| #include "frc971/control_loops/drivetrain/ssdrivetrain.h" |
| |
| #include "aos/commonmath.h" |
| #include "aos/controls/polytope.h" |
| |
| #include "frc971/control_loops/coerce_goal.h" |
| #include "frc971/control_loops/drivetrain/drivetrain_config.h" |
| #include "frc971/control_loops/drivetrain/drivetrain_goal_generated.h" |
| #include "frc971/control_loops/drivetrain/drivetrain_output_generated.h" |
| #include "frc971/control_loops/drivetrain/drivetrain_status_generated.h" |
| #include "frc971/control_loops/state_feedback_loop.h" |
| |
| namespace frc971 { |
| namespace control_loops { |
| namespace drivetrain { |
| |
| DrivetrainMotorsSS::DrivetrainMotorsSS( |
| const DrivetrainConfig<double> &dt_config, StateFeedbackLoop<7, 2, 4> *kf, |
| LocalizerInterface *localizer) |
| : dt_config_(dt_config), |
| kf_(kf), |
| U_poly_( |
| (Eigen::Matrix<double, 4, 2>() << /*[[*/ 1, 0 /*]*/, |
| /*[*/ -1, 0 /*]*/, |
| /*[*/ 0, 1 /*]*/, |
| /*[*/ 0, -1 /*]]*/) |
| .finished(), |
| (Eigen::Matrix<double, 4, 1>() << /*[[*/ 1.0 /*]*/, |
| /*[*/ 1.0 /*]*/, |
| /*[*/ 1.0 /*]*/, |
| /*[*/ 1.0 /*]]*/) |
| .finished(), |
| (Eigen::Matrix<double, 2, 4>() << /*[[*/ 1.0, 1.0, -1.0, -1.0 /*]*/, |
| /*[*/ -1.0, 1.0, 1.0, -1.0 /*]*/) |
| .finished()), |
| linear_profile_(::aos::controls::kLoopFrequency), |
| angular_profile_(::aos::controls::kLoopFrequency), |
| localizer_(localizer) { |
| ::aos::controls::HPolytope<0>::Init(); |
| T_ << 1, 1, 1, -1; |
| T_inverse_ = T_.inverse(); |
| unprofiled_goal_.setZero(); |
| } |
| |
| void DrivetrainMotorsSS::ScaleCapU(Eigen::Matrix<double, 2, 1> *U) { |
| output_was_capped_ = ::std::abs((*U)(0, 0)) > max_voltage_ || |
| ::std::abs((*U)(1, 0)) > max_voltage_; |
| |
| if (output_was_capped_) { |
| *U *= max_voltage_ / kf_->U_uncapped().lpNorm<Eigen::Infinity>(); |
| } |
| } |
| |
| // This intentionally runs the U-capping code even when it's unnecessary to help |
| // make it more deterministic. Only running it when one or both sides want |
| // out-of-range voltages could lead to things like running out of CPU under |
| // certain situations, which would be bad. |
| void DrivetrainMotorsSS::PolyCapU(Eigen::Matrix<double, 2, 1> *U) { |
| output_was_capped_ = ::std::abs((*U)(0, 0)) > max_voltage_ || |
| ::std::abs((*U)(1, 0)) > max_voltage_; |
| |
| const Eigen::Matrix<double, 7, 1> error = kf_->R() - kf_->X_hat(); |
| |
| Eigen::Matrix<double, 2, 2> position_K; |
| position_K << kf_->controller().K(0, 0), kf_->controller().K(0, 2), |
| kf_->controller().K(1, 0), kf_->controller().K(1, 2); |
| Eigen::Matrix<double, 2, 2> velocity_K; |
| velocity_K << kf_->controller().K(0, 1), kf_->controller().K(0, 3), |
| kf_->controller().K(1, 1), kf_->controller().K(1, 3); |
| |
| Eigen::Matrix<double, 2, 1> position_error; |
| position_error << error(0, 0), error(2, 0); |
| // drive_error = [total_distance_error, left_error - right_error] |
| const auto drive_error = T_inverse_ * position_error; |
| Eigen::Matrix<double, 2, 1> velocity_error; |
| velocity_error << error(1, 0), error(3, 0); |
| |
| Eigen::Matrix<double, 2, 1> U_integral; |
| U_integral << kf_->X_hat(4, 0), kf_->X_hat(5, 0); |
| |
| const ::aos::controls::HVPolytope<2, 4, 4> pos_poly_hv( |
| U_poly_.static_H() * position_K * T_, |
| U_poly_.static_H() * |
| (-velocity_K * velocity_error + U_integral - kf_->ff_U()) + |
| (U_poly_.static_k() * max_voltage_), |
| (position_K * T_).inverse() * |
| ::aos::controls::ShiftPoints<2, 4, double>( |
| (U_poly_.StaticVertices() * max_voltage_), |
| -velocity_K * velocity_error + U_integral - kf_->ff_U())); |
| |
| Eigen::Matrix<double, 2, 1> adjusted_pos_error; |
| { |
| const auto &P = drive_error; |
| |
| Eigen::Matrix<double, 1, 2> L45; |
| L45 << ::aos::sign(P(1, 0)), -::aos::sign(P(0, 0)); |
| const double w45 = 0; |
| |
| Eigen::Matrix<double, 1, 2> LH; |
| if (::std::abs(P(0, 0)) > ::std::abs(P(1, 0))) { |
| LH << 0, 1; |
| } else { |
| LH << 1, 0; |
| } |
| const double wh = LH.dot(P); |
| |
| Eigen::Matrix<double, 2, 2> standard; |
| standard << L45, LH; |
| Eigen::Matrix<double, 2, 1> W; |
| W << w45, wh; |
| const Eigen::Matrix<double, 2, 1> intersection = standard.inverse() * W; |
| |
| bool is_inside_h, is_inside_45; |
| const auto adjusted_pos_error_h = |
| DoCoerceGoal<double>(pos_poly_hv, LH, wh, drive_error, &is_inside_h); |
| const auto adjusted_pos_error_45 = |
| DoCoerceGoal<double>(pos_poly_hv, L45, w45, intersection, &is_inside_45); |
| if (pos_poly_hv.IsInside(intersection)) { |
| adjusted_pos_error = adjusted_pos_error_h; |
| } else { |
| if (is_inside_h) { |
| if (adjusted_pos_error_h.norm() > adjusted_pos_error_45.norm() || |
| adjusted_pos_error_45.norm() > intersection.norm()) { |
| adjusted_pos_error = adjusted_pos_error_h; |
| } else { |
| adjusted_pos_error = adjusted_pos_error_45; |
| } |
| } else { |
| adjusted_pos_error = adjusted_pos_error_45; |
| } |
| } |
| } |
| |
| *U = -U_integral + velocity_K *velocity_error + |
| position_K *T_ *adjusted_pos_error + kf_->ff_U(); |
| |
| if (!output_was_capped_) { |
| if ((*U - kf_->U_uncapped()).norm() > 0.0001) { |
| AOS_LOG(FATAL, "U unnecessarily capped\n"); |
| } |
| } |
| } |
| |
| void DrivetrainMotorsSS::SetGoal( |
| const ::frc971::control_loops::drivetrain::Goal *goal) { |
| unprofiled_goal_ << goal->left_goal(), 0.0, goal->right_goal(), 0.0, 0.0, 0.0, |
| 0.0; |
| if (!goal->has_max_ss_voltage()) { |
| max_voltage_ = kMaxVoltage; |
| } else { |
| max_voltage_ = goal->has_max_ss_voltage(); |
| } |
| |
| use_profile_ = !kf_->controller().Kff().isZero(0) && |
| (goal->has_linear() && goal->has_angular() && |
| goal->linear()->has_max_velocity() && |
| goal->linear()->has_max_acceleration() && |
| goal->angular()->has_max_velocity() && |
| goal->angular()->has_max_acceleration()); |
| if (goal->has_linear()) { |
| linear_profile_.set_maximum_velocity(goal->linear()->max_velocity()); |
| linear_profile_.set_maximum_acceleration( |
| goal->linear()->max_acceleration()); |
| } |
| if (goal->has_angular()) { |
| angular_profile_.set_maximum_velocity(goal->angular()->max_velocity()); |
| angular_profile_.set_maximum_acceleration( |
| goal->angular()->max_acceleration()); |
| } |
| } |
| |
| void DrivetrainMotorsSS::Update(bool enable_control_loop) { |
| Eigen::Matrix<double, 2, 1> wheel_heading = |
| dt_config_.LeftRightToAngular(kf_->X_hat()); |
| |
| const double gyro_to_wheel_offset = wheel_heading(0, 0) - localizer_->theta(); |
| |
| if (enable_control_loop) { |
| // Update profiles. |
| Eigen::Matrix<double, 2, 1> unprofiled_linear = |
| dt_config_.LeftRightToLinear(unprofiled_goal_); |
| Eigen::Matrix<double, 2, 1> unprofiled_angular = |
| dt_config_.LeftRightToAngular(unprofiled_goal_); |
| |
| Eigen::Matrix<double, 2, 1> next_linear; |
| Eigen::Matrix<double, 2, 1> next_angular; |
| |
| if (use_profile_) { |
| next_linear = linear_profile_.Update(unprofiled_linear(0, 0), |
| unprofiled_linear(1, 0)); |
| next_angular = angular_profile_.Update(unprofiled_angular(0, 0), |
| unprofiled_angular(1, 0)); |
| } else { |
| next_angular = unprofiled_angular; |
| next_linear = unprofiled_linear; |
| } |
| |
| const double wheel_compensation_offset = |
| gyro_to_wheel_offset * dt_config_.robot_radius; |
| const double scaled_angle_delta = |
| (gyro_to_wheel_offset - last_gyro_to_wheel_offset_) * |
| dt_config_.robot_radius; |
| |
| kf_->mutable_next_R().block<4, 1>(0, 0) = |
| dt_config_.AngularLinearToLeftRight(next_linear, next_angular); |
| |
| kf_->mutable_next_R().block<3, 1>(4, 0) = |
| unprofiled_goal_.block<3, 1>(4, 0); |
| |
| kf_->mutable_next_R(0, 0) -= wheel_compensation_offset; |
| kf_->mutable_next_R(2, 0) += wheel_compensation_offset; |
| |
| if (!use_profile_) { |
| kf_->mutable_R() = kf_->next_R(); |
| } else { |
| kf_->mutable_R(0, 0) -= scaled_angle_delta; |
| kf_->mutable_R(2, 0) += scaled_angle_delta; |
| } |
| |
| // Run the controller. |
| Eigen::Matrix<double, 2, 1> U = kf_->ControllerOutput(); |
| |
| kf_->mutable_U_uncapped() = kf_->mutable_U() = U; |
| ScaleCapU(&kf_->mutable_U()); |
| |
| // Now update the feed forwards. |
| kf_->UpdateFFReference(); |
| |
| // Now, move the profile if things didn't go perfectly. |
| if (use_profile_ && |
| (kf_->U() - kf_->U_uncapped()).lpNorm<Eigen::Infinity>() > 1e-4) { |
| // kf_->R() is in wheel coordinates, while the profile is in absolute |
| // coordinates. Convert back... |
| linear_profile_.MoveCurrentState(dt_config_.LeftRightToLinear(kf_->R())); |
| |
| AOS_LOG(DEBUG, "Saturated while moving\n"); |
| |
| Eigen::Matrix<double, 2, 1> absolute_angular = |
| dt_config_.LeftRightToAngular(kf_->R()); |
| absolute_angular(0, 0) -= gyro_to_wheel_offset; |
| angular_profile_.MoveCurrentState(absolute_angular); |
| } |
| } else { |
| Eigen::Matrix<double, 2, 1> wheel_linear = |
| dt_config_.LeftRightToLinear(kf_->X_hat()); |
| Eigen::Matrix<double, 2, 1> next_angular = wheel_heading; |
| next_angular(0, 0) = localizer_->theta(); |
| |
| unprofiled_goal_.block<4, 1>(0, 0) = |
| dt_config_.AngularLinearToLeftRight(wheel_linear, next_angular); |
| |
| auto current_linear = dt_config_.LeftRightToLinear(unprofiled_goal_); |
| auto current_angular = dt_config_.LeftRightToAngular(unprofiled_goal_); |
| linear_profile_.MoveCurrentState(current_linear); |
| angular_profile_.MoveCurrentState(current_angular); |
| |
| kf_->mutable_next_R().block<4, 1>(0, 0) = kf_->X_hat().block<4, 1>(0, 0); |
| kf_->mutable_R().block<4, 1>(0, 0) = kf_->X_hat().block<4, 1>(0, 0); |
| } |
| last_gyro_to_wheel_offset_ = gyro_to_wheel_offset; |
| } |
| |
| void DrivetrainMotorsSS::SetOutput( |
| ::frc971::control_loops::drivetrain::OutputT *output) const { |
| if (output) { |
| output->left_voltage = kf_->U(0, 0); |
| output->right_voltage = kf_->U(1, 0); |
| output->left_high = true; |
| output->right_high = true; |
| } |
| } |
| |
| void DrivetrainMotorsSS::PopulateStatus( |
| ::frc971::control_loops::drivetrain::StatusBuilder *builder) const { |
| Eigen::Matrix<double, 2, 1> profiled_linear = |
| dt_config_.LeftRightToLinear(kf_->next_R()); |
| Eigen::Matrix<double, 2, 1> profiled_angular = |
| dt_config_.LeftRightToAngular(kf_->next_R()); |
| |
| profiled_angular(0, 0) -= last_gyro_to_wheel_offset_; |
| |
| Eigen::Matrix<double, 4, 1> profiled_gyro_left_right = |
| dt_config_.AngularLinearToLeftRight(profiled_linear, profiled_angular); |
| |
| builder->add_profiled_left_position_goal(profiled_gyro_left_right(0, 0)); |
| builder->add_profiled_left_velocity_goal(profiled_gyro_left_right(1, 0)); |
| builder->add_profiled_right_position_goal(profiled_gyro_left_right(2, 0)); |
| builder->add_profiled_right_velocity_goal(profiled_gyro_left_right(3, 0)); |
| } |
| |
| } // namespace drivetrain |
| } // namespace control_loops |
| } // namespace frc971 |