blob: d6cd2b5184f93edfd15a8b800bf23079c69f9aaa [file] [log] [blame]
#ifndef FRC971_CONTROL_LOOPS_DRIVETRAIN_POLYDRIVETRAIN_H_
#define FRC971_CONTROL_LOOPS_DRIVETRAIN_POLYDRIVETRAIN_H_
#include "aos/commonmath.h"
#include "aos/controls/polytope.h"
#include "frc971/control_loops/coerce_goal.h"
#include "frc971/control_loops/drivetrain/gear.h"
#ifdef __linux__
#include "aos/logging/logging.h"
#include "aos/robot_state/robot_state_generated.h"
#include "frc971/control_loops/control_loops_generated.h"
#include "frc971/control_loops/drivetrain/drivetrain_goal_generated.h"
#include "frc971/control_loops/drivetrain/drivetrain_output_generated.h"
#include "frc971/control_loops/drivetrain/drivetrain_position_generated.h"
#include "frc971/control_loops/drivetrain/drivetrain_status_generated.h"
#else
#include "frc971/control_loops/drivetrain/drivetrain_goal_float_generated.h"
#include "frc971/control_loops/drivetrain/drivetrain_output_float_generated.h"
#include "frc971/control_loops/drivetrain/drivetrain_position_float_generated.h"
#include "frc971/control_loops/drivetrain/drivetrain_status_float_generated.h"
#endif // __linux__
#include "frc971/control_loops/drivetrain/drivetrain_config.h"
#include "frc971/control_loops/state_feedback_loop.h"
namespace frc971 {
namespace control_loops {
namespace drivetrain {
template <typename Scalar = double>
class PolyDrivetrain {
public:
PolyDrivetrain(const DrivetrainConfig<Scalar> &dt_config,
StateFeedbackLoop<7, 2, 4, Scalar> *kf);
int controller_index() const { return loop_->index(); }
// Computes the speed of the motor given the hall effect position and the
// speed of the robot.
Scalar MotorSpeed(const constants::ShifterHallEffect &hall_effect,
Scalar shifter_position, Scalar velocity, Gear gear);
void SetGoal(const Scalar wheel, const Scalar throttle, const bool quickturn,
const bool highgear);
void SetPosition(
const ::frc971::control_loops::drivetrain::Position *position,
Gear left_gear, Gear right_gear);
Scalar FilterVelocity(Scalar throttle,
const Eigen::Matrix<Scalar, 2, 2> &FF) const;
Scalar MaxVelocity(const Eigen::Matrix<Scalar, 2, 2> &FF);
void Update(Scalar voltage_battery);
void SetOutput(::frc971::control_loops::drivetrain::OutputT *output);
flatbuffers::Offset<PolyDriveLogging> PopulateStatus(
flatbuffers::FlatBufferBuilder *fbb);
flatbuffers::Offset<CIMLogging> PopulateShiftingStatus(
flatbuffers::FlatBufferBuilder *fbb);
// Computes the next state of a shifter given the current state and the
// requested state.
Gear UpdateSingleGear(Gear requested_gear, Gear current_gear);
// Returns the current estimated velocity in m/s.
Scalar velocity() const {
return (loop_->mutable_X_hat()(0) + loop_->mutable_X_hat()(1)) * kHalf;
}
private:
static constexpr Scalar kZero = static_cast<Scalar>(0.0);
static constexpr Scalar kHalf = static_cast<Scalar>(0.5);
static constexpr Scalar kOne = static_cast<Scalar>(1.0);
static constexpr Scalar kTwo = static_cast<Scalar>(2.0);
static constexpr Scalar kTwelve = static_cast<Scalar>(12.0);
StateFeedbackLoop<7, 2, 4, Scalar> *kf_;
const ::aos::controls::HVPolytope<2, 4, 4, Scalar> U_Poly_;
::std::unique_ptr<StateFeedbackLoop<2, 2, 2, Scalar>> loop_;
const Scalar ttrust_;
Scalar wheel_;
Scalar throttle_;
bool quickturn_;
Gear left_gear_;
Gear right_gear_;
::frc971::control_loops::drivetrain::PositionT last_position_;
::frc971::control_loops::drivetrain::PositionT position_;
int counter_;
DrivetrainConfig<Scalar> dt_config_;
Scalar goal_left_velocity_ = 0.0;
Scalar goal_right_velocity_ = 0.0;
// Stored from the last iteration, for logging shifting logic.
Scalar left_motor_speed_ = 0.0;
Scalar right_motor_speed_ = 0.0;
Scalar current_left_velocity_ = 0.0;
Scalar current_right_velocity_ = 0.0;
// Feedforward voltage, for logging.
Eigen::Matrix<Scalar, 2, 1> ff_volts_{0.0, 0.0};
};
template <typename Scalar>
PolyDrivetrain<Scalar>::PolyDrivetrain(
const DrivetrainConfig<Scalar> &dt_config,
StateFeedbackLoop<7, 2, 4, Scalar> *kf)
: kf_(kf),
U_Poly_((Eigen::Matrix<Scalar, 4, 2>() << /*[[*/ 1, 0 /*]*/,
/*[*/ -1, 0 /*]*/,
/*[*/ 0, 1 /*]*/,
/*[*/ 0, -1 /*]]*/)
.finished(),
(Eigen::Matrix<Scalar, 4, 1>() << /*[[*/ 12 /*]*/,
/*[*/ 12 /*]*/,
/*[*/ 12 /*]*/,
/*[*/ 12 /*]]*/)
.finished(),
(Eigen::Matrix<Scalar, 2, 4>() << /*[[*/ 12, 12, -12, -12 /*]*/,
/*[*/ -12, 12, 12, -12 /*]*/)
.finished()),
loop_(new StateFeedbackLoop<2, 2, 2, Scalar>(
dt_config.make_v_drivetrain_loop())),
ttrust_(1.1),
wheel_(0.0),
throttle_(0.0),
quickturn_(false),
left_gear_(dt_config.default_high_gear ? Gear::HIGH : Gear::LOW),
right_gear_(dt_config.default_high_gear ? Gear::HIGH : Gear::LOW),
counter_(0),
dt_config_(dt_config) {}
template <typename Scalar>
Scalar PolyDrivetrain<Scalar>::MotorSpeed(
const constants::ShifterHallEffect &hall_effect, Scalar shifter_position,
Scalar velocity, Gear gear) {
const Scalar high_gear_speed =
velocity /
static_cast<Scalar>(dt_config_.high_gear_ratio / dt_config_.wheel_radius);
const Scalar low_gear_speed =
velocity /
static_cast<Scalar>(dt_config_.low_gear_ratio / dt_config_.wheel_radius);
if (shifter_position < static_cast<Scalar>(hall_effect.clear_low)) {
// We're in low gear, so return speed for that gear.
return low_gear_speed;
} else if (shifter_position > static_cast<Scalar>(hall_effect.clear_high)) {
// We're in high gear, so return speed for that gear.
return high_gear_speed;
}
// Not in gear, so speed-match to destination gear.
switch (gear) {
case Gear::HIGH:
case Gear::SHIFTING_UP:
return high_gear_speed;
case Gear::LOW:
case Gear::SHIFTING_DOWN:
default:
return low_gear_speed;
break;
}
}
template <typename Scalar>
Gear PolyDrivetrain<Scalar>::UpdateSingleGear(Gear requested_gear,
Gear current_gear) {
const Gear shift_up =
(dt_config_.shifter_type == ShifterType::HALL_EFFECT_SHIFTER)
? Gear::SHIFTING_UP
: Gear::HIGH;
const Gear shift_down =
(dt_config_.shifter_type == ShifterType::HALL_EFFECT_SHIFTER)
? Gear::SHIFTING_DOWN
: Gear::LOW;
if (current_gear != requested_gear) {
if (IsInGear(current_gear)) {
if (requested_gear == Gear::HIGH) {
if (current_gear != Gear::HIGH) {
current_gear = shift_up;
}
} else {
if (current_gear != Gear::LOW) {
current_gear = shift_down;
}
}
} else {
if (requested_gear == Gear::HIGH && current_gear == Gear::SHIFTING_DOWN) {
current_gear = Gear::SHIFTING_UP;
} else if (requested_gear == Gear::LOW &&
current_gear == Gear::SHIFTING_UP) {
current_gear = Gear::SHIFTING_DOWN;
}
}
}
return current_gear;
}
template <typename Scalar>
void PolyDrivetrain<Scalar>::SetGoal(const Scalar wheel, const Scalar throttle,
const bool quickturn,
const bool highgear) {
// Apply a sin function that's scaled to make it feel better.
const Scalar angular_range =
static_cast<Scalar>(M_PI_2) * dt_config_.wheel_non_linearity;
wheel_ = sin(angular_range * wheel) / sin(angular_range);
wheel_ = sin(angular_range * wheel_) / sin(angular_range);
wheel_ = kTwo * wheel - wheel_;
quickturn_ = quickturn;
if (quickturn_) {
wheel_ *= dt_config_.quickturn_wheel_multiplier;
} else {
wheel_ *= dt_config_.wheel_multiplier;
}
static constexpr Scalar kThrottleDeadband = static_cast<Scalar>(0.05);
if (::std::abs(throttle) < kThrottleDeadband) {
throttle_ = 0;
} else {
throttle_ = copysign(
(::std::abs(throttle) - kThrottleDeadband) / (kOne - kThrottleDeadband),
throttle);
}
Gear requested_gear = highgear ? Gear::HIGH : Gear::LOW;
left_gear_ = UpdateSingleGear(requested_gear, left_gear_);
right_gear_ = UpdateSingleGear(requested_gear, right_gear_);
}
template <typename Scalar>
void PolyDrivetrain<Scalar>::SetPosition(
const ::frc971::control_loops::drivetrain::Position *position,
Gear left_gear, Gear right_gear) {
left_gear_ = left_gear;
right_gear_ = right_gear;
last_position_ = position_;
position->UnPackTo(&position_);
}
template <typename Scalar>
Scalar PolyDrivetrain<Scalar>::FilterVelocity(
Scalar throttle, const Eigen::Matrix<Scalar, 2, 2> &FF) const {
constexpr int kHighGearController = 3;
const Eigen::Matrix<Scalar, 2, 2> FF_high =
loop_->plant().coefficients(kHighGearController).B.inverse() *
(Eigen::Matrix<Scalar, 2, 2>::Identity() -
loop_->plant().coefficients(kHighGearController).A);
::Eigen::Matrix<Scalar, 1, 2> FF_sum = FF.colwise().sum();
int min_FF_sum_index;
const Scalar min_FF_sum = FF_sum.minCoeff(&min_FF_sum_index);
const Scalar min_K_sum = loop_->controller().K().col(min_FF_sum_index).sum();
const Scalar high_min_FF_sum = FF_high.col(0).sum();
const Scalar adjusted_ff_voltage = ::aos::Clip(
throttle * kTwelve * min_FF_sum / high_min_FF_sum, -kTwelve, kTwelve);
return (adjusted_ff_voltage + ttrust_ * min_K_sum *
(loop_->X_hat(0, 0) + loop_->X_hat(1, 0)) *
kHalf) /
(ttrust_ * min_K_sum + min_FF_sum);
}
template <typename Scalar>
Scalar PolyDrivetrain<Scalar>::MaxVelocity(
const Eigen::Matrix<Scalar, 2, 2> &FF) {
constexpr int kHighGearController = 3;
const Eigen::Matrix<Scalar, 2, 2> FF_high =
loop_->plant().coefficients(kHighGearController).B.inverse() *
(Eigen::Matrix<Scalar, 2, 2>::Identity() -
loop_->plant().coefficients(kHighGearController).A);
::Eigen::Matrix<Scalar, 1, 2> FF_sum = FF.colwise().sum();
int min_FF_sum_index;
const Scalar min_FF_sum = FF_sum.minCoeff(&min_FF_sum_index);
// const Scalar min_K_sum = loop_->K().col(min_FF_sum_index).sum();
const Scalar high_min_FF_sum = FF_high.col(0).sum();
const Scalar adjusted_ff_voltage =
::aos::Clip(kTwelve * min_FF_sum / high_min_FF_sum, -kTwelve, kTwelve);
return adjusted_ff_voltage / min_FF_sum;
}
template <typename Scalar>
void PolyDrivetrain<Scalar>::Update(Scalar voltage_battery) {
if (dt_config_.loop_type == LoopType::CLOSED_LOOP) {
loop_->mutable_X_hat()(0, 0) = kf_->X_hat()(1, 0);
loop_->mutable_X_hat()(1, 0) = kf_->X_hat()(3, 0);
}
// TODO(austin): Observer for the current velocity instead of difference
// calculations.
++counter_;
if (IsInGear(left_gear_) && IsInGear(right_gear_)) {
// FF * X = U (steady state)
const Eigen::Matrix<Scalar, 2, 2> FF =
loop_->plant().B().inverse() *
(Eigen::Matrix<Scalar, 2, 2>::Identity() - loop_->plant().A());
// Invert the plant to figure out how the velocity filter would have to
// work
// out in order to filter out the forwards negative inertia.
// This math assumes that the left and right power and velocity are
// equals,
// and that the plant is the same on the left and right.
const Scalar fvel = FilterVelocity(throttle_, FF);
const Scalar sign_svel = wheel_ * ((fvel > kZero) ? kOne : -kOne);
Scalar steering_velocity;
if (quickturn_) {
steering_velocity = wheel_ * MaxVelocity(FF);
} else {
steering_velocity = ::std::abs(fvel) * wheel_;
}
const Scalar left_velocity = fvel - steering_velocity;
const Scalar right_velocity = fvel + steering_velocity;
goal_left_velocity_ = left_velocity;
goal_right_velocity_ = right_velocity;
// Integrate velocity to get the position.
// This position is used to get integral control.
loop_->mutable_R() << left_velocity, right_velocity;
if (!quickturn_) {
// K * R = w
Eigen::Matrix<Scalar, 1, 2> equality_k;
equality_k << 1 + sign_svel, -(1 - sign_svel);
const Scalar equality_w = kZero;
// Construct a constraint on R by manipulating the constraint on U
::aos::controls::HVPolytope<2, 4, 4, Scalar> R_poly_hv(
U_Poly_.static_H() * (loop_->controller().K() + FF),
U_Poly_.static_k() +
U_Poly_.static_H() * loop_->controller().K() * loop_->X_hat(),
(loop_->controller().K() + FF).inverse() *
::aos::controls::ShiftPoints<2, 4, Scalar>(
U_Poly_.StaticVertices(),
loop_->controller().K() * loop_->X_hat()));
// Limit R back inside the box.
loop_->mutable_R() =
CoerceGoal<Scalar>(R_poly_hv, equality_k, equality_w, loop_->R());
}
ff_volts_ = FF * loop_->R();
const Eigen::Matrix<Scalar, 2, 1> U_ideal =
loop_->controller().K() * (loop_->R() - loop_->X_hat()) + ff_volts_;
for (int i = 0; i < 2; i++) {
loop_->mutable_U()[i] = ::aos::Clip(U_ideal[i], -12, 12);
}
if (dt_config_.loop_type == LoopType::OPEN_LOOP) {
ff_volts_.setZero();
loop_->mutable_X_hat() =
loop_->plant().A() * loop_->X_hat() + loop_->plant().B() * loop_->U();
}
// Housekeeping: set the shifting logging values to zero, because we're not
// shifting
left_motor_speed_ = kZero;
right_motor_speed_ = kZero;
current_left_velocity_ = kZero;
current_right_velocity_ = kZero;
} else {
const Scalar dt =
::std::chrono::duration_cast<::std::chrono::duration<Scalar>>(
dt_config_.dt)
.count();
current_left_velocity_ =
(position_.left_encoder - last_position_.left_encoder) / dt;
current_right_velocity_ =
(position_.right_encoder - last_position_.right_encoder) / dt;
left_motor_speed_ =
MotorSpeed(dt_config_.left_drive, position_.left_shifter_position,
current_left_velocity_, left_gear_);
right_motor_speed_ =
MotorSpeed(dt_config_.right_drive, position_.right_shifter_position,
current_right_velocity_, right_gear_);
goal_left_velocity_ = current_left_velocity_;
goal_right_velocity_ = current_right_velocity_;
// Any motor is not in gear. Speed match.
::Eigen::Matrix<Scalar, 1, 1> R_left;
::Eigen::Matrix<Scalar, 1, 1> R_right;
R_left(0, 0) = left_motor_speed_;
R_right(0, 0) = right_motor_speed_;
const Scalar wiggle = (static_cast<Scalar>((counter_ % 30) / 15) - kHalf) *
static_cast<Scalar>(8.0);
loop_->mutable_U(0, 0) = ::aos::Clip(
(R_left / dt_config_.v)(0, 0) + (IsInGear(left_gear_) ? 0 : wiggle),
-kTwelve, kTwelve);
loop_->mutable_U(1, 0) = ::aos::Clip(
(R_right / dt_config_.v)(0, 0) + (IsInGear(right_gear_) ? 0 : wiggle),
-kTwelve, kTwelve);
ff_volts_ = loop_->U();
#ifdef __linux__
loop_->mutable_U() *= kTwelve / voltage_battery;
#else
(void)voltage_battery;
#endif // __linux__
}
}
template <typename Scalar>
void PolyDrivetrain<Scalar>::SetOutput(
::frc971::control_loops::drivetrain::OutputT *output) {
if (output != nullptr) {
output->left_voltage = loop_->U(0, 0);
output->right_voltage = loop_->U(1, 0);
output->left_high = MaybeHigh(left_gear_);
output->right_high = MaybeHigh(right_gear_);
}
}
template <typename Scalar>
flatbuffers::Offset<PolyDriveLogging> PolyDrivetrain<Scalar>::PopulateStatus(
flatbuffers::FlatBufferBuilder *fbb) {
PolyDriveLogging::Builder builder(*fbb);
builder.add_goal_left_velocity(goal_left_velocity_);
builder.add_goal_right_velocity(goal_right_velocity_);
builder.add_ff_left_voltage(ff_volts_(0, 0));
builder.add_ff_right_voltage(ff_volts_(1, 0));
return builder.Finish();
}
template <typename Scalar>
flatbuffers::Offset<CIMLogging> PolyDrivetrain<Scalar>::PopulateShiftingStatus(
flatbuffers::FlatBufferBuilder *fbb) {
CIMLogging::Builder builder(*fbb);
builder.add_left_in_gear(IsInGear(left_gear_));
builder.add_left_motor_speed(left_motor_speed_);
builder.add_left_velocity(current_left_velocity_);
builder.add_right_in_gear(IsInGear(right_gear_));
builder.add_right_motor_speed(right_motor_speed_);
builder.add_right_velocity(current_right_velocity_);
return builder.Finish();
}
} // namespace drivetrain
} // namespace control_loops
} // namespace frc971
#endif // FRC971_CONTROL_LOOPS_DRIVETRAIN_POLYDRIVETRAIN_H_