| #ifndef FRC971_ZEROING_ZEROING_H_ |
| #define FRC971_ZEROING_ZEROING_H_ |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <cstdint> |
| #include <vector> |
| |
| #include "flatbuffers/flatbuffers.h" |
| #include "frc971/constants.h" |
| #include "frc971/control_loops/control_loops_generated.h" |
| |
| // TODO(pschrader): Flag an error if encoder index pulse is not n revolutions |
| // away from the last one (i.e. got extra counts from noise, etc..) |
| // |
| // TODO(pschrader): Flag error if the pot disagrees too much with the encoder |
| // after being zeroed. |
| // |
| // TODO(pschrader): Watch the offset over long periods of time and flag if it |
| // gets too far away from the initial value. |
| |
| namespace frc971 { |
| namespace zeroing { |
| |
| template <typename TPosition, typename TZeroingConstants, typename TState> |
| class ZeroingEstimator { |
| public: |
| using Position = TPosition; |
| using ZeroingConstants = TZeroingConstants; |
| using State = TState; |
| virtual ~ZeroingEstimator() {} |
| |
| // Returns true if the logic considers the corresponding mechanism to be |
| // zeroed. |
| virtual bool zeroed() const = 0; |
| |
| // Returns the estimated position of the corresponding mechanism. |
| virtual double offset() const = 0; |
| |
| // Returns true if there has been an error. |
| virtual bool error() const = 0; |
| |
| // Returns true if an offset is ready. |
| virtual bool offset_ready() const = 0; |
| |
| // Triggers an internal error. This is used for testing the error |
| // logic. |
| virtual void TriggerError() = 0; |
| |
| // Resets the estimator, clearing error and zeroing states. |
| virtual void Reset() = 0; |
| |
| // Updates the internal logic with new sensor values |
| virtual void UpdateEstimate(const Position &) = 0; |
| |
| // Returns the state of the estimator |
| virtual flatbuffers::Offset<State> GetEstimatorState( |
| flatbuffers::FlatBufferBuilder *fbb) const = 0; |
| }; |
| |
| // Estimates the position with an incremental encoder with an index pulse and a |
| // potentiometer. |
| class PotAndIndexPulseZeroingEstimator |
| : public ZeroingEstimator<PotAndIndexPosition, |
| constants::PotAndIndexPulseZeroingConstants, |
| EstimatorState> { |
| public: |
| explicit PotAndIndexPulseZeroingEstimator( |
| const constants::PotAndIndexPulseZeroingConstants &constants); |
| |
| // Update the internal logic with the next sensor values. |
| void UpdateEstimate(const PotAndIndexPosition &info) override; |
| |
| // Reset the internal logic so it needs to be re-zeroed. |
| void Reset() override; |
| |
| // Manually trigger an internal error. This is used for testing the error |
| // logic. |
| void TriggerError() override; |
| |
| bool error() const override { return error_; } |
| |
| bool zeroed() const override { return zeroed_; } |
| |
| double offset() const override { return offset_; } |
| |
| // Returns a number between 0 and 1 that represents the percentage of the |
| // samples being used in the moving average filter. A value of 0.0 means that |
| // no samples are being used. A value of 1.0 means that the filter is using |
| // as many samples as it has room for. For example, after a Reset() this |
| // value returns 0.0. As more samples get added with UpdateEstimate(...) the |
| // return value starts increasing to 1.0. |
| double offset_ratio_ready() const { |
| return start_pos_samples_.size() / |
| static_cast<double>(constants_.average_filter_size); |
| } |
| |
| // Returns true if the sample buffer is full. |
| bool offset_ready() const override { |
| return start_pos_samples_.size() == constants_.average_filter_size; |
| } |
| |
| // Returns information about our current state. |
| virtual flatbuffers::Offset<State> GetEstimatorState( |
| flatbuffers::FlatBufferBuilder *fbb) const override; |
| |
| private: |
| // This function calculates the start position given the internal state and |
| // the provided `latched_encoder' value. |
| double CalculateStartPosition(double start_average, |
| double latched_encoder) const; |
| |
| // The zeroing constants used to describe the configuration of the system. |
| const constants::PotAndIndexPulseZeroingConstants constants_; |
| |
| // The estimated position. |
| double position_; |
| // The unzeroed filtered position. |
| double filtered_position_ = 0.0; |
| // The next position in 'start_pos_samples_' to be used to store the next |
| // sample. |
| int samples_idx_; |
| // Last 'max_sample_count_' samples for start positions. |
| std::vector<double> start_pos_samples_; |
| // The estimated starting position of the mechanism. We also call this the |
| // 'offset' in some contexts. |
| double offset_; |
| // Flag for triggering logic that takes note of the current index pulse count |
| // after a reset. See `last_used_index_pulse_count_'. |
| bool wait_for_index_pulse_; |
| // After a reset we keep track of the index pulse count with this. Only after |
| // the index pulse count changes (i.e. increments at least once or wraps |
| // around) will we consider the mechanism zeroed. We also use this to store |
| // the most recent `PotAndIndexPosition::index_pulses' value when the start |
| // position was calculated. It helps us calculate the start position only on |
| // index pulses to reject corrupted intermediate data. |
| uint32_t last_used_index_pulse_count_; |
| // Marker to track whether we're fully zeroed yet or not. |
| bool zeroed_; |
| // Marker to track whether an error has occurred. This gets reset to false |
| // whenever Reset() is called. |
| bool error_; |
| // Stores the position "start_pos" variable the first time the program |
| // is zeroed. |
| double first_start_pos_; |
| }; |
| |
| // Estimates the position with an incremental encoder and a hall effect sensor. |
| class HallEffectAndPositionZeroingEstimator |
| : public ZeroingEstimator<HallEffectAndPosition, |
| constants::HallEffectZeroingConstants, |
| HallEffectAndPositionEstimatorState> { |
| public: |
| explicit HallEffectAndPositionZeroingEstimator( |
| const ZeroingConstants &constants); |
| |
| // Update the internal logic with the next sensor values. |
| void UpdateEstimate(const Position &info) override; |
| |
| // Reset the internal logic so it needs to be re-zeroed. |
| void Reset() override; |
| |
| // Manually trigger an internal error. This is used for testing the error |
| // logic. |
| void TriggerError() override; |
| |
| bool error() const override { return error_; } |
| |
| bool zeroed() const override { return zeroed_; } |
| |
| double offset() const override { return offset_; } |
| |
| bool offset_ready() const override { return zeroed_; } |
| |
| // Returns information about our current state. |
| virtual flatbuffers::Offset<State> GetEstimatorState( |
| flatbuffers::FlatBufferBuilder *fbb) const override; |
| |
| private: |
| // Sets the minimum and maximum posedge position values. |
| void StoreEncoderMaxAndMin(const HallEffectAndPosition &info); |
| |
| // The zeroing constants used to describe the configuration of the system. |
| const ZeroingConstants constants_; |
| |
| // The estimated state of the hall effect. |
| double current_ = 0.0; |
| // The estimated position. |
| double position_ = 0.0; |
| // The smallest and largest positions of the last set of encoder positions |
| // while the hall effect was low. |
| double min_low_position_; |
| double max_low_position_; |
| // If we've seen the hall effect high for enough times without going low, then |
| // we can be sure it isn't a false positive. |
| bool high_long_enough_; |
| size_t cycles_high_; |
| |
| bool last_hall_ = false; |
| |
| // The estimated starting position of the mechanism. We also call this the |
| // 'offset' in some contexts. |
| double offset_; |
| // Flag for triggering logic that takes note of the current posedge count |
| // after a reset. See `last_used_posedge_count_'. |
| bool initialized_; |
| // After a reset we keep track of the posedge count with this. Only after the |
| // posedge count changes (i.e. increments at least once or wraps around) will |
| // we consider the mechanism zeroed. We also use this to store the most recent |
| // `HallEffectAndPosition::posedge_count' value when the start position |
| // was calculated. It helps us calculate the start position only on posedges |
| // to reject corrupted intermediate data. |
| int32_t last_used_posedge_count_; |
| // Marker to track whether we're fully zeroed yet or not. |
| bool zeroed_; |
| // Marker to track whether an error has occurred. This gets reset to false |
| // whenever Reset() is called. |
| bool error_ = false; |
| // Stores the position "start_pos" variable the first time the program |
| // is zeroed. |
| double first_start_pos_; |
| }; |
| |
| // Class to encapsulate the logic to decide when we are moving and which samples |
| // are safe to use. |
| template <typename Position, typename PositionBuffer> |
| class MoveDetector { |
| public: |
| MoveDetector(size_t filter_size) { |
| buffered_samples_.reserve(filter_size); |
| Reset(); |
| } |
| |
| // Clears all the state. |
| void Reset() { |
| buffered_samples_.clear(); |
| buffered_samples_idx_ = 0; |
| } |
| |
| // Updates the detector with a new sample. Returns true if we are moving. |
| // buffer_size is the number of samples in the moving buffer, and |
| // zeroing_threshold is the max amount we can move within the period specified |
| // by buffer_size. |
| bool Update(const PositionBuffer &position_buffer, size_t buffer_size, |
| double zeroing_threshold) { |
| bool moving = true; |
| Position position(position_buffer); |
| if (buffered_samples_.size() < buffer_size) { |
| // Not enough samples to start determining if the robot is moving or not, |
| // don't use the samples yet. |
| buffered_samples_.push_back(position); |
| } else { |
| // Have enough samples to start determining if the robot is moving or not. |
| buffered_samples_[buffered_samples_idx_] = position; |
| const auto minmax_value = ::std::minmax_element( |
| buffered_samples_.begin(), buffered_samples_.end(), |
| [](const Position &left, const Position &right) { |
| return left.encoder < right.encoder; |
| }); |
| const double min_value = minmax_value.first->encoder; |
| const double max_value = minmax_value.second->encoder; |
| |
| if (::std::abs(max_value - min_value) < zeroing_threshold) { |
| // Robot isn't moving, use middle sample to determine offsets. |
| moving = false; |
| } |
| } |
| buffered_samples_idx_ = (buffered_samples_idx_ + 1) % buffer_size; |
| return moving; |
| } |
| |
| // Returns a safe sample if we aren't moving as reported by Update. |
| const Position &GetSample() const { |
| // The robot is not moving, use the middle sample to determine offsets. |
| // The middle sample makes it so that we don't use the samples from the |
| // beginning or end of periods when the robot is moving. |
| const int middle_index = |
| (buffered_samples_idx_ + (buffered_samples_.size() / 2)) % |
| buffered_samples_.size(); |
| return buffered_samples_[middle_index]; |
| } |
| |
| private: |
| // The last buffer_size samples. |
| ::std::vector<Position> buffered_samples_; |
| // The index to place the next sample in. |
| size_t buffered_samples_idx_; |
| }; |
| |
| // Estimates the position with an absolute encoder which also reports |
| // incremental counts, and a potentiometer. |
| class PotAndAbsoluteEncoderZeroingEstimator |
| : public ZeroingEstimator<PotAndAbsolutePosition, |
| constants::PotAndAbsoluteEncoderZeroingConstants, |
| PotAndAbsoluteEncoderEstimatorState> { |
| public: |
| explicit PotAndAbsoluteEncoderZeroingEstimator( |
| const constants::PotAndAbsoluteEncoderZeroingConstants &constants); |
| |
| // Resets the internal logic so it needs to be re-zeroed. |
| void Reset() override; |
| |
| // Updates the sensor values for the zeroing logic. |
| void UpdateEstimate(const PotAndAbsolutePosition &info) override; |
| |
| void TriggerError() override { error_ = true; } |
| |
| bool zeroed() const override { return zeroed_; } |
| |
| double offset() const override { return offset_; } |
| |
| bool error() const override { return error_; } |
| |
| // Returns true if the sample buffer is full. |
| bool offset_ready() const override { |
| return relative_to_absolute_offset_samples_.size() == |
| constants_.average_filter_size && |
| offset_samples_.size() == constants_.average_filter_size; |
| } |
| |
| // Returns information about our current state. |
| virtual flatbuffers::Offset<State> GetEstimatorState( |
| flatbuffers::FlatBufferBuilder *fbb) const override; |
| |
| private: |
| struct PositionStruct { |
| PositionStruct(const PotAndAbsolutePosition &position_buffer) |
| : absolute_encoder(position_buffer.absolute_encoder()), |
| encoder(position_buffer.encoder()), |
| pot(position_buffer.pot()) {} |
| double absolute_encoder; |
| double encoder; |
| double pot; |
| }; |
| |
| // The zeroing constants used to describe the configuration of the system. |
| const constants::PotAndAbsoluteEncoderZeroingConstants constants_; |
| |
| // True if the mechanism is zeroed. |
| bool zeroed_; |
| // Marker to track whether an error has occurred. |
| bool error_; |
| // The first valid offset we recorded. This is only set after zeroed_ first |
| // changes to true. |
| double first_offset_; |
| |
| // The filtered absolute encoder. This is used in the status for calibration. |
| double filtered_absolute_encoder_ = 0.0; |
| |
| // Samples of the offset needed to line the relative encoder up with the |
| // absolute encoder. |
| ::std::vector<double> relative_to_absolute_offset_samples_; |
| // Offset between the Pot and Relative encoder position. |
| ::std::vector<double> offset_samples_; |
| |
| MoveDetector<PositionStruct, PotAndAbsolutePosition> move_detector_; |
| |
| // Estimated offset between the pot and relative encoder. |
| double pot_relative_encoder_offset_ = 0; |
| // Estimated start position of the mechanism |
| double offset_ = 0; |
| // The next position in 'relative_to_absolute_offset_samples_' and |
| // 'encoder_samples_' to be used to store the next sample. |
| int samples_idx_ = 0; |
| |
| size_t nan_samples_ = 0; |
| |
| // The unzeroed filtered position. |
| double filtered_position_ = 0.0; |
| // The filtered position. |
| double position_ = 0.0; |
| }; |
| |
| // Zeros by seeing all the index pulses in the range of motion of the mechanism |
| // and using that to figure out which index pulse is which. |
| class PulseIndexZeroingEstimator |
| : public ZeroingEstimator<IndexPosition, |
| constants::EncoderPlusIndexZeroingConstants, |
| IndexEstimatorState> { |
| public: |
| explicit PulseIndexZeroingEstimator(const ZeroingConstants &constants) |
| : constants_(constants) { |
| Reset(); |
| } |
| |
| // Resets the internal logic so it needs to be re-zeroed. |
| void Reset() override; |
| |
| bool zeroed() const override { return zeroed_; } |
| |
| // It's as ready as it'll ever be... |
| bool offset_ready() const override { return true; } |
| |
| double offset() const override { return offset_; } |
| |
| bool error() const override { return error_; } |
| |
| // Updates the internal logic with the next sensor values. |
| void UpdateEstimate(const IndexPosition &info) override; |
| |
| // Returns information about our current state. |
| virtual flatbuffers::Offset<State> GetEstimatorState( |
| flatbuffers::FlatBufferBuilder *fbb) const override; |
| |
| void TriggerError() override { error_ = true; } |
| |
| private: |
| // Returns the current real position using the relative encoder offset. |
| double CalculateCurrentPosition(const IndexPosition &info); |
| |
| // Sets the minimum and maximum index pulse position values. |
| void StoreIndexPulseMaxAndMin(const IndexPosition &info); |
| |
| // Returns the number of index pulses we should have seen so far. |
| int IndexPulseCount() const; |
| |
| // Contains the physical constants describing the system. |
| const ZeroingConstants constants_; |
| |
| // The smallest position of all the index pulses. |
| double min_index_position_; |
| // The largest position of all the index pulses. |
| double max_index_position_; |
| |
| // The estimated starting position of the mechanism. |
| double offset_; |
| // After a reset we keep track of the index pulse count with this. Only after |
| // the index pulse count changes (i.e. increments at least once or wraps |
| // around) will we consider the mechanism zeroed. We also use this to store |
| // the most recent `PotAndIndexPosition::index_pulses' value when the start |
| // position was calculated. It helps us calculate the start position only on |
| // index pulses to reject corrupted intermediate data. |
| uint32_t last_used_index_pulse_count_; |
| |
| // True if we are fully zeroed. |
| bool zeroed_; |
| // Marker to track whether an error has occurred. |
| bool error_; |
| |
| // The estimated position. |
| double position_; |
| }; |
| |
| // Estimates the position with an absolute encoder which also reports |
| // incremental counts. The absolute encoder can't spin more than one |
| // revolution. |
| class AbsoluteEncoderZeroingEstimator |
| : public ZeroingEstimator<AbsolutePosition, |
| constants::AbsoluteEncoderZeroingConstants, |
| AbsoluteEncoderEstimatorState> { |
| public: |
| explicit AbsoluteEncoderZeroingEstimator( |
| const constants::AbsoluteEncoderZeroingConstants &constants); |
| |
| // Resets the internal logic so it needs to be re-zeroed. |
| void Reset() override; |
| |
| // Updates the sensor values for the zeroing logic. |
| void UpdateEstimate(const AbsolutePosition &info) override; |
| |
| void TriggerError() override { error_ = true; } |
| |
| bool zeroed() const override { return zeroed_; } |
| |
| double offset() const override { return offset_; } |
| |
| bool error() const override { return error_; } |
| |
| // Returns true if the sample buffer is full. |
| bool offset_ready() const override { |
| return relative_to_absolute_offset_samples_.size() == |
| constants_.average_filter_size; |
| } |
| |
| // Returns information about our current state. |
| virtual flatbuffers::Offset<State> GetEstimatorState( |
| flatbuffers::FlatBufferBuilder *fbb) const override; |
| |
| private: |
| struct PositionStruct { |
| PositionStruct(const AbsolutePosition &position_buffer) |
| : absolute_encoder(position_buffer.absolute_encoder()), |
| encoder(position_buffer.encoder()) {} |
| double absolute_encoder; |
| double encoder; |
| }; |
| |
| // The zeroing constants used to describe the configuration of the system. |
| const constants::AbsoluteEncoderZeroingConstants constants_; |
| |
| // True if the mechanism is zeroed. |
| bool zeroed_; |
| // Marker to track whether an error has occurred. |
| bool error_; |
| // The first valid offset we recorded. This is only set after zeroed_ first |
| // changes to true. |
| double first_offset_; |
| |
| // The filtered absolute encoder. This is used in the status for calibration. |
| double filtered_absolute_encoder_ = 0.0; |
| |
| // Samples of the offset needed to line the relative encoder up with the |
| // absolute encoder. |
| ::std::vector<double> relative_to_absolute_offset_samples_; |
| |
| MoveDetector<PositionStruct, AbsolutePosition> move_detector_; |
| |
| // Estimated start position of the mechanism |
| double offset_ = 0; |
| // The next position in 'relative_to_absolute_offset_samples_' and |
| // 'encoder_samples_' to be used to store the next sample. |
| int samples_idx_ = 0; |
| |
| // Number of NANs we've seen in a row. |
| size_t nan_samples_ = 0; |
| |
| // The filtered position. |
| double position_ = 0.0; |
| }; |
| |
| class RelativeEncoderZeroingEstimator |
| : public ZeroingEstimator<RelativePosition, void, |
| RelativeEncoderEstimatorState> { |
| public: |
| explicit RelativeEncoderZeroingEstimator() {} |
| |
| // Update position with new position from encoder |
| void UpdateEstimate(const RelativePosition &position) override { |
| position_ = position.encoder(); |
| } |
| |
| // We alre always zeroed |
| bool zeroed() const override { return true; } |
| |
| // Starting position of the joint |
| double offset() const override { return 0; } |
| |
| // Has an error occured? Note: Only triggered by TriggerError() |
| bool error() const override { return error_; } |
| |
| // Offset is always ready, since we are always zeroed. |
| bool offset_ready() const override { return true; } |
| |
| void TriggerError() override { error_ = true; } |
| |
| void Reset() override { error_ = false; } |
| |
| flatbuffers::Offset<State> GetEstimatorState( |
| flatbuffers::FlatBufferBuilder *fbb) const override { |
| State::Builder builder(*fbb); |
| builder.add_error(error_); |
| builder.add_position(position_); |
| return builder.Finish(); |
| } |
| |
| private: |
| // Position from encoder relative to start |
| double position_ = 0; |
| bool error_ = false; |
| }; |
| |
| } // namespace zeroing |
| } // namespace frc971 |
| |
| #endif // FRC971_ZEROING_ZEROING_H_ |