blob: 3ac6213628ef8e69dbc5b0a6f6f8e6dd414c5454 [file] [log] [blame]
#ifndef MOTORS_UTIL_H_
#define MOTORS_UTIL_H_
#include <stdint.h>
#include <stddef.h>
#include "motors/core/kinetis.h"
#ifdef __cplusplus
extern "C"
{
#endif
// This bitband register for a specific bit of a given peripheral register.
//
// reg must be an address in one of the peripheral modules (on AIPS0, AIPS1, or
// GPIO) (0x40000000 - 0x400FFFFF).
#define PERIPHERAL_BITBAND(reg, bit) \
(*(volatile uint32_t *)(((uint32_t) & (reg)-0x40000000) * 32 + (bit)*4 + \
0x42000000))
#define NVIC_SET_SANE_PRIORITY(irqnum, priority) \
NVIC_SET_PRIORITY(irqnum, ((priority)&0xF) << 4)
#define NVIC_GET_SANE_PRIORITY(irqnum) (NVIC_GET_PRIORITY(irqnum) >> 4)
// A sufficient memory barrier between writing some data and telling the
// hardware to read it or having the hardware say some data has been written and
// actually reading it.
static inline void DmaMemoryBarrier() {
// Cortex-M3 and Cortex-M4 don't reorder loads or stores, so no DMB is
// necessary here.
__asm__ __volatile__("" ::: "memory");
}
static inline void InterruptMemoryBarrier() {
// Cortex-M3 and Cortex-M4 don't reorder loads or stores, and evaluate
// interrupts between every instruction, so no DSB or ISB is necessary here.
// Note: up to two instructions may be executed after enabling/disabling an
// interrupt in the NVIC before taking the new value into account, so that
// would still require a DSB+ISB if we cared.
// Note: enabling interrupts might not recognize interrupts immediately
// without an ISB.
__asm__ __volatile__("" ::: "memory", "cc");
}
// Definitions for the bits in some registers that are missing.
#define CAN_MCR_MDIS ((uint32_t)(1 << 31))
#define CAN_MCR_FRZ ((uint32_t)(1 << 30))
#define CAN_MCR_RFEN ((uint32_t)(1 << 29))
#define CAN_MCR_HALT ((uint32_t)(1 << 28))
#define CAN_MCR_NOTRDY ((uint32_t)(1 << 27))
#define CAN_MCR_WAKMSK ((uint32_t)(1 << 26))
#define CAN_MCR_SOFTRST ((uint32_t)(1 << 25))
#define CAN_MCR_FRZACK ((uint32_t)(1 << 24))
#define CAN_MCR_SUPV ((uint32_t)(1 << 23))
#define CAN_MCR_SLFWAK ((uint32_t)(1 << 22))
#define CAN_MCR_WRNEN ((uint32_t)(1 << 21))
#define CAN_MCR_LPMACK ((uint32_t)(1 << 20))
#define CAN_MCR_WAKSRC ((uint32_t)(1 << 19))
#define CAN_MCR_SRXDIS ((uint32_t)(1 << 17))
#define CAN_MCR_IRMQ ((uint32_t)(1 << 16))
#define CAN_MCR_LPRIOEN ((uint32_t)(1 << 13))
#define CAN_MCR_AEN ((uint32_t)(1 << 12))
#define CAN_MCR_IDAM(n) ((uint32_t)(((n) & 3) << 8))
#define CAN_MCR_MAXMB(n) ((uint32_t)((n) & 0x7F))
#define CAN_CTRL1_PRESDIV(n) ((uint32_t)(((n) & 0xFF) << 24))
#define CAN_CTRL1_RJW(n) ((uint32_t)(((n) & 3) << 22))
#define CAN_CTRL1_PSEG1(n) ((uint32_t)(((n) & 7) << 19))
#define CAN_CTRL1_PSEG2(n) ((uint32_t)(((n) & 7) << 16))
#define CAN_CTRL1_BOFFMSK ((uint32_t)(1 << 15))
#define CAN_CTRL1_ERRMSK ((uint32_t)(1 << 14))
#define CAN_CTRL1_CLKSRC ((uint32_t)(1 << 13))
#define CAN_CTRL1_LPB ((uint32_t)(1 << 12))
#define CAN_CTRL1_TWRNMSK ((uint32_t)((1 << 11))
#define CAN_CTRL1_RWRNMSK ((uint32_t)((1 << 10))
#define CAN_CTRL1_SMP ((uint32_t)(1 << 7))
#define CAN_CTRL1_BOFFREC ((uint32_t)(1 << 6)
#define CAN_CTRL1_TSYN ((uint32_t)(1 << 5))
#define CAN_CTRL1_LBUF ((uint32_t)(1 << 4))
#define CAN_CTRL1_LOM ((uint32_t)(1 << 3))
#define CAN_CTRL1_PROPSEG(n) ((uint32_t)((n) & 7))
#define CAN_ESR1_SYNCH ((uint32_t)(1 << 18))
#define CAN_ESR1_TWRNINT ((uint32_t)(1 << 17))
#define CAN_ESR1_RWRNINT ((uint32_t)(1 << 16))
#define CAN_ESR1_BIT1ERR ((uint32_t)(1 << 15))
#define CAN_ESR1_BIT0ERR ((uint32_t)(1 << 14))
#define CAN_ESR1_ACKERR ((uint32_t)(1 << 13))
#define CAN_ESR1_CRCERR ((uint32_t)(1 << 12))
#define CAN_ESR1_FRMERR ((uint32_t)(1 << 11))
#define CAN_ESR1_STFERR ((uint32_t)(1 << 10))
#define CAN_ESR1_TXWRN ((uint32_t)(1 << 9))
#define CAN_ESR1_RXWRN ((uint32_t)(1 << 8))
#define CAN_ESR1_IDLE ((uint32_t)(1 << 7))
#define CAN_ESR1_TX ((uint32_t)(1 << 6))
#define CAN_ESR1_RX ((uint32_t)(1 << 3))
#define CAN_ESR1_BOFFINT ((uint32_t)(1 << 2))
#define CAN_ESR1_ERRINT ((uint32_t)(1 << 1))
#define CAN_ESR1_WAKINT ((uint32_t)1)
#define CAN_CTRL2_WRMFRZ ((uint32_t)(1 << 28))
#define CAN_CTRL2_RFFN(n) ((uint32_t)(((n) & 0xF) << 24))
#define CAN_CTRL2_TASD(n) ((uint32_t)(((n) & 0x1F) << 19))
#define CAN_CTRL2_MRP ((uint32_t)(1 << 18))
#define CAN_CTRL2_RRS ((uint32_t)(1 << 17))
#define CAN_CTRL2_EACEN ((uint32_t)(1 << 16))
#define CAN_ESR2_VPS ((uint32_t)(1 << 14))
#define CAN_ESR2_IMB ((uint32_t)(1 << 13))
typedef struct {
// Timestamp is the lower 16 bits.
uint32_t control_timestamp;
uint32_t prio_id;
uint32_t data[2];
} CanMessageBuffer;
#define CAN0_MESSAGES ((volatile CanMessageBuffer *)0x40024080)
#define CAN0_RXIMRS ((volatile uint32_t *)0x40024880)
#define CAN1_MESSAGES ((volatile CanMessageBuffer *)0x400A4080)
#define CAN1_RXIMRS ((volatile uint32_t *)0x400A4880)
#define CAN_MB_CONTROL_INSERT_DLC(dlc) ((uint32_t)(((dlc) & 0xF) << 16))
#define CAN_MB_CONTROL_EXTRACT_DLC(control_timestamp) \
((control_timestamp >> 16) & 0xF)
#define CAN_MB_CONTROL_RTR ((uint32_t)(1 << 20))
#define CAN_MB_CONTROL_IDE ((uint32_t)(1 << 21))
#define CAN_MB_CONTROL_SRR ((uint32_t)(1 << 22))
#define CAN_MB_CONTROL_INSERT_CODE(n) ((uint32_t)(((n) & 0xF) << 24))
#define CAN_MB_CONTROL_EXTRACT_CODE(n) ((uint32_t)(((n) >> 24) & 0xF))
#define CAN_MB_CONTROL_CODE_BUSY_MASK CAN_MB_CONTROL_INSERT_CODE(1)
#define CAN_MB_PRIO_ID_PRIORITY_MASK ((uint32_t)((1 << 29) - 1))
#define CAN_MB_CODE_RX_INACTIVE 0
#define CAN_MB_CODE_RX_EMPTY 4
#define CAN_MB_CODE_RX_FULL 2
#define CAN_MB_CODE_RX_OVERRUN 6
#define CAN_MB_CODE_RX_RANSWER 0xA
#define CAN_MB_CODE_TX_INACTIVE 8
#define CAN_MB_CODE_TX_ABORT 9
#define CAN_MB_CODE_TX_DATA 0xC
#define CAN_MB_CODE_TX_REMOTE 0xC
#define CAN_MB_CODE_TX_TANSWER 0xE
#define CAN_MB_CODE_IS_BUSY(code) ((code) & 1)
// We have to define these, and leave them defined, because the C preprocessor
// is annoying...
#define REALLY_DO_CONCATENATE(x, y, z) x ## y ## z
#define DO_CONCATENATE(x, y, z) REALLY_DO_CONCATENATE(x, y, z)
// Index-parameterized access to various registers from various peripherals.
// This only includes ones somebody thought might be useful; add more if you
// want them.
#define dma_chN_isr(n) DO_CONCATENATE(dma_ch, n, _isr)
#define IRQ_DMA_CHn(n) DO_CONCATENATE(IRQ_DMA, _CH, n)
#define USB0_ENDPTn(n) (*(volatile uint8_t *)(0x400720C0 + ((n)*4)))
// TODO(Brian): Just write the structs out, and do all this in kinetis.h.
#define ALL_FTM_REGISTERS \
FOR_BOTH_FTM_REGISTER(SC) \
FOR_BOTH_FTM_REGISTER(CNT) \
FOR_BOTH_FTM_REGISTER(MOD) \
FOR_BOTH_FTM_REGISTER(C0SC) \
FOR_BOTH_FTM_REGISTER(C0V) \
FOR_BOTH_FTM_REGISTER(C1SC) \
FOR_BOTH_FTM_REGISTER(C1V) \
FOR_BIG_FTM_REGISTER(C2SC) \
FOR_BIG_FTM_REGISTER(C2V) \
FOR_BIG_FTM_REGISTER(C3SC) \
FOR_BIG_FTM_REGISTER(C3V) \
FOR_BIG_FTM_REGISTER(C4SC) \
FOR_BIG_FTM_REGISTER(C4V) \
FOR_BIG_FTM_REGISTER(C5SC) \
FOR_BIG_FTM_REGISTER(C5V) \
FOR_BIG_FTM_REGISTER(C6SC) \
FOR_BIG_FTM_REGISTER(C6V) \
FOR_BIG_FTM_REGISTER(C7SC) \
FOR_BIG_FTM_REGISTER(C7V) \
FOR_BOTH_FTM_REGISTER(CNTIN) \
FOR_BOTH_FTM_REGISTER(STATUS) \
FOR_BOTH_FTM_REGISTER(MODE) \
FOR_BOTH_FTM_REGISTER(SYNC) \
FOR_BOTH_FTM_REGISTER(OUTINIT) \
FOR_BOTH_FTM_REGISTER(OUTMASK) \
FOR_BOTH_FTM_REGISTER(COMBINE) \
FOR_BOTH_FTM_REGISTER(DEADTIME) \
FOR_BOTH_FTM_REGISTER(EXTTRIG) \
FOR_BOTH_FTM_REGISTER(POL) \
FOR_BOTH_FTM_REGISTER(FMS) \
FOR_BOTH_FTM_REGISTER(FILTER) \
FOR_BOTH_FTM_REGISTER(FLTCTRL) \
FOR_LITTLE_FTM_REGISTER(QDCTRL) \
FOR_BOTH_FTM_REGISTER(CONF) \
FOR_BOTH_FTM_REGISTER(FLTPOL) \
FOR_BOTH_FTM_REGISTER(SYNCONF) \
FOR_BOTH_FTM_REGISTER(INVCTRL) \
FOR_BOTH_FTM_REGISTER(SWOCTRL) \
FOR_BOTH_FTM_REGISTER(PWMLOAD)
typedef struct {
#define FOR_BIG_FTM_REGISTER(name) volatile uint32_t name;
#define FOR_BOTH_FTM_REGISTER(name) volatile uint32_t name;
#define FOR_LITTLE_FTM_REGISTER(name) const uint32_t _reserved_##name;
ALL_FTM_REGISTERS
#undef FOR_BIG_FTM_REGISTER
#undef FOR_LITTLE_FTM_REGISTER
} BigFTM;
typedef struct {
#define FOR_BIG_FTM_REGISTER(name) const uint32_t _reserved_##name;
#define FOR_LITTLE_FTM_REGISTER(name) volatile uint32_t name;
ALL_FTM_REGISTERS
#undef FOR_BIG_FTM_REGISTER
#undef FOR_LITTLE_FTM_REGISTER
#undef FOR_BOTH_FTM_REGISTER
} LittleFTM;
#define FTM0 ((BigFTM *)0x40038000)
#define FTM1 ((LittleFTM *)0x40039000)
#define FTM2 ((LittleFTM *)0x400B8000)
#define FTM3 ((BigFTM *)0x400B9000)
#undef ALL_FTM_REGISTERS
#ifdef __cplusplus
}
#endif
#ifdef __cplusplus
// RAII class to disable interrupts temporarily.
class DisableInterrupts {
public:
DisableInterrupts() { __disable_irq(); }
~DisableInterrupts() { __enable_irq(); }
DisableInterrupts(const DisableInterrupts &) = delete;
DisableInterrupts &operator=(const DisableInterrupts &) = delete;
};
class ReenableInterrupts {
public:
ReenableInterrupts(DisableInterrupts *) {
__enable_irq();
// Because we're on a Cortex-M4, we don't need an ISB here to ensure
// interrupts are processed.
}
~ReenableInterrupts() { __disable_irq(); }
ReenableInterrupts(const ReenableInterrupts &) = delete;
ReenableInterrupts &operator=(const ReenableInterrupts &) = delete;
};
// constexpr log base 2, which fails to compile for non-power-of-2 inputs.
// This is a silly implementation to use at runtime.
template<typename T>
constexpr T ConstexprLog2(T i) {
if (i == 0) {
__builtin_abort();
}
if (i == 1) {
return 0;
}
if (i / 2 * 2 == i) {
return 1 + ConstexprLog2(i / 2);
}
__builtin_abort();
}
#endif // __cplusplus
#endif // MOTORS_UTIL_H_