blob: d35bec9607747b3911e142c1b1b0ca4153fffe6e [file] [log] [blame]
#include "y2020/control_loops/superstructure/turret/aiming.h"
#include "y2020/control_loops/drivetrain/drivetrain_base.h"
namespace y2020 {
namespace control_loops {
namespace superstructure {
namespace turret {
using frc971::control_loops::Pose;
namespace {
// The overall length and width of the field, in meters.
constexpr double kFieldLength = 15.983;
constexpr double kFieldWidth = 8.212;
// Height of the center of the port(s) above the ground, in meters.
constexpr double kPortHeight = 2.494;
// Maximum shot angle at which we will attempt to make the shot into the inner
// port, in radians. Zero would imply that we could only shoot if we were
// exactly perpendicular to the target. Larger numbers allow us to aim at the
// inner port more aggressively, at the risk of being more likely to miss the
// outer port entirely.
constexpr double kMaxInnerPortAngle = 20.0 * M_PI / 180.0;
// Distance (in meters) from the edge of the field to the port.
constexpr double kEdgeOfFieldToPort = 2.404;
// The amount (in meters) that the inner port is set back from the outer port.
constexpr double kInnerPortBackset = 0.743;
// Minimum distance that we must be from the inner port in order to attempt the
// shot--this is to account for the fact that if we are too close to the target,
// then we won't have a clear shot on the inner port.
constexpr double kMinimumInnerPortShotDistance = 4.0;
Pose ReverseSideOfField(Pose target) {
*target.mutable_pos() *= -1;
target.set_theta(aos::math::NormalizeAngle(target.rel_theta() + M_PI));
return target;
}
flatbuffers::DetachedBuffer MakePrefilledGoal() {
flatbuffers::FlatBufferBuilder fbb;
fbb.ForceDefaults(true);
Aimer::Goal::Builder builder(fbb);
builder.add_unsafe_goal(0);
builder.add_goal_velocity(0);
builder.add_ignore_profile(true);
fbb.Finish(builder.Finish());
return fbb.Release();
}
} // namespace
Pose InnerPortPose(aos::Alliance alliance) {
const Pose target({kFieldLength / 2 + kInnerPortBackset,
-kFieldWidth / 2.0 + kEdgeOfFieldToPort, kPortHeight},
0.0);
if (alliance == aos::Alliance::kRed) {
return ReverseSideOfField(target);
}
return target;
}
Pose OuterPortPose(aos::Alliance alliance) {
Pose target(
{kFieldLength / 2, -kFieldWidth / 2.0 + kEdgeOfFieldToPort, kPortHeight},
0.0);
if (alliance == aos::Alliance::kRed) {
return ReverseSideOfField(target);
}
return target;
}
Aimer::Aimer() : goal_(MakePrefilledGoal()) {}
void Aimer::Update(const Status *status, aos::Alliance alliance) {
// This doesn't do anything intelligent with wrapping--it just produces a
// result in the range (-pi, pi] rather than taking advantage of the turret's
// full range.
const Pose robot_pose({status->x(), status->y(), 0}, status->theta());
const Pose inner_port = InnerPortPose(alliance);
const Pose outer_port = OuterPortPose(alliance);
const Pose robot_pose_from_inner_port = robot_pose.Rebase(&inner_port);
const double inner_port_angle = robot_pose_from_inner_port.heading();
const double inner_port_distance = robot_pose_from_inner_port.xy_norm();
aiming_for_inner_port_ =
(std::abs(inner_port_angle) < kMaxInnerPortAngle) &&
(inner_port_distance > kMinimumInnerPortShotDistance);
const Pose goal =
(aiming_for_inner_port_ ? inner_port : outer_port).Rebase(&robot_pose);
const double heading_to_goal = goal.heading();
CHECK(status->has_localizer());
distance_ = goal.xy_norm();
// TODO(james): This code should probably just be in the localizer and have
// xdot/ydot get populated in the status message directly... that way we don't
// keep duplicating this math.
// Also, this doesn't currently take into account the lateral velocity of the
// robot. All of this would be helped by just doing this work in the Localizer
// itself.
const Eigen::Vector2d linear_angular =
drivetrain::GetDrivetrainConfig().Tlr_to_la() *
Eigen::Vector2d(status->localizer()->left_velocity(),
status->localizer()->right_velocity());
// X and Y dot are negated because we are interested in the derivative of
// (target_pos - robot_pos).
const double xdot = -linear_angular(0) * std::cos(status->theta());
const double ydot = -linear_angular(0) * std::sin(status->theta());
const double rel_x = goal.rel_pos().x();
const double rel_y = goal.rel_pos().y();
const double squared_norm = rel_x * rel_x + rel_y * rel_y;
// If squared_norm gets to be too close to zero, just zero out the relevant
// term to prevent NaNs. Note that this doesn't address the chattering that
// would likely occur if we were to get excessively close to the target.
const double atan_diff = (squared_norm < 1e-3)
? 0.0
: (rel_x * ydot - rel_y * xdot) / squared_norm;
// heading = atan2(relative_y, relative_x) - robot_theta
// dheading / dt = (rel_x * rel_y' - rel_y * rel_x') / (rel_x^2 + rel_y^2) - dtheta / dt
const double dheading_dt = atan_diff - linear_angular(1);
goal_.mutable_message()->mutate_unsafe_goal(heading_to_goal);
goal_.mutable_message()->mutate_goal_velocity(dheading_dt);
}
flatbuffers::Offset<AimerStatus> Aimer::PopulateStatus(
flatbuffers::FlatBufferBuilder *fbb) const {
AimerStatus::Builder builder(*fbb);
builder.add_turret_position(goal_.message().unsafe_goal());
builder.add_turret_velocity(goal_.message().goal_velocity());
builder.add_aiming_for_inner_port(aiming_for_inner_port_);
return builder.Finish();
}
} // namespace turret
} // namespace superstructure
} // namespace control_loops
} // namespace y2020