blob: 95c95ddbcf07dad0dedaf800338db90189f0d898 [file] [log] [blame]
#include "aos/json_to_flatbuffer.h"
#include <cstddef>
#include "stdio.h"
#include <string_view>
#include "aos/flatbuffer_utils.h"
#include "aos/json_tokenizer.h"
#include "flatbuffers/flatbuffers.h"
#include "flatbuffers/minireflect.h"
#include "glog/logging.h"
// TODO(austin): Can we just do an Offset<void> ? It doesn't matter, so maybe
// just say that.
//
// TODO(austin): I've yet to see how to create an ET_UTYPE, so I don't know what
// one is and how to test it. So everything rejects it.
namespace aos {
// Finds the field index in the table given the name.
int FieldIndex(const flatbuffers::TypeTable *typetable,
const char *field_name) {
CHECK(typetable->values == nullptr);
for (size_t i = 0; i < typetable->num_elems; ++i) {
if (strcmp(field_name, typetable->names[i]) == 0) {
return i;
}
}
return -1;
}
namespace {
// Class to hold one of the 3 json types for an array.
struct Element {
// The type.
enum class ElementType { INT, DOUBLE, OFFSET };
// Constructs an Element holding an integer.
Element(int64_t new_int_element)
: int_element(new_int_element), type(ElementType::INT) {}
// Constructs an Element holding an double.
Element(double new_double_element)
: double_element(new_double_element), type(ElementType::DOUBLE) {}
// Constructs an Element holding an Offset.
Element(flatbuffers::Offset<flatbuffers::String> new_offset_element)
: offset_element(new_offset_element), type(ElementType::OFFSET) {}
// Union for the various datatypes.
union {
int64_t int_element;
double double_element;
flatbuffers::Offset<flatbuffers::String> offset_element;
};
// And an enum signaling which one is in use.
ElementType type;
};
// Structure to represent a field element.
struct FieldElement {
FieldElement(int new_field_index, int64_t int_element)
: element(int_element), field_index(new_field_index) {}
FieldElement(int new_field_index, double double_element)
: element(double_element), field_index(new_field_index) {}
FieldElement(int new_field_index,
flatbuffers::Offset<flatbuffers::String> offset_element)
: element(offset_element), field_index(new_field_index) {}
// Data to write.
Element element;
// Field index. The type table which this index is for is stored outside this
// object.
int field_index;
};
// Adds a single element. This assumes that vectors have been dealt with
// already. Returns true on success.
bool AddSingleElement(const flatbuffers::TypeTable *typetable,
const FieldElement &field_element,
::std::vector<bool> *fields_in_use,
flatbuffers::FlatBufferBuilder *fbb);
bool AddSingleElement(const flatbuffers::TypeTable *typetable, int field_index,
int64_t int_value, flatbuffers::FlatBufferBuilder *fbb);
bool AddSingleElement(const flatbuffers::TypeTable *typetable, int field_index,
double double_value, flatbuffers::FlatBufferBuilder *fbb);
bool AddSingleElement(const flatbuffers::TypeTable *typetable, int field_index,
flatbuffers::Offset<flatbuffers::String> offset_element,
flatbuffers::FlatBufferBuilder *fbb);
// Writes an array of FieldElement (with the definition in the type
// table) to the builder. Returns the offset of the table.
flatbuffers::uoffset_t WriteTable(const flatbuffers::TypeTable *typetable,
const ::std::vector<FieldElement> &elements,
flatbuffers::FlatBufferBuilder *fbb) {
// End of a nested struct! Add it.
const flatbuffers::uoffset_t start = fbb->StartTable();
::std::vector<bool> fields_in_use(typetable->num_elems, false);
for (const FieldElement &field_element : elements) {
AddSingleElement(typetable, field_element, &fields_in_use, fbb);
}
return fbb->EndTable(start);
}
// Class to parse JSON into a flatbuffer.
//
// The basic strategy is that we need to do everything backwards. So we need to
// build up what we need to do fully in memory, then do it.
//
// The driver for this is that strings need to be fully created before the
// tables that use them. Same for sub messages. But, we only know we have them
// all when the structure ends. So, store each sub message in a
// FieldElement and put them in the table at the end when we finish up
// each message. Same goes for vectors.
class JsonParser {
public:
JsonParser(flatbuffers::FlatBufferBuilder *fbb) : fbb_(fbb) {}
~JsonParser() {}
// Parses the json into a flatbuffer. Returns either an empty vector on
// error, or a vector with the flatbuffer data in it.
flatbuffers::Offset<flatbuffers::Table> Parse(
const std::string_view data, const flatbuffers::TypeTable *typetable) {
flatbuffers::uoffset_t end = 0;
bool result = DoParse(typetable, data, &end);
if (result) {
// On success, finish the table and build the vector.
return flatbuffers::Offset<flatbuffers::Table>(end);
} else {
return flatbuffers::Offset<flatbuffers::Table>(0);
}
}
private:
// Setters and getters for in_vector (at the current level of the stack)
bool in_vector() const { return stack_.back().in_vector; }
void set_in_vector(bool in_vector) { stack_.back().in_vector = in_vector; }
// Parses the flatbuffer. This is a second method so we can do easier
// cleanup at the top level. Returns true on success.
bool DoParse(const flatbuffers::TypeTable *typetable,
const std::string_view data,
flatbuffers::uoffset_t *table_end);
// Adds *_value for the provided field. If we are in a vector, queues the
// data up in vector_elements. Returns true on success.
bool AddElement(int field_index, int64_t int_value);
bool AddElement(int field_index, double double_value);
bool AddElement(int field_index, const ::std::string &data);
// Finishes a vector for the provided field index. Returns true on success.
bool FinishVector(int field_index);
// Pushes an element as part of a vector. Returns true on success.
bool PushElement(flatbuffers::ElementaryType elementary_type,
int64_t int_value);
bool PushElement(flatbuffers::ElementaryType elementary_type,
double double_value);
bool PushElement(flatbuffers::ElementaryType elementary_type,
flatbuffers::Offset<flatbuffers::String> offset_value);
flatbuffers::FlatBufferBuilder *fbb_;
// This holds the state information that is needed as you recurse into
// nested structures.
struct FlatBufferContext {
// Type of the current type.
const flatbuffers::TypeTable *typetable;
// If true, we are parsing a vector.
bool in_vector;
// The field index of the current field.
int field_index;
// Name of the current field.
::std::string field_name;
// Field elements that need to be inserted.
::std::vector<FieldElement> elements;
// For scalar types (not strings, and not nested tables), the vector ends
// up being implemented as a start and end, and a block of data. So we
// can't just push offsets in as we go. We either need to reproduce the
// logic inside flatbuffers, or build up vectors of the data. Vectors will
// be a bit of extra stack space, but whatever.
//
// Strings and nested structures are vectors of offsets.
// into the vector. Once you get to the end, you build up a vector and
// push that into the field.
::std::vector<Element> vector_elements;
};
::std::vector<FlatBufferContext> stack_;
};
bool JsonParser::DoParse(const flatbuffers::TypeTable *typetable,
const std::string_view data,
flatbuffers::uoffset_t *table_end) {
::std::vector<const flatbuffers::TypeTable *> stack;
Tokenizer t(data);
// Main loop. Run until we get an end.
while (true) {
Tokenizer::TokenType token = t.Next();
switch (token) {
case Tokenizer::TokenType::kEnd:
if (stack_.size() != 0) {
fprintf(stderr, "Failed to unwind stack all the way\n");
return false;
} else {
return true;
}
break;
case Tokenizer::TokenType::kError:
return false;
break;
case Tokenizer::TokenType::kStartObject: // {
if (stack_.size() == 0) {
stack_.push_back({typetable, false, -1, "", {}, {}});
} else {
int field_index = stack_.back().field_index;
const flatbuffers::TypeCode &type_code =
stack_.back().typetable->type_codes[field_index];
if (type_code.base_type != flatbuffers::ET_SEQUENCE) {
fprintf(stderr, "Field '%s' is not a sequence\n",
stack_.back().field_name.c_str());
return false;
}
flatbuffers::TypeFunction type_function =
stack_.back().typetable->type_refs[type_code.sequence_ref];
stack_.push_back({type_function(), false, -1, "", {}, {}});
}
break;
case Tokenizer::TokenType::kEndObject: // }
if (stack_.size() == 0) {
// Somehow we popped more than we pushed. Error.
fprintf(stderr, "Empty stack\n");
return false;
} else {
// End of a nested struct! Add it.
const flatbuffers::uoffset_t end = WriteTable(
stack_.back().typetable, stack_.back().elements, fbb_);
// We now want to talk about the parent structure. Pop the child.
stack_.pop_back();
if (stack_.size() == 0) {
// Instead of queueing it up in the stack, return it through the
// passed in variable.
*table_end = end;
} else {
// And now we can add it.
const int field_index = stack_.back().field_index;
// Do the right thing if we are in a vector.
if (in_vector()) {
stack_.back().vector_elements.emplace_back(
flatbuffers::Offset<flatbuffers::String>(end));
} else {
stack_.back().elements.emplace_back(
field_index, flatbuffers::Offset<flatbuffers::String>(end));
}
}
}
break;
case Tokenizer::TokenType::kStartArray: // [
if (stack_.size() == 0) {
// We don't support an array of structs at the root level.
return false;
}
// Sanity check that we aren't trying to make a vector of vectors.
if (in_vector()) {
return false;
}
set_in_vector(true);
break;
case Tokenizer::TokenType::kEndArray: { // ]
if (!in_vector()) {
return false;
}
const int field_index = stack_.back().field_index;
if (!FinishVector(field_index)) return false;
set_in_vector(false);
} break;
case Tokenizer::TokenType::kTrueValue: // true
case Tokenizer::TokenType::kFalseValue: // false
case Tokenizer::TokenType::kNumberValue: {
bool is_int = true;
double double_value;
long long int_value;
if (token == Tokenizer::TokenType::kTrueValue) {
int_value = 1;
} else if (token == Tokenizer::TokenType::kFalseValue) {
int_value = 0;
} else if (!t.FieldAsInt(&int_value)) {
if (t.FieldAsDouble(&double_value)) {
is_int = false;
} else {
fprintf(stderr, "Got a invalid number '%s'\n",
t.field_value().c_str());
return false;
}
}
const int field_index = stack_.back().field_index;
if (is_int) {
// No need to get too stressed about bool vs int. Convert them all.
int64_t val = int_value;
if (!AddElement(field_index, val)) return false;
} else {
if (!AddElement(field_index, double_value)) return false;
}
} break;
case Tokenizer::TokenType::kStringValue: // string value
{
const int field_index = stack_.back().field_index;
if (!AddElement(field_index, t.field_value())) return false;
} break;
case Tokenizer::TokenType::kField: // field name
{
stack_.back().field_name = t.field_name();
stack_.back().field_index = FieldIndex(
stack_.back().typetable, stack_.back().field_name.c_str());
if (stack_.back().field_index == -1) {
fprintf(stderr, "Invalid field name '%s'\n",
stack_.back().field_name.c_str());
return false;
}
} break;
}
}
return false;
}
bool JsonParser::AddElement(int field_index, int64_t int_value) {
flatbuffers::TypeCode type_code =
stack_.back().typetable->type_codes[field_index];
if (type_code.is_vector != in_vector()) {
fprintf(stderr, "Type and json disagree on if we are in a vector or not\n");
return false;
}
if (in_vector()) {
stack_.back().vector_elements.emplace_back(int_value);
} else {
stack_.back().elements.emplace_back(field_index, int_value);
}
return true;
}
bool JsonParser::AddElement(int field_index, double double_value) {
flatbuffers::TypeCode type_code =
stack_.back().typetable->type_codes[field_index];
if (type_code.is_vector != in_vector()) {
fprintf(stderr, "Type and json disagree on if we are in a vector or not\n");
return false;
}
if (in_vector()) {
stack_.back().vector_elements.emplace_back(double_value);
} else {
stack_.back().elements.emplace_back(field_index, double_value);
}
return true;
}
bool JsonParser::AddElement(int field_index, const ::std::string &data) {
flatbuffers::TypeCode type_code =
stack_.back().typetable->type_codes[field_index];
if (type_code.is_vector != in_vector()) {
fprintf(stderr, "Type and json disagree on if we are in a vector or not\n");
return false;
}
const flatbuffers::ElementaryType elementary_type =
static_cast<flatbuffers::ElementaryType>(type_code.base_type);
switch (elementary_type) {
case flatbuffers::ET_CHAR:
case flatbuffers::ET_UCHAR:
case flatbuffers::ET_SHORT:
case flatbuffers::ET_USHORT:
case flatbuffers::ET_INT:
case flatbuffers::ET_UINT:
case flatbuffers::ET_LONG:
case flatbuffers::ET_ULONG:
if (type_code.sequence_ref != -1) {
// We have an enum.
const flatbuffers::TypeTable *type_table = stack_.back().typetable;
flatbuffers::TypeFunction type_function =
type_table->type_refs[type_code.sequence_ref];
const flatbuffers::TypeTable *enum_type_table = type_function();
CHECK_EQ(enum_type_table->st, flatbuffers::ST_ENUM);
int64_t int_value = 0;
bool found = false;
for (size_t i = 0; i < enum_type_table->num_elems; ++i) {
if (data == enum_type_table->names[i]) {
int_value = i;
found = true;
break;
}
}
if (!found) {
fprintf(stderr, "Enum value '%s' not found for field '%s'\n",
data.c_str(), type_table->names[field_index]);
return false;
}
if (in_vector()) {
stack_.back().vector_elements.emplace_back(int_value);
} else {
stack_.back().elements.emplace_back(field_index, int_value);
}
return true;
}
case flatbuffers::ET_UTYPE:
case flatbuffers::ET_BOOL:
case flatbuffers::ET_FLOAT:
case flatbuffers::ET_DOUBLE:
case flatbuffers::ET_STRING:
case flatbuffers::ET_SEQUENCE:
break;
}
if (in_vector()) {
stack_.back().vector_elements.emplace_back(fbb_->CreateString(data));
} else {
stack_.back().elements.emplace_back(field_index, fbb_->CreateString(data));
}
return true;
}
bool AddSingleElement(const flatbuffers::TypeTable *typetable,
const FieldElement &field_element,
::std::vector<bool> *fields_in_use,
flatbuffers::FlatBufferBuilder *fbb) {
if ((*fields_in_use)[field_element.field_index]) {
fprintf(stderr, "Duplicate field: '%s'\n",
typetable->names[field_element.field_index]);
return false;
}
(*fields_in_use)[field_element.field_index] = true;
switch (field_element.element.type) {
case Element::ElementType::INT:
return AddSingleElement(typetable, field_element.field_index,
field_element.element.int_element, fbb);
case Element::ElementType::DOUBLE:
return AddSingleElement(typetable, field_element.field_index,
field_element.element.double_element, fbb);
case Element::ElementType::OFFSET:
return AddSingleElement(typetable, field_element.field_index,
field_element.element.offset_element, fbb);
}
return false;
}
bool AddSingleElement(const flatbuffers::TypeTable *typetable, int field_index,
int64_t int_value, flatbuffers::FlatBufferBuilder *fbb
) {
flatbuffers::voffset_t field_offset = flatbuffers::FieldIndexToOffset(
static_cast<flatbuffers::voffset_t>(field_index));
flatbuffers::TypeCode type_code = typetable->type_codes[field_index];
const flatbuffers::ElementaryType elementary_type =
static_cast<flatbuffers::ElementaryType>(type_code.base_type);
switch (elementary_type) {
case flatbuffers::ET_BOOL:
fbb->AddElement<bool>(field_offset, int_value, 0);
return true;
case flatbuffers::ET_CHAR:
fbb->AddElement<int8_t>(field_offset, int_value, 0);
return true;
case flatbuffers::ET_UCHAR:
fbb->AddElement<uint8_t>(field_offset, int_value, 0);
return true;
case flatbuffers::ET_SHORT:
fbb->AddElement<int16_t>(field_offset, int_value, 0);
return true;
case flatbuffers::ET_USHORT:
fbb->AddElement<uint16_t>(field_offset, int_value, 0);
return true;
case flatbuffers::ET_INT:
fbb->AddElement<int32_t>(field_offset, int_value, 0);
return true;
case flatbuffers::ET_UINT:
fbb->AddElement<uint32_t>(field_offset, int_value, 0);
return true;
case flatbuffers::ET_LONG:
fbb->AddElement<int64_t>(field_offset, int_value, 0);
return true;
case flatbuffers::ET_ULONG:
fbb->AddElement<uint64_t>(field_offset, int_value, 0);
return true;
case flatbuffers::ET_FLOAT:
fbb->AddElement<float>(field_offset, int_value, 0);
return true;
case flatbuffers::ET_DOUBLE:
fbb->AddElement<double>(field_offset, int_value, 0);
return true;
case flatbuffers::ET_STRING:
case flatbuffers::ET_UTYPE:
case flatbuffers::ET_SEQUENCE:
fprintf(
stderr, "Mismatched type for field '%s'. Got: integer, expected %s\n",
typetable->names[field_index], ElementaryTypeName(elementary_type));
return false;
};
return false;
}
bool AddSingleElement(const flatbuffers::TypeTable *typetable, int field_index,
double double_value,
flatbuffers::FlatBufferBuilder *fbb) {
flatbuffers::voffset_t field_offset = flatbuffers::FieldIndexToOffset(
static_cast<flatbuffers::voffset_t>(field_index));
flatbuffers::TypeCode type_code = typetable->type_codes[field_index];
const flatbuffers::ElementaryType elementary_type =
static_cast<flatbuffers::ElementaryType>(type_code.base_type);
switch (elementary_type) {
case flatbuffers::ET_UTYPE:
case flatbuffers::ET_BOOL:
case flatbuffers::ET_CHAR:
case flatbuffers::ET_UCHAR:
case flatbuffers::ET_SHORT:
case flatbuffers::ET_USHORT:
case flatbuffers::ET_INT:
case flatbuffers::ET_UINT:
case flatbuffers::ET_LONG:
case flatbuffers::ET_ULONG:
case flatbuffers::ET_STRING:
case flatbuffers::ET_SEQUENCE:
fprintf(
stderr, "Mismatched type for field '%s'. Got: double, expected %s\n",
typetable->names[field_index], ElementaryTypeName(elementary_type));
return false;
case flatbuffers::ET_FLOAT:
fbb->AddElement<float>(field_offset, double_value, 0);
return true;
case flatbuffers::ET_DOUBLE:
fbb->AddElement<double>(field_offset, double_value, 0);
return true;
}
return false;
}
bool AddSingleElement(const flatbuffers::TypeTable *typetable, int field_index,
flatbuffers::Offset<flatbuffers::String> offset_element,
flatbuffers::FlatBufferBuilder *fbb) {
flatbuffers::TypeCode type_code = typetable->type_codes[field_index];
flatbuffers::voffset_t field_offset = flatbuffers::FieldIndexToOffset(
static_cast<flatbuffers::voffset_t>(field_index));
// Vectors will always be Offset<>'s.
if (type_code.is_vector) {
fbb->AddOffset(field_offset, offset_element);
return true;
}
const flatbuffers::ElementaryType elementary_type =
static_cast<flatbuffers::ElementaryType>(type_code.base_type);
switch (elementary_type) {
case flatbuffers::ET_CHAR:
case flatbuffers::ET_UCHAR:
case flatbuffers::ET_SHORT:
case flatbuffers::ET_USHORT:
case flatbuffers::ET_INT:
case flatbuffers::ET_UINT:
case flatbuffers::ET_LONG:
case flatbuffers::ET_ULONG:
case flatbuffers::ET_UTYPE:
case flatbuffers::ET_BOOL:
case flatbuffers::ET_FLOAT:
case flatbuffers::ET_DOUBLE:
fprintf(
stderr, "Mismatched type for field '%s'. Got: string, expected %s\n",
typetable->names[field_index], ElementaryTypeName(elementary_type));
CHECK_EQ(type_code.sequence_ref, -1)
<< ": Field name " << typetable->names[field_index]
<< " Got string expected " << ElementaryTypeName(elementary_type);
return false;
case flatbuffers::ET_STRING:
CHECK_EQ(type_code.sequence_ref, -1);
case flatbuffers::ET_SEQUENCE:
fbb->AddOffset(field_offset, offset_element);
return true;
}
return false;
}
bool JsonParser::FinishVector(int field_index) {
flatbuffers::TypeCode type_code =
stack_.back().typetable->type_codes[field_index];
const flatbuffers::ElementaryType elementary_type =
static_cast<flatbuffers::ElementaryType>(type_code.base_type);
// Vectors have a start (unfortunately which needs to know the size)
fbb_->StartVector(
stack_.back().vector_elements.size(),
flatbuffers::InlineSize(elementary_type, stack_.back().typetable));
// Then the data (in reverse order for some reason...)
for (size_t i = stack_.back().vector_elements.size(); i > 0;) {
const Element &element = stack_.back().vector_elements[--i];
switch (element.type) {
case Element::ElementType::INT:
if (!PushElement(elementary_type, element.int_element)) return false;
break;
case Element::ElementType::DOUBLE:
CHECK_EQ(type_code.sequence_ref, -1)
<< ": Field index is " << field_index;
if (!PushElement(elementary_type, element.double_element)) return false;
break;
case Element::ElementType::OFFSET:
if (!PushElement(elementary_type, element.offset_element)) return false;
break;
}
}
// Then an End which is placed into the buffer the same as any other offset.
stack_.back().elements.emplace_back(
field_index, flatbuffers::Offset<flatbuffers::String>(
fbb_->EndVector(stack_.back().vector_elements.size())));
stack_.back().vector_elements.clear();
return true;
}
bool JsonParser::PushElement(flatbuffers::ElementaryType elementary_type,
int64_t int_value) {
switch (elementary_type) {
case flatbuffers::ET_BOOL:
fbb_->PushElement<bool>(int_value);
return true;
case flatbuffers::ET_CHAR:
fbb_->PushElement<int8_t>(int_value);
return true;
case flatbuffers::ET_UCHAR:
fbb_->PushElement<uint8_t>(int_value);
return true;
case flatbuffers::ET_SHORT:
fbb_->PushElement<int16_t>(int_value);
return true;
case flatbuffers::ET_USHORT:
fbb_->PushElement<uint16_t>(int_value);
return true;
case flatbuffers::ET_INT:
fbb_->PushElement<int32_t>(int_value);
return true;
case flatbuffers::ET_UINT:
fbb_->PushElement<uint32_t>(int_value);
return true;
case flatbuffers::ET_LONG:
fbb_->PushElement<int64_t>(int_value);
return true;
case flatbuffers::ET_ULONG:
fbb_->PushElement<uint64_t>(int_value);
return true;
case flatbuffers::ET_FLOAT:
fbb_->PushElement<float>(int_value);
return true;
case flatbuffers::ET_DOUBLE:
fbb_->PushElement<double>(int_value);
return true;
case flatbuffers::ET_STRING:
case flatbuffers::ET_UTYPE:
case flatbuffers::ET_SEQUENCE:
fprintf(stderr,
"Mismatched type for field '%s'. Got: integer, expected %s\n",
stack_.back().field_name.c_str(),
ElementaryTypeName(elementary_type));
return false;
};
return false;
}
bool JsonParser::PushElement(flatbuffers::ElementaryType elementary_type,
double double_value) {
switch (elementary_type) {
case flatbuffers::ET_UTYPE:
case flatbuffers::ET_BOOL:
case flatbuffers::ET_CHAR:
case flatbuffers::ET_UCHAR:
case flatbuffers::ET_SHORT:
case flatbuffers::ET_USHORT:
case flatbuffers::ET_INT:
case flatbuffers::ET_UINT:
case flatbuffers::ET_LONG:
case flatbuffers::ET_ULONG:
case flatbuffers::ET_STRING:
case flatbuffers::ET_SEQUENCE:
fprintf(stderr,
"Mismatched type for field '%s'. Got: double, expected %s\n",
stack_.back().field_name.c_str(),
ElementaryTypeName(elementary_type));
return false;
case flatbuffers::ET_FLOAT:
fbb_->PushElement<float>(double_value);
return true;
case flatbuffers::ET_DOUBLE:
fbb_->PushElement<double>(double_value);
return true;
}
return false;
}
bool JsonParser::PushElement(
flatbuffers::ElementaryType elementary_type,
flatbuffers::Offset<flatbuffers::String> offset_value) {
switch (elementary_type) {
case flatbuffers::ET_UTYPE:
case flatbuffers::ET_BOOL:
case flatbuffers::ET_CHAR:
case flatbuffers::ET_UCHAR:
case flatbuffers::ET_SHORT:
case flatbuffers::ET_USHORT:
case flatbuffers::ET_INT:
case flatbuffers::ET_UINT:
case flatbuffers::ET_LONG:
case flatbuffers::ET_ULONG:
case flatbuffers::ET_FLOAT:
case flatbuffers::ET_DOUBLE:
fprintf(stderr,
"Mismatched type for field '%s'. Got: sequence, expected %s\n",
stack_.back().field_name.c_str(),
ElementaryTypeName(elementary_type));
return false;
case flatbuffers::ET_STRING:
case flatbuffers::ET_SEQUENCE:
fbb_->PushElement(offset_value);
return true;
}
return false;
}
} // namespace
flatbuffers::Offset<flatbuffers::Table> JsonToFlatbuffer(
const std::string_view data, const flatbuffers::TypeTable *typetable,
flatbuffers::FlatBufferBuilder *fbb) {
JsonParser p(fbb);
return p.Parse(data, typetable);
}
flatbuffers::DetachedBuffer JsonToFlatbuffer(
const std::string_view data,
const flatbuffers::TypeTable *typetable) {
flatbuffers::FlatBufferBuilder fbb;
fbb.ForceDefaults(true);
const flatbuffers::Offset<flatbuffers::Table> result =
JsonToFlatbuffer(data, typetable, &fbb);
if (result.o != 0) {
fbb.Finish(result);
return fbb.Release();
} else {
// Otherwise return an empty vector.
return flatbuffers::DetachedBuffer();
}
}
::std::string BufferFlatbufferToJson(const uint8_t *buffer,
const ::flatbuffers::TypeTable *typetable,
bool multi_line) {
// It is pretty common to get passed in a nullptr when a test fails. Rather
// than CHECK, return a more user friendly result.
if (buffer == nullptr) {
return "null";
}
return TableFlatbufferToJson(reinterpret_cast<const flatbuffers::Table *>(
flatbuffers::GetRoot<uint8_t>(buffer)),
typetable, multi_line);
}
::std::string TableFlatbufferToJson(const flatbuffers::Table *t,
const ::flatbuffers::TypeTable *typetable,
bool multi_line) {
// It is pretty common to get passed in a nullptr when a test fails. Rather
// than CHECK, return a more user friendly result.
if (t == nullptr) {
return "null";
}
::flatbuffers::ToStringVisitor tostring_visitor(
multi_line ? "\n" : " ", true, multi_line ? " " : "", multi_line);
flatbuffers::IterateObject(reinterpret_cast<const uint8_t *>(t), typetable,
&tostring_visitor);
return tostring_visitor.s;
}
} // namespace aos