blob: a5b980765a8cc9d5db4564c3bc2ae1fb7460a68e [file] [log] [blame]
#ifndef FRC971_CONTROL_LOOPS_DRIVETRAIN_TRAJECTORY_H_
#define FRC971_CONTROL_LOOPS_DRIVETRAIN_TRAJECTORY_H_
#include <chrono>
#include "Eigen/Dense"
#include "frc971/control_loops/drivetrain/distance_spline.h"
#include "frc971/control_loops/drivetrain/drivetrain_config.h"
#include "frc971/control_loops/hybrid_state_feedback_loop.h"
#include "frc971/control_loops/runge_kutta.h"
#include "frc971/control_loops/state_feedback_loop.h"
namespace frc971 {
namespace control_loops {
namespace drivetrain {
template <typename F>
double IntegrateAccelForDistance(const F &fn, double v, double x, double dx) {
// Use a trick from
// https://www.johndcook.com/blog/2012/02/21/care-and-treatment-of-singularities/
const double a0 = fn(x, v);
return (RungeKutta(
[&fn, &a0](double t, double y) {
// Since we know that a0 == a(0) and that they are asymtotically
// the same at 0, we know that the limit is 0 at 0. This is
// true because when starting from a stop, under sane
// accelerations, we can assume that we will start with a
// constant acceleration. So, hard-code it.
if (::std::abs(y) < 1e-6) {
return 0.0;
}
return (fn(t, y) - a0) / y;
},
v, x, dx) -
v) +
::std::sqrt(2.0 * a0 * dx + v * v);
}
// Class to plan and hold the velocity plan for a spline.
class Trajectory {
public:
Trajectory(const DistanceSpline *spline,
const DrivetrainConfig<double> &config, double vmax = 10.0,
int num_distance = 0);
// Sets the plan longitudinal acceleration limit
void set_longitudinal_acceleration(double longitudinal_acceleration) {
longitudinal_acceleration_ = longitudinal_acceleration;
}
// Sets the plan lateral acceleration limit
void set_lateral_acceleration(double lateral_acceleration) {
lateral_acceleration_ = lateral_acceleration;
}
// Sets the voltage limit
void set_voltage_limit(double voltage_limit) {
voltage_limit_ = voltage_limit;
}
// Returns the friction-constrained velocity limit at a given distance along
// the path. At the returned velocity, one or both wheels will be on the edge
// of slipping.
// There are some very disorganized thoughts on the math here and in some of
// the other functions in spline_math.tex.
double LateralVelocityCurvature(double distance) const;
// Returns the range of allowable longitudinal accelerations for the center of
// the robot at a particular distance (x) along the path and velocity (v).
// min_accel and max_accel correspodn to the min/max accelerations that can be
// achieved without breaking friction limits on one or both wheels.
// If max_accel < min_accel, that implies that v is too high for there to be
// any valid acceleration. FrictionLngAccelLimits(x,
// LateralVelocityCurvature(x), &min_accel, &max_accel) should result in
// min_accel == max_accel.
void FrictionLngAccelLimits(double x, double v, double *min_accel,
double *max_accel) const;
enum class VoltageLimit {
kConservative,
kAggressive,
};
// Calculates the maximum voltage at which we *can* track the path. In some
// cases there will be two ranges of feasible velocities for traversing the
// path--in such a situation, from zero to velocity A we will be able to track
// the path, from velocity A to B we can't, from B to C we can and above C we
// can't. If limit_type = kConservative, we return A; if limit_type =
// kAggressive, we return C. We currently just use the kConservative limit
// because that way we can guarantee that all velocities between zero and A
// are allowable and don't have to handle a more complicated planning problem.
// constraint_voltages will be populated by the only wheel voltages that are
// valid at the returned limit.
double VoltageVelocityLimit(
double distance, VoltageLimit limit_type,
Eigen::Matrix<double, 2, 1> *constraint_voltages = nullptr) const;
// Limits the velocity in the specified segment to the max velocity.
void LimitVelocity(double starting_distance, double ending_distance,
double max_velocity);
// Runs the lateral acceleration (curvature) pass on the plan.
void LateralAccelPass();
void VoltageFeasibilityPass(VoltageLimit limit_type);
// Runs the forwards pass, setting the starting velocity to 0 m/s
void ForwardPass();
// Returns the forwards/backwards acceleration for a distance along the spline
// taking into account the lateral acceleration, longitudinal acceleration,
// and voltage limits.
double BestAcceleration(double x, double v, bool backwards);
double BackwardAcceleration(double x, double v) {
return BestAcceleration(x, v, true);
}
double ForwardAcceleration(double x, double v) {
return BestAcceleration(x, v, false);
}
// Runs the forwards pass, setting the ending velocity to 0 m/s
void BackwardPass();
// Runs all the planning passes.
void Plan() {
VoltageFeasibilityPass(VoltageLimit::kConservative);
LateralAccelPass();
ForwardPass();
BackwardPass();
}
// Returns the feed forwards position, velocity, acceleration for an explicit
// distance.
::Eigen::Matrix<double, 3, 1> FFAcceleration(double distance);
// Returns the feed forwards voltage for an explicit distance.
::Eigen::Matrix<double, 2, 1> FFVoltage(double distance);
// Returns whether a state represents a state at the end of the spline.
bool is_at_end(::Eigen::Matrix<double, 2, 1> state) const {
return state(0) > length() - 1e-4;
}
// Returns the length of the path in meters.
double length() const { return spline_->length(); }
// Returns a list of the distances. Mostly useful for plotting.
const ::std::vector<double> Distances() const;
// Returns the distance for an index in the plan.
double Distance(int index) const {
return static_cast<double>(index) * length() /
static_cast<double>(plan_.size() - 1);
}
// Returns the plan. This is the pathwise velocity as a function of distance.
// To get the distance for an index, use the Distance(index) function provided
// with the index.
const ::std::vector<double> plan() const { return plan_; }
// Returns the left, right to linear, angular transformation matrix.
const ::Eigen::Matrix<double, 2, 2> &Tlr_to_la() const { return Tlr_to_la_; }
// Returns the linear, angular to left, right transformation matrix.
const ::Eigen::Matrix<double, 2, 2> &Tla_to_lr() const { return Tla_to_lr_; }
// Returns the goal state as a function of path distance, velocity.
const ::Eigen::Matrix<double, 5, 1> GoalState(double distance,
double velocity);
// Returns the velocity drivetrain in use.
const StateFeedbackLoop<2, 2, 2, double, StateFeedbackHybridPlant<2, 2, 2>,
HybridKalman<2, 2, 2>>
&velocity_drivetrain() const {
return *velocity_drivetrain_;
}
// Returns the continuous statespace A and B matricies for [x, y, theta, vl,
// vr] for the linearized system (around the provided state).
::Eigen::Matrix<double, 5, 5> ALinearizedContinuous(
const ::Eigen::Matrix<double, 5, 1> &state) const;
::Eigen::Matrix<double, 5, 2> BLinearizedContinuous() const;
// Returns the discrete time A and B matricies for the provided state,
// assuming the provided timestep.
void AB(const ::Eigen::Matrix<double, 5, 1> &state,
::std::chrono::nanoseconds dt, ::Eigen::Matrix<double, 5, 5> *A,
::Eigen::Matrix<double, 5, 2> *B) const;
// Returns the lqr controller for the current state, timestep, and Q and R
// gains.
// TODO(austin): This feels like it should live somewhere else, but I'm not
// sure where. So, throw it here...
::Eigen::Matrix<double, 2, 5> KForState(
const ::Eigen::Matrix<double, 5, 1> &state, ::std::chrono::nanoseconds dt,
const ::Eigen::DiagonalMatrix<double, 5> &Q,
const ::Eigen::DiagonalMatrix<double, 2> &R) const;
// Return the next position, velocity, acceleration based on the current
// state. Updates the passed in state for the next iteration.
::Eigen::Matrix<double, 3, 1> GetNextXVA(
::std::chrono::nanoseconds dt, ::Eigen::Matrix<double, 2, 1> *state);
::std::vector<::Eigen::Matrix<double, 3, 1>> PlanXVA(
::std::chrono::nanoseconds dt);
enum SegmentType : uint8_t {
VELOCITY_LIMITED,
CURVATURE_LIMITED,
ACCELERATION_LIMITED,
DECELERATION_LIMITED,
VOLTAGE_LIMITED,
};
const ::std::vector<SegmentType> &plan_segment_type() const {
return plan_segment_type_;
}
// Returns K1 and K2.
// K2 * d^x/dt^2 + K1 (dx/dt)^2 = A * K2 * dx/dt + B * U
const ::Eigen::Matrix<double, 2, 1> K1(double current_ddtheta) const {
return (::Eigen::Matrix<double, 2, 1>()
<< -robot_radius_l_ * current_ddtheta,
robot_radius_r_ * current_ddtheta).finished();
}
const ::Eigen::Matrix<double, 2, 1> K2(double current_dtheta) const {
return (::Eigen::Matrix<double, 2, 1>()
<< 1.0 - robot_radius_l_ * current_dtheta,
1.0 + robot_radius_r_ * current_dtheta)
.finished();
}
private:
// Computes alpha for a distance.
size_t DistanceToSegment(double distance) const {
return ::std::max(
static_cast<size_t>(0),
::std::min(plan_segment_type_.size() - 1,
static_cast<size_t>(::std::floor(distance / length() *
(plan_.size() - 1)))));
}
// Computes K3, K4, and K5 for the provided distance.
// K5 a + K3 v^2 + K4 v = U
void K345(const double x, ::Eigen::Matrix<double, 2, 1> *K3,
::Eigen::Matrix<double, 2, 1> *K4,
::Eigen::Matrix<double, 2, 1> *K5) {
const double current_ddtheta = spline_->DDTheta(x);
const double current_dtheta = spline_->DTheta(x);
// We've now got the equation:
// K2 * d^x/dt^2 + K1 (dx/dt)^2 = A * K2 * dx/dt + B * U
const ::Eigen::Matrix<double, 2, 1> my_K2 = K2(current_dtheta);
const ::Eigen::Matrix<double, 2, 2> B_inverse =
velocity_drivetrain_->plant().coefficients().B_continuous.inverse();
// Now, rephrase it as K5 a + K3 v^2 + K4 v = U
*K3 = B_inverse * K1(current_ddtheta);
*K4 = -B_inverse *
velocity_drivetrain_->plant().coefficients().A_continuous * my_K2;
*K5 = B_inverse * my_K2;
}
// The spline we are planning for.
const DistanceSpline *spline_;
// The drivetrain we are controlling.
::std::unique_ptr<
StateFeedbackLoop<2, 2, 2, double, StateFeedbackHybridPlant<2, 2, 2>,
HybridKalman<2, 2, 2>>>
velocity_drivetrain_;
// Robot radiuses.
const double robot_radius_l_;
const double robot_radius_r_;
// Acceleration limits.
double longitudinal_acceleration_;
double lateral_acceleration_;
// Transformation matrix from left, right to linear, angular
const ::Eigen::Matrix<double, 2, 2> Tlr_to_la_;
// Transformation matrix from linear, angular to left, right
const ::Eigen::Matrix<double, 2, 2> Tla_to_lr_;
// Velocities in the plan (distance for each index is defined by distance())
::std::vector<double> plan_;
::std::vector<SegmentType> plan_segment_type_;
// Plan voltage limit.
double voltage_limit_ = 12.0;
};
// Returns the continuous time dynamics given the [x, y, theta, vl, vr] state
// and the [vl, vr] input voltage.
inline ::Eigen::Matrix<double, 5, 1> ContinuousDynamics(
const StateFeedbackHybridPlant<2, 2, 2> &velocity_drivetrain,
const ::Eigen::Matrix<double, 2, 2> &Tlr_to_la,
const ::Eigen::Matrix<double, 5, 1> X,
const ::Eigen::Matrix<double, 2, 1> U) {
const auto &velocity = X.block<2, 1>(3, 0);
const double theta = X(2);
::Eigen::Matrix<double, 2, 1> la = Tlr_to_la * velocity;
return (::Eigen::Matrix<double, 5, 1>() << ::std::cos(theta) * la(0),
::std::sin(theta) * la(0), la(1),
(velocity_drivetrain.coefficients().A_continuous * velocity +
velocity_drivetrain.coefficients().B_continuous * U))
.finished();
}
} // namespace drivetrain
} // namespace control_loops
} // namespace frc971
#endif // FRC971_CONTROL_LOOPS_DRIVETRAIN_TRAJECTORY_H_