /= (window_size * 2 + 1);
filtered_slopes[i] = a;
}
slopes = filtered_slopes;
}
if (verbose) printf("Point count: %zu.\n", slopes.size());
::std::vector<float> corner_metric(slopes.size(), 0.0);
for (size_t i = 0; i < slopes.size(); ++i) {
const ::Eigen::Vector2f a = get_pt(i - ::std::max(3, range));
const ::Eigen::Vector2f b = get_pt(i + ::std::max(3, range));
corner_metric[i] = (a - b).squaredNorm();
}
// We want to find the Nth highest peaks.
// Clever algorithm: Find the highest point. Then, walk forwards and
// backwards to find the next valley each direction which is over x% lower
// than the peak.
// We want to ignore those points in the future. Set them to 0.
// Repeat until we've found the Nth highest peak.
// Find all centers of corners.
// Because they round, multiple slopes may be a corner.
::std::vector<size_t> edges;
constexpr float peak_acceptance_ratio = 0.16;
constexpr float valley_ratio = 0.75;
float highest_peak_value = 0.0;
// Nth higest points.
while (edges.size() < 5) {
const ::std::vector<float>::iterator max_element =
::std::max_element(corner_metric.begin(), corner_metric.end());
const size_t highest_index =
::std::distance(corner_metric.begin(), max_element);
const float max_value = *max_element;
if (edges.size() == 0) {
highest_peak_value = max_value;
}
if (max_value < highest_peak_value * peak_acceptance_ratio &&
edges.size() == 4) {
if (verbose)
printf("Rejecting index: %zu, %f (%f %%)\n", highest_index, max_value,
max_value / highest_peak_value);
break;
}
const float valley_value = max_value * valley_ratio;
if (verbose)
printf("Highest index: %zu, %f (%f %%)\n", highest_index, max_value,
max_value / highest_peak_value);
bool foothill = false;
{
float min_value = max_value;
size_t fwd_index = (highest_index + 1) % corner_metric.size();
while (true) {
const float current_value = corner_metric[fwd_index];
if (current_value == -1.0) {
if (min_value >= valley_value) {
if (verbose) printf("Foothill\n");
foothill = true;
}
break;
}
min_value = ::std::min(current_value, min_value);
if (min_value < valley_value && current_value > min_value) {
break;
}
// Kill!!!
corner_metric[fwd_index] = -1.0;
fwd_index = (fwd_index + 1) % corner_metric.size();
}
}
{
float min_value = max_value;
size_t rev_index =
(highest_index - 1 + corner_metric.size()) % corner_metric.size();
while (true) {
const float current_value = corner_metric[rev_index];
if (current_value == -1.0) {
if (min_value >= valley_value) {
if (verbose) printf("Foothill\n");
foothill = true;
}
break;
}
min_value = ::std::min(current_value, min_value);
if (min_value < valley_value && current_value > min_value) {
break;
}
// Kill!!!
corner_metric[rev_index] = -1.0;
rev_index =
(rev_index - 1 + corner_metric.size()) % corner_metric.size();
}
}
*max_element = -1.0;
if (!foothill) {
edges.push_back(highest_index);
}
}
::std::sort(edges.begin(), edges.end());
if (verbose) printf("Edge Count (%zu).\n", edges.size());
// Run best-fits over each line segment.
Polygon polygon;
if (edges.size() >= 3) {
for (size_t i = 0; i < edges.size(); ++i) {
// Include the corners in both line fits.
const size_t segment_start_index = edges[i];
const size_t segment_end_index =
(edges[(i + 1) % edges.size()] + 1) % contour.size();
float mx = 0.0;
float my = 0.0;
int n = 0;
for (size_t j = segment_start_index; j != segment_end_index;
(j = (j + 1) % contour.size())) {
mx += contour[j].x();
my += contour[j].y();
++n;
// (x - [x] / N) ** 2 = [x * x] - 2 * [x] * [x] / N + [x] * [x] / N / N;
}
mx /= n;
my /= n;
float xx = 0.0;
float xy = 0.0;
float yy = 0.0;
for (size_t j = segment_start_index; j != segment_end_index;
(j = (j + 1) % contour.size())) {
const float x = contour[j].x() - mx;
const float y = contour[j].y() - my;
xx += x * x;
xy += x * y;
yy += y * y;
}
// TODO: Extract common to hierarchical merge.
const float neg_b_over_2 = (xx + yy) / 2.0;
const float c = (xx * yy - xy * xy);
const float sqr = sqrt(neg_b_over_2 * neg_b_over_2 - c);
{
const float lam = neg_b_over_2 + sqr;
float x = xy;
float y = lam - xx;
const float norm = hypot(x, y);
x /= norm;
y /= norm;
polygon.segments.push_back(
Segment<2>(Vector<2>(mx, my), Vector<2>(mx + x, my + y)));
}
/* Characteristic polynomial
1 lam^2 - (xx + yy) lam + (xx * yy - xy * xy) = 0
[a b]
[c d]
// covariance matrix.
[xx xy] [nx]
[xy yy] [ny]
*/
}
}
if (verbose) printf("Poly Count (%zu).\n", polygon.segments.size());
polygon.contour = ::std::move(contour);
return polygon;
}
// Convert segments into target components (left or right)
::std::vector<TargetComponent> TargetFinder::FillTargetComponentList(
const ::std::vector<Polygon> &seg_list, bool verbose) {
::std::vector<TargetComponent> list;
TargetComponent new_target;
for (const Polygon &polygon : seg_list) {
// Reject missized pollygons for now. Maybe rectify them here in the future;
if (polygon.segments.size() != 4) {
continue;
}
::std::vector<Vector<2>> corners;
for (size_t i = 0; i < 4; ++i) {
Vector<2> corner =
polygon.segments[i].Intersect(polygon.segments[(i + 1) % 4]);
if (::std::isnan(corner.x()) || ::std::isnan(corner.y())) {
break;
}
corners.push_back(corner);
}
if (corners.size() != 4) {
continue;
}
// Select the closest two points. Short side of the rectangle.
double min_dist = -1;
::std::pair<size_t, size_t> closest;
for (size_t i = 0; i < 4; ++i) {
size_t next = (i + 1) % 4;
double nd = corners[i].SquaredDistanceTo(corners[next]);
if (min_dist == -1 || nd < min_dist) {
min_dist = nd;
closest.first = i;
closest.second = next;
}
}
// Verify our top is above the bottom.
size_t bot_index = closest.first;
size_t top_index = (closest.first + 2) % 4;
if (corners[top_index].y() < corners[bot_index].y()) {
closest.first = top_index;
closest.second = (top_index + 1) % 4;
}
// Find the major axis.
size_t far_first = (closest.first + 2) % 4;
size_t far_second = (closest.second + 2) % 4;
Segment<2> major_axis(
(corners[closest.first] + corners[closest.second]) * 0.5,
(corners[far_first] + corners[far_second]) * 0.5);
if (major_axis.AsVector().AngleToZero() > M_PI / 180.0 * 120.0 ||
major_axis.AsVector().AngleToZero() < M_PI / 180.0 * 60.0) {
// Target is angled way too much, drop it.
continue;
}
// organize the top points.
Vector<2> topA = corners[closest.first] - major_axis.B();
new_target.major_axis = major_axis;
if (major_axis.AsVector().AngleToZero() > M_PI / 2.0) {
// We have a left target since we are leaning positive.
new_target.is_right = false;
if (topA.AngleTo(major_axis.AsVector()) > 0.0) {
// And our A point is left of the major axis.
new_target.inside = corners[closest.second];
new_target.top = corners[closest.first];
} else {
// our A point is to the right of the major axis.
new_target.inside = corners[closest.first];
new_target.top = corners[closest.second];
}
} else {
// We have a right target since we are leaning negative.
new_target.is_right = true;
if (topA.AngleTo(major_axis.AsVector()) > 0.0) {
// And our A point is left of the major axis.
new_target.inside = corners[closest.first];
new_target.top = corners[closest.second];
} else {
// our A point is to the right of the major axis.
new_target.inside = corners[closest.second];
new_target.top = corners[closest.first];
}
}
// organize the top points.
Vector<2> botA = corners[far_first] - major_axis.A();
if (major_axis.AsVector().AngleToZero() > M_PI / 2.0) {
// We have a right target since we are leaning positive.
if (botA.AngleTo(major_axis.AsVector()) < M_PI) {
// And our A point is left of the major axis.
new_target.outside = corners[far_second];
new_target.bottom = corners[far_first];
} else {
// our A point is to the right of the major axis.
new_target.outside = corners[far_first];
new_target.bottom = corners[far_second];
}
} else {
// We have a left target since we are leaning negative.
if (botA.AngleTo(major_axis.AsVector()) < M_PI) {
// And our A point is left of the major axis.
new_target.outside = corners[far_first];
new_target.bottom = corners[far_second];
} else {
// our A point is to the right of the major axis.
new_target.outside = corners[far_second];
new_target.bottom = corners[far_first];
}
}
// Take the vector which points from the bottom to the top of the target
// along the outside edge.
const ::Eigen::Vector2f outer_edge_vector =
AosVectorToEigenVector(new_target.top - new_target.outside);
// Now, dot each point in the perimeter along this vector. The one with the
// smallest component will be the one closest to the bottom along this
// direction vector.
::Eigen::Vector2f smallest_point = polygon.contour[0];
float smallest_value = outer_edge_vector.transpose() * smallest_point;
for (const ::Eigen::Vector2f point : polygon.contour) {
const float current_value = outer_edge_vector.transpose() * point;
if (current_value < smallest_value) {
smallest_value = current_value;
smallest_point = point;
}
}
// This piece of the target should be ready now.
new_target.bottom_point = smallest_point;
if (verbose) {
printf("Lowest point in the blob is (%f, %f)\n", smallest_point.x(),
smallest_point.y());
}
// This piece of the target should be ready now.
list.emplace_back(new_target);
if (verbose) printf("Happy with a target\n");
}
return list;
}
// Match components into targets.
std::vector<Target> TargetFinder::FindTargetsFromComponents(
const std::vector<TargetComponent> component_list, bool verbose) {
std::vector<Target> target_list;
using namespace aos::vision;
if (component_list.size() < 2) {
// We don't enough parts for a target.
return target_list;
}
for (size_t i = 0; i < component_list.size(); i++) {
const TargetComponent &a = component_list[i];
for (size_t j = 0; j < i; j++) {
bool target_valid = false;
Target new_target;
const TargetComponent &b = component_list[j];
if (a.is_right && !b.is_right) {
if (a.top.x() > b.top.x()) {
new_target.right = a;
new_target.left = b;
target_valid = true;
}
} else if (!a.is_right && b.is_right) {
if (b.top.x() > a.top.x()) {
new_target.right = b;
new_target.left = a;
target_valid = true;
}
} else if (verbose) {
printf("Found same side components: %s.\n",
a.is_right ? "right" : "left");
}
if (target_valid) {
target_list.emplace_back(new_target);
}
}
}
if (verbose) printf("Possible Target: %zu.\n", target_list.size());
return target_list;
}
bool TargetFinder::MaybePickAndUpdateResult(IntermediateResult *result,
bool verbose) {
// Based on a linear regression between error and distance to target.
// Closer targets can have a higher error because they are bigger.
const double acceptable_error =
std::max(2 * (75 - 12 * result->extrinsics.z), 75.0);
if (!result->good_corners) {
if (verbose) {
printf("Rejecting a target with bad corners: (%f, %f)\n",
result->solver_error, result->backup_solver_error);
}
} else if (result->solver_error < acceptable_error) {
if (verbose) {
printf("Using an 8 point solve: %f < %f \n", result->solver_error,
acceptable_error);
}
return true;
} else if (result->backup_solver_error < acceptable_error) {
if (verbose) {
printf("Using a 4 point solve: %f < %f \n", result->backup_solver_error,
acceptable_error);
}
IntermediateResult backup;
result->extrinsics = result->backup_extrinsics;
result->solver_error = result->backup_solver_error;
return true;
} else if (verbose) {
printf("Rejecting a target with errors: (%f, %f) > %f \n",
result->solver_error, result->backup_solver_error, acceptable_error);
}
return false;
}
std::vector<IntermediateResult> TargetFinder::FilterResults(
const std::vector<IntermediateResult> &results, uint64_t print_rate,
bool verbose) {
std::vector<IntermediateResult> filtered;
for (const IntermediateResult &res : results) {
IntermediateResult updatable_result = res;
if (MaybePickAndUpdateResult(&updatable_result, verbose)) {
filtered.emplace_back(updatable_result);
}
}
// Sort the target list so that the widest (ie closest) target is first.
sort(filtered.begin(), filtered.end(),
[](const IntermediateResult &a, const IntermediateResult &b)
-> bool { return a.target_width > b.target_width; });
frame_count_++;
if (!filtered.empty()) {
valid_result_count_++;
}
if (print_rate > 0 && frame_count_ > print_rate) {
LOG(INFO) << "Found (" << valid_result_count_ << " / " << frame_count_
<< ")(" << ((double)valid_result_count_ / (double)frame_count_)
<< " targets.";
frame_count_ = 0;
valid_result_count_ = 0;
}
return filtered;
}
bool TargetFinder::TestExposure(const std::vector<IntermediateResult> &results,
int pixel_count, int *desired_exposure) {
// TODO(ben): Add these values to config file.
constexpr double low_dist = 0.8;
constexpr int low_exposure = 60;
constexpr int mid_exposure = 200;
bool needs_update = false;
if (results.size() > 0) {
// We are seeing a target so lets use an exposure
// based on the distance to that target.
// First result should always be the closest target.
if (results[0].extrinsics.z < low_dist) {
LOG(INFO) << "Low exposure";
*desired_exposure = low_exposure;
close_bucket_ = 4;
} else {
LOG(INFO) << "Mid exposure";
*desired_exposure = mid_exposure;
}
if (*desired_exposure != current_exposure_) {
needs_update = true;
current_exposure_ = *desired_exposure;
}
} else {
close_bucket_ = ::std::max(0, close_bucket_ - 1);
// It's been a while since we saw a target.
if (close_bucket_ == 0) {
if (pixel_count > 6000) {
if (low_exposure != current_exposure_) {
needs_update = true;
current_exposure_ = low_exposure;
*desired_exposure = low_exposure;
}
} else {
if (mid_exposure != current_exposure_) {
needs_update = true;
current_exposure_ = mid_exposure;
*desired_exposure = mid_exposure;
}
}
}
}
return needs_update;
}
} // namespace vision
} // namespace y2019