blob: 4da3deeedc9d31906b7b8772ad4cacae22f89107 [file] [log] [blame]
#include "frc971/control_loops/drivetrain/trajectory.h"
#include <chrono>
#include "Eigen/Dense"
#include "frc971/control_loops/c2d.h"
#include "frc971/control_loops/dlqr.h"
#include "frc971/control_loops/drivetrain/distance_spline.h"
#include "frc971/control_loops/drivetrain/drivetrain_config.h"
#include "frc971/control_loops/hybrid_state_feedback_loop.h"
#include "frc971/control_loops/state_feedback_loop.h"
namespace frc971 {
namespace control_loops {
namespace drivetrain {
Trajectory::Trajectory(const DistanceSpline *spline,
const DrivetrainConfig<double> &config, double vmax,
int num_distance)
: spline_(spline),
velocity_drivetrain_(::std::unique_ptr<
StateFeedbackLoop<2, 2, 2, double, StateFeedbackHybridPlant<2, 2, 2>,
HybridKalman<2, 2, 2>>>(
new StateFeedbackLoop<2, 2, 2, double,
StateFeedbackHybridPlant<2, 2, 2>,
HybridKalman<2, 2, 2>>(
config.make_hybrid_drivetrain_velocity_loop()))),
robot_radius_l_(config.robot_radius),
robot_radius_r_(config.robot_radius),
longitudinal_acceleration_(3.0),
lateral_acceleration_(2.0),
Tlr_to_la_((::Eigen::Matrix<double, 2, 2>() << 0.5, 0.5,
-1.0 / (robot_radius_l_ + robot_radius_r_),
1.0 / (robot_radius_l_ + robot_radius_r_)).finished()),
Tla_to_lr_(Tlr_to_la_.inverse()),
plan_(num_distance == 0
? ::std::max(100, static_cast<int>(spline_->length() / 0.0025))
: num_distance,
vmax),
plan_segment_type_(plan_.size(), SegmentType::VELOCITY_LIMITED) {}
void Trajectory::LateralAccelPass() {
for (size_t i = 0; i < plan_.size(); ++i) {
const double distance = Distance(i);
const double velocity_limit = LateralVelocityCurvature(distance);
if (velocity_limit < plan_[i]) {
plan_[i] = velocity_limit;
plan_segment_type_[i] = CURVATURE_LIMITED;
}
}
}
void Trajectory::VoltageFeasibilityPass(VoltageLimit limit_type) {
for (size_t i = 0; i < plan_.size(); ++i) {
const double distance = Distance(i);
const double velocity_limit = VoltageVelocityLimit(distance, limit_type);
if (velocity_limit < plan_[i]) {
plan_[i] = velocity_limit;
plan_segment_type_[i] = VOLTAGE_LIMITED;
}
}
}
double Trajectory::BestAcceleration(double x, double v, bool backwards) {
::Eigen::Matrix<double, 2, 1> K3;
::Eigen::Matrix<double, 2, 1> K4;
::Eigen::Matrix<double, 2, 1> K5;
K345(x, &K3, &K4, &K5);
// Now, solve for all a's and find the best one which meets our criteria.
const ::Eigen::Matrix<double, 2, 1> C = K3 * v * v + K4 * v;
double min_voltage_accel = ::std::numeric_limits<double>::infinity();
double max_voltage_accel = -min_voltage_accel;
for (const double a : {(voltage_limit_ - C(0, 0)) / K5(0, 0),
(voltage_limit_ - C(1, 0)) / K5(1, 0),
(-voltage_limit_ - C(0, 0)) / K5(0, 0),
(-voltage_limit_ - C(1, 0)) / K5(1, 0)}) {
const ::Eigen::Matrix<double, 2, 1> U = K5 * a + K3 * v * v + K4 * v;
if ((U.array().abs() < voltage_limit_ + 1e-6).all()) {
min_voltage_accel = ::std::min(a, min_voltage_accel);
max_voltage_accel = ::std::max(a, max_voltage_accel);
}
}
double best_accel = backwards ? min_voltage_accel : max_voltage_accel;
double min_friction_accel, max_friction_accel;
FrictionLngAccelLimits(x, v, &min_friction_accel, &max_friction_accel);
if (backwards) {
best_accel = ::std::max(best_accel, min_friction_accel);
} else {
best_accel = ::std::min(best_accel, max_friction_accel);
}
// Ideally, the max would never be less than the min, but due to the way that
// the runge kutta solver works, it sometimes ticks over the edge.
if (max_friction_accel < min_friction_accel) {
VLOG(1) << "At x " << x << " v " << v << " min fric acc "
<< min_friction_accel << " max fric accel " << max_friction_accel;
}
if (best_accel < min_voltage_accel || best_accel > max_voltage_accel) {
LOG(WARNING) << "Viable friction limits and viable voltage limits do not "
"overlap (x: " << x << ", v: " << v
<< ", backwards: " << backwards
<< ") best_accel = " << best_accel << ", min voltage "
<< min_voltage_accel << ", max voltage " << max_voltage_accel
<< " min friction " << min_friction_accel << " max friction "
<< max_friction_accel << ".";
// Don't actually do anything--this will just result in attempting to drive
// higher voltages thatn we have available. In practice, that'll probably
// work out fine.
}
return best_accel;
}
double Trajectory::LateralVelocityCurvature(double distance) const {
// To calculate these constraints, we first note that:
// wheel accels = K2 * v_robot' + K1 * v_robot^2
// All that this logic does is solve for v_robot, leaving v_robot' free,
// assuming that the wheels are at their limits.
// To do this, we:
//
// 1) Determine what the wheel accels will be at the limit--since we have
// two free variables (v_robot, v_robot'), both wheels will be at their
// limits--if in a sufficiently tight turn (such that the signs of the
// coefficients of K2 are different), then the wheels will be accelerating
// in opposite directions; otherwise, they accelerate in the same direction.
// The magnitude of these per-wheel accelerations is a function of velocity,
// so it must also be solved for.
//
// 2) Eliminate that v_robot' term (since we don't care
// about it) by multiplying be a "K2prime" term (where K2prime * K2 = 0) on
// both sides of the equation.
//
// 3) Solving the relatively tractable remaining equation, which is
// basically just grouping all the terms together in one spot and taking the
// 4th root of everything.
const double dtheta = spline_->DTheta(distance);
const ::Eigen::Matrix<double, 1, 2> K2prime =
K2(dtheta).transpose() *
(::Eigen::Matrix<double, 2, 2>() << 0, 1, -1, 0).finished();
// Calculate whether the wheels are spinning in opposite directions.
const bool opposites = K2prime(0) * K2prime(1) < 0;
const ::Eigen::Matrix<double, 2, 1> K1calc = K1(spline_->DDTheta(distance));
const double lat_accel_squared =
::std::pow(dtheta / lateral_acceleration_, 2);
const double curvature_change_term =
(K2prime * K1calc).value() /
(K2prime *
(::Eigen::Matrix<double, 2, 1>() << 1.0, (opposites ? -1.0 : 1.0))
.finished() *
longitudinal_acceleration_)
.value();
const double vel_inv = ::std::sqrt(
::std::sqrt(::std::pow(curvature_change_term, 2) + lat_accel_squared));
if (vel_inv == 0.0) {
return ::std::numeric_limits<double>::infinity();
}
return 1.0 / vel_inv;
}
void Trajectory::FrictionLngAccelLimits(double x, double v, double *min_accel,
double *max_accel) const {
// First, calculate the max longitudinal acceleration that can be achieved
// by either wheel given the friction elliipse that we have.
const double lateral_acceleration = v * v * spline_->DDXY(x).norm();
const double max_wheel_lng_accel_squared =
1.0 - ::std::pow(lateral_acceleration / lateral_acceleration_, 2.0);
if (max_wheel_lng_accel_squared < 0.0) {
VLOG(1) << "Something (probably Runge-Kutta) queried invalid velocity " << v
<< " at distance " << x;
// If we encounter this, it means that the Runge-Kutta has attempted to
// sample points a bit past the edge of the friction boundary. If so, we
// gradually ramp the min/max accels to be more and more incorrect (note
// how min_accel > max_accel if we reach this case) to avoid causing any
// numerical issues.
*min_accel =
::std::sqrt(-max_wheel_lng_accel_squared) * longitudinal_acceleration_;
*max_accel = -*min_accel;
return;
}
*min_accel = -::std::numeric_limits<double>::infinity();
*max_accel = ::std::numeric_limits<double>::infinity();
// Calculate max/min accelerations by calculating what the robots overall
// longitudinal acceleration would be if each wheel were running at the max
// forwards/backwards longitudinal acceleration.
const double max_wheel_lng_accel =
longitudinal_acceleration_ * ::std::sqrt(max_wheel_lng_accel_squared);
const ::Eigen::Matrix<double, 2, 1> K1v2 = K1(spline_->DDTheta(x)) * v * v;
const ::Eigen::Matrix<double, 2, 1> K2inv =
K2(spline_->DTheta(x)).cwiseInverse();
// Store the accelerations of the robot corresponding to each wheel being at
// the max/min acceleration. The first coefficient in each vector
// corresponds to the left wheel, the second to the right wheel.
const ::Eigen::Matrix<double, 2, 1> accels1 =
K2inv.array() * (-K1v2.array() + max_wheel_lng_accel);
const ::Eigen::Matrix<double, 2, 1> accels2 =
K2inv.array() * (-K1v2.array() - max_wheel_lng_accel);
// If either term is non-finite, that suggests that a term of K2 is zero
// (which is physically possible when turning such that one wheel is
// stationary), so just ignore that side of the drivetrain.
if (::std::isfinite(accels1(0))) {
// The inner max/min in this case determines which of the two cases (+ or
// - acceleration on the left wheel) we care about--in a sufficiently
// tight turning radius, the left hweel may be accelerating backwards when
// the robot as a whole accelerates forwards. We then use that
// acceleration to bound the min/max accel.
*min_accel = ::std::max(*min_accel, ::std::min(accels1(0), accels2(0)));
*max_accel = ::std::min(*max_accel, ::std::max(accels1(0), accels2(0)));
}
// Same logic as previous if-statement, but for the right wheel.
if (::std::isfinite(accels1(1))) {
*min_accel = ::std::max(*min_accel, ::std::min(accels1(1), accels2(1)));
*max_accel = ::std::min(*max_accel, ::std::max(accels1(1), accels2(1)));
}
}
double Trajectory::VoltageVelocityLimit(
double distance, VoltageLimit limit_type,
Eigen::Matrix<double, 2, 1> *constraint_voltages) const {
// To sketch an outline of the math going on here, we start with the basic
// dynamics of the robot along the spline:
// K2 * v_robot' + K1 * v_robot^2 = A * K2 * v_robot + B * U
// We need to determine the maximum v_robot given constrained U and free
// v_robot'.
// Similarly to the friction constraints, we accomplish this by first
// multiplying by a K2prime term to eliminate the v_robot' term.
// As with the friction constraints, we also know that the limits will occur
// when both sides of the drivetrain are driven at their max magnitude
// voltages, although they may be driven at different signs.
// Once we determine whether the voltages match signs, we still have to
// consider both possible pairings (technically we could probably
// predetermine which pairing, e.g. +/- or -/+, we acre about, but we don't
// need to).
//
// For each pairing, we then get to solve a quadratic formula for the robot
// velocity at those voltages. This gives us up to 4 solutions, of which
// up to 3 will give us positive velocities; each solution velocity
// corresponds to a transition from feasibility to infeasibility, where a
// velocity of zero is always feasible, and there will always be 0, 1, or 3
// positive solutions. Among the positive solutions, we take both the min
// and the max--the min will be the highest velocity such that all
// velocities between zero and that velocity are valid; the max will be
// the highest feasible velocity. Which we return depends on what the
// limit_type is.
//
// Sketching the actual math:
// K2 * v_robot' + K1 * v_robot^2 = A * K2 * v_robot +/- B * U_max
// K2prime * K1 * v_robot^2 = K2prime * (A * K2 * v_robot +/- B * U_max)
// a v_robot^2 + b v_robot +/- c = 0
const ::Eigen::Matrix<double, 2, 2> B =
velocity_drivetrain_->plant().coefficients().B_continuous;
const double dtheta = spline_->DTheta(distance);
const ::Eigen::Matrix<double, 2, 1> BinvK2 = B.inverse() * K2(dtheta);
// Because voltages can actually impact *both* wheels, in order to determine
// whether the voltages will have opposite signs, we need to use B^-1 * K2.
const bool opposite_voltages = BinvK2(0) * BinvK2(1) > 0.0;
const ::Eigen::Matrix<double, 1, 2> K2prime =
K2(dtheta).transpose() *
(::Eigen::Matrix<double, 2, 2>() << 0, 1, -1, 0).finished();
const double a = K2prime * K1(spline_->DDTheta(distance));
const double b = -K2prime *
velocity_drivetrain_->plant().coefficients().A_continuous *
K2(dtheta);
const ::Eigen::Matrix<double, 1, 2> c_coeff = -K2prime * B;
// Calculate the "positive" version of the voltage limits we will use.
const ::Eigen::Matrix<double, 2, 1> abs_volts =
voltage_limit_ *
(::Eigen::Matrix<double, 2, 1>() << 1.0, (opposite_voltages ? -1.0 : 1.0))
.finished();
double min_valid_vel = ::std::numeric_limits<double>::infinity();
if (limit_type == VoltageLimit::kAggressive) {
min_valid_vel = 0.0;
}
// Iterate over both possibilites for +/- voltage, and solve the quadratic
// formula. For every positive solution, adjust the velocity limit
// appropriately.
for (const double sign : {1.0, -1.0}) {
const ::Eigen::Matrix<double, 2, 1> U = sign * abs_volts;
const double prev_vel = min_valid_vel;
const double c = c_coeff * U;
const double determinant = b * b - 4 * a * c;
if (a == 0) {
// If a == 0, that implies we are on a constant curvature path, in which
// case we just have b * v + c = 0.
// Note that if -b * c > 0.0, then vel will be greater than zero and b
// will be non-zero.
if (-b * c > 0.0) {
const double vel = -c / b;
if (limit_type == VoltageLimit::kConservative) {
min_valid_vel = ::std::min(min_valid_vel, vel);
} else {
min_valid_vel = ::std::max(min_valid_vel, vel);
}
} else if (b == 0) {
// If a and b are zero, then we are travelling in a straight line and
// have no voltage-based velocity constraints.
min_valid_vel = ::std::numeric_limits<double>::infinity();
}
} else if (determinant > 0) {
const double sqrt_determinant = ::std::sqrt(determinant);
const double high_vel = (-b + sqrt_determinant) / (2.0 * a);
const double low_vel = (-b - sqrt_determinant) / (2.0 * a);
if (low_vel > 0) {
if (limit_type == VoltageLimit::kConservative) {
min_valid_vel = ::std::min(min_valid_vel, low_vel);
} else {
min_valid_vel = ::std::max(min_valid_vel, low_vel);
}
}
if (high_vel > 0) {
if (limit_type == VoltageLimit::kConservative) {
min_valid_vel = ::std::min(min_valid_vel, high_vel);
} else {
min_valid_vel = ::std::max(min_valid_vel, high_vel);
}
}
} else if (determinant == 0 && -b * a > 0) {
const double vel = -b / (2.0 * a);
if (vel > 0.0) {
if (limit_type == VoltageLimit::kConservative) {
min_valid_vel = ::std::min(min_valid_vel, vel);
} else {
min_valid_vel = ::std::max(min_valid_vel, vel);
}
}
}
if (constraint_voltages != nullptr && prev_vel != min_valid_vel) {
*constraint_voltages = U;
}
}
return min_valid_vel;
}
void Trajectory::ForwardPass() {
plan_[0] = 0.0;
const double delta_distance = Distance(1) - Distance(0);
for (size_t i = 0; i < plan_.size() - 1; ++i) {
const double distance = Distance(i);
// Integrate our acceleration forward one step.
const double new_plan_velocity = IntegrateAccelForDistance(
[this](double x, double v) { return ForwardAcceleration(x, v); },
plan_[i], distance, delta_distance);
if (new_plan_velocity <= plan_[i + 1]) {
plan_[i + 1] = new_plan_velocity;
plan_segment_type_[i] = SegmentType::ACCELERATION_LIMITED;
}
}
}
void Trajectory::BackwardPass() {
const double delta_distance = Distance(0) - Distance(1);
plan_.back() = 0.0;
for (size_t i = plan_.size() - 1; i > 0; --i) {
const double distance = Distance(i);
// Integrate our deceleration back one step.
const double new_plan_velocity = IntegrateAccelForDistance(
[this](double x, double v) { return BackwardAcceleration(x, v); },
plan_[i], distance, delta_distance);
if (new_plan_velocity <= plan_[i - 1]) {
plan_[i - 1] = new_plan_velocity;
plan_segment_type_[i - 1] = SegmentType::DECELERATION_LIMITED;
}
}
}
::Eigen::Matrix<double, 3, 1> Trajectory::FFAcceleration(double distance) {
if (distance < 0.0) {
// Make sure we don't end up off the beginning of the curve.
distance = 0.0;
} else if (distance > length()) {
// Make sure we don't end up off the end of the curve.
distance = length();
}
const size_t before_index = DistanceToSegment(distance);
const size_t after_index = before_index + 1;
const double before_distance = Distance(before_index);
const double after_distance = Distance(after_index);
// And then also make sure we aren't curvature limited.
const double vcurvature = LateralVelocityCurvature(distance);
double acceleration;
double velocity;
// TODO(james): While technically correct for sufficiently small segment
// steps, this method of switching between limits has a tendency to produce
// sudden jumps in acceelrations, which is undesirable.
switch (plan_segment_type_[DistanceToSegment(distance)]) {
case SegmentType::VELOCITY_LIMITED:
acceleration = 0.0;
velocity = (plan_[before_index] + plan_[after_index]) / 2.0;
// TODO(austin): Accelerate or decelerate until we hit the limit in the
// time slice. Otherwise our acceleration will be lying for this slice.
// Do note, we've got small slices so the effect will be small.
break;
case SegmentType::CURVATURE_LIMITED:
velocity = vcurvature;
FrictionLngAccelLimits(distance, velocity, &acceleration, &acceleration);
break;
case SegmentType::VOLTAGE_LIMITED:
// Normally, we expect that voltage limited plans will all get dominated
// by the acceleration/deceleration limits. This may not always be true;
// if we ever encounter this error, we just need to back out what the
// accelerations would be in this case.
LOG(FATAL) << "Unexpectedly got VOLTAGE_LIMITED plan.";
break;
case SegmentType::ACCELERATION_LIMITED:
// TODO(james): The integration done here and in the DECELERATION_LIMITED
// can technically cause us to violate friction constraints. We currently
// don't do anything about it to avoid causing sudden jumps in voltage,
// but we probably *should* at some point.
velocity = IntegrateAccelForDistance(
[this](double x, double v) { return ForwardAcceleration(x, v); },
plan_[before_index], before_distance, distance - before_distance);
acceleration = ForwardAcceleration(distance, velocity);
break;
case SegmentType::DECELERATION_LIMITED:
velocity = IntegrateAccelForDistance(
[this](double x, double v) { return BackwardAcceleration(x, v); },
plan_[after_index], after_distance, distance - after_distance);
acceleration = BackwardAcceleration(distance, velocity);
break;
default:
AOS_LOG(
FATAL, "Unknown segment type %d\n",
static_cast<int>(plan_segment_type_[DistanceToSegment(distance)]));
break;
}
return (::Eigen::Matrix<double, 3, 1>() << distance, velocity, acceleration)
.finished();
}
::Eigen::Matrix<double, 2, 1> Trajectory::FFVoltage(double distance) {
const Eigen::Matrix<double, 3, 1> xva = FFAcceleration(distance);
const double velocity = xva(1);
const double acceleration = xva(2);
::Eigen::Matrix<double, 2, 1> K3;
::Eigen::Matrix<double, 2, 1> K4;
::Eigen::Matrix<double, 2, 1> K5;
K345(distance, &K3, &K4, &K5);
return K5 * acceleration + K3 * velocity * velocity + K4 * velocity;
}
const ::std::vector<double> Trajectory::Distances() const {
::std::vector<double> d;
d.reserve(plan_.size());
for (size_t i = 0; i < plan_.size(); ++i) {
d.push_back(Distance(i));
}
return d;
}
::Eigen::Matrix<double, 5, 5> Trajectory::ALinearizedContinuous(
const ::Eigen::Matrix<double, 5, 1> &state) const {
const double sintheta = ::std::sin(state(2));
const double costheta = ::std::cos(state(2));
const ::Eigen::Matrix<double, 2, 1> linear_angular =
Tlr_to_la_ * state.block<2, 1>(3, 0);
// When stopped, just roll with a min velocity.
double linear_velocity = 0.0;
constexpr double kMinVelocity = 0.1;
if (::std::abs(linear_angular(0)) < kMinVelocity / 100.0) {
linear_velocity = 0.1;
} else if (::std::abs(linear_angular(0)) > kMinVelocity) {
linear_velocity = linear_angular(0);
} else if (linear_angular(0) > 0) {
linear_velocity = kMinVelocity;
} else if (linear_angular(0) < 0) {
linear_velocity = -kMinVelocity;
}
::Eigen::Matrix<double, 5, 5> result = ::Eigen::Matrix<double, 5, 5>::Zero();
result(0, 2) = -sintheta * linear_velocity;
result(0, 3) = 0.5 * costheta;
result(0, 4) = 0.5 * costheta;
result(1, 2) = costheta * linear_velocity;
result(1, 3) = 0.5 * sintheta;
result(1, 4) = 0.5 * sintheta;
result(2, 3) = Tlr_to_la_(1, 0);
result(2, 4) = Tlr_to_la_(1, 1);
result.block<2, 2>(3, 3) =
velocity_drivetrain_->plant().coefficients().A_continuous;
return result;
}
::Eigen::Matrix<double, 5, 2> Trajectory::BLinearizedContinuous() const {
::Eigen::Matrix<double, 5, 2> result = ::Eigen::Matrix<double, 5, 2>::Zero();
result.block<2, 2>(3, 0) =
velocity_drivetrain_->plant().coefficients().B_continuous;
return result;
}
void Trajectory::AB(const ::Eigen::Matrix<double, 5, 1> &state,
::std::chrono::nanoseconds dt,
::Eigen::Matrix<double, 5, 5> *A,
::Eigen::Matrix<double, 5, 2> *B) const {
::Eigen::Matrix<double, 5, 5> A_linearized_continuous =
ALinearizedContinuous(state);
::Eigen::Matrix<double, 5, 2> B_linearized_continuous =
BLinearizedContinuous();
// Now, convert it to discrete.
controls::C2D(A_linearized_continuous, B_linearized_continuous, dt, A, B);
}
::Eigen::Matrix<double, 2, 5> Trajectory::KForState(
const ::Eigen::Matrix<double, 5, 1> &state, ::std::chrono::nanoseconds dt,
const ::Eigen::DiagonalMatrix<double, 5> &Q,
const ::Eigen::DiagonalMatrix<double, 2> &R) const {
::Eigen::Matrix<double, 5, 5> A;
::Eigen::Matrix<double, 5, 2> B;
AB(state, dt, &A, &B);
::Eigen::Matrix<double, 5, 5> S = ::Eigen::Matrix<double, 5, 5>::Zero();
::Eigen::Matrix<double, 2, 5> K = ::Eigen::Matrix<double, 2, 5>::Zero();
int info = ::frc971::controls::dlqr<5, 2>(A, B, Q, R, &K, &S);
if (info != 0) {
AOS_LOG(ERROR, "Failed to solve %d, controllability: %d\n", info,
controls::Controllability(A, B));
// TODO(austin): Can we be more clever here? Use the last one? We should
// collect more info about when this breaks down from logs.
K = ::Eigen::Matrix<double, 2, 5>::Zero();
}
::Eigen::EigenSolver<::Eigen::Matrix<double, 5, 5>> eigensolver(A - B * K);
const auto eigenvalues = eigensolver.eigenvalues();
AOS_LOG(DEBUG,
"Eigenvalues: (%f + %fj), (%f + %fj), (%f + %fj), (%f + %fj), (%f + "
"%fj)\n",
eigenvalues(0).real(), eigenvalues(0).imag(), eigenvalues(1).real(),
eigenvalues(1).imag(), eigenvalues(2).real(), eigenvalues(2).imag(),
eigenvalues(3).real(), eigenvalues(3).imag(), eigenvalues(4).real(),
eigenvalues(4).imag());
return K;
}
const ::Eigen::Matrix<double, 5, 1> Trajectory::GoalState(double distance,
double velocity) {
::Eigen::Matrix<double, 5, 1> result;
result.block<2, 1>(0, 0) = spline_->XY(distance);
result(2, 0) = spline_->Theta(distance);
result.block<2, 1>(3, 0) =
Tla_to_lr_ * (::Eigen::Matrix<double, 2, 1>() << velocity,
spline_->DThetaDt(distance, velocity))
.finished();
return result;
}
::Eigen::Matrix<double, 3, 1> Trajectory::GetNextXVA(
::std::chrono::nanoseconds dt, ::Eigen::Matrix<double, 2, 1> *state) {
double dt_float = ::aos::time::DurationInSeconds(dt);
// TODO(austin): This feels like something that should be pulled out into
// a library for re-use.
*state = RungeKutta(
[this](const ::Eigen::Matrix<double, 2, 1> x) {
::Eigen::Matrix<double, 3, 1> xva = FFAcceleration(x(0));
return (::Eigen::Matrix<double, 2, 1>() << x(1), xva(2)).finished();
},
*state, dt_float);
::Eigen::Matrix<double, 3, 1> result = FFAcceleration((*state)(0));
(*state)(1) = result(1);
return result;
}
::std::vector<::Eigen::Matrix<double, 3, 1>> Trajectory::PlanXVA(
::std::chrono::nanoseconds dt) {
::Eigen::Matrix<double, 2, 1> state = ::Eigen::Matrix<double, 2, 1>::Zero();
::std::vector<::Eigen::Matrix<double, 3, 1>> result;
result.emplace_back(FFAcceleration(0));
result.back()(1) = 0.0;
while (!is_at_end(state)) {
result.emplace_back(GetNextXVA(dt, &state));
}
return result;
}
void Trajectory::LimitVelocity(double starting_distance, double ending_distance,
const double max_velocity) {
const double segment_length = ending_distance - starting_distance;
const double min_length = length() / static_cast<double>(plan_.size() - 1);
if (starting_distance > ending_distance) {
AOS_LOG(FATAL, "End before start: %f > %f\n", starting_distance,
ending_distance);
}
starting_distance = ::std::min(length(), ::std::max(0.0, starting_distance));
ending_distance = ::std::min(length(), ::std::max(0.0, ending_distance));
if (segment_length < min_length) {
const size_t plan_index = static_cast<size_t>(
::std::round((starting_distance + ending_distance) / 2.0 / min_length));
if (max_velocity < plan_[plan_index]) {
plan_[plan_index] = max_velocity;
}
} else {
for (size_t i = DistanceToSegment(starting_distance) + 1;
i < DistanceToSegment(ending_distance) + 1; ++i) {
if (max_velocity < plan_[i]) {
plan_[i] = max_velocity;
if (i < DistanceToSegment(ending_distance)) {
plan_segment_type_[i] = SegmentType::VELOCITY_LIMITED;
}
}
}
}
}
} // namespace drivetrain
} // namespace control_loops
} // namespace frc971