| #include "y2020/control_loops/superstructure/turret/aiming.h" |
| |
| #include "y2020/control_loops/drivetrain/drivetrain_base.h" |
| |
| namespace y2020 { |
| namespace control_loops { |
| namespace superstructure { |
| namespace turret { |
| |
| using frc971::control_loops::Pose; |
| |
| namespace { |
| // The overall length and width of the field, in meters. |
| constexpr double kFieldLength = 15.983; |
| constexpr double kFieldWidth = 8.212; |
| // Height of the center of the port(s) above the ground, in meters. |
| constexpr double kPortHeight = 2.494; |
| |
| // Maximum shot angle at which we will attempt to make the shot into the inner |
| // port, in radians. Zero would imply that we could only shoot if we were |
| // exactly perpendicular to the target. Larger numbers allow us to aim at the |
| // inner port more aggressively, at the risk of being more likely to miss the |
| // outer port entirely. |
| constexpr double kMaxInnerPortAngle = 20.0 * M_PI / 180.0; |
| |
| // Distance (in meters) from the edge of the field to the port. |
| constexpr double kEdgeOfFieldToPort = 2.404; |
| |
| // The amount (in meters) that the inner port is set back from the outer port. |
| constexpr double kInnerPortBackset = 0.743; |
| |
| // Minimum distance that we must be from the inner port in order to attempt the |
| // shot--this is to account for the fact that if we are too close to the target, |
| // then we won't have a clear shot on the inner port. |
| constexpr double kMinimumInnerPortShotDistance = 4.0; |
| |
| Pose ReverseSideOfField(Pose target) { |
| *target.mutable_pos() *= -1; |
| target.set_theta(aos::math::NormalizeAngle(target.rel_theta() + M_PI)); |
| return target; |
| } |
| |
| flatbuffers::DetachedBuffer MakePrefilledGoal() { |
| flatbuffers::FlatBufferBuilder fbb; |
| fbb.ForceDefaults(true); |
| Aimer::Goal::Builder builder(fbb); |
| builder.add_unsafe_goal(0); |
| builder.add_goal_velocity(0); |
| builder.add_ignore_profile(true); |
| fbb.Finish(builder.Finish()); |
| return fbb.Release(); |
| } |
| } // namespace |
| |
| Pose InnerPortPose(aos::Alliance alliance) { |
| const Pose target({kFieldLength / 2 + kInnerPortBackset, |
| -kFieldWidth / 2.0 + kEdgeOfFieldToPort, kPortHeight}, |
| 0.0); |
| if (alliance == aos::Alliance::kRed) { |
| return ReverseSideOfField(target); |
| } |
| return target; |
| } |
| |
| Pose OuterPortPose(aos::Alliance alliance) { |
| Pose target( |
| {kFieldLength / 2, -kFieldWidth / 2.0 + kEdgeOfFieldToPort, kPortHeight}, |
| 0.0); |
| if (alliance == aos::Alliance::kRed) { |
| return ReverseSideOfField(target); |
| } |
| return target; |
| } |
| |
| Aimer::Aimer() : goal_(MakePrefilledGoal()) {} |
| |
| void Aimer::Update(const Status *status, aos::Alliance alliance) { |
| // This doesn't do anything intelligent with wrapping--it just produces a |
| // result in the range (-pi, pi] rather than taking advantage of the turret's |
| // full range. |
| const Pose robot_pose({status->x(), status->y(), 0}, status->theta()); |
| const Pose inner_port = InnerPortPose(alliance); |
| const Pose outer_port = OuterPortPose(alliance); |
| const Pose robot_pose_from_inner_port = robot_pose.Rebase(&inner_port); |
| const double inner_port_angle = robot_pose_from_inner_port.heading(); |
| const double inner_port_distance = robot_pose_from_inner_port.xy_norm(); |
| aiming_for_inner_port_ = |
| (std::abs(inner_port_angle) < kMaxInnerPortAngle) && |
| (inner_port_distance > kMinimumInnerPortShotDistance); |
| const Pose goal = |
| (aiming_for_inner_port_ ? inner_port : outer_port).Rebase(&robot_pose); |
| const double heading_to_goal = goal.heading(); |
| CHECK(status->has_localizer()); |
| distance_ = goal.xy_norm(); |
| // TODO(james): This code should probably just be in the localizer and have |
| // xdot/ydot get populated in the status message directly... that way we don't |
| // keep duplicating this math. |
| // Also, this doesn't currently take into account the lateral velocity of the |
| // robot. All of this would be helped by just doing this work in the Localizer |
| // itself. |
| const Eigen::Vector2d linear_angular = |
| drivetrain::GetDrivetrainConfig().Tlr_to_la() * |
| Eigen::Vector2d(status->localizer()->left_velocity(), |
| status->localizer()->right_velocity()); |
| // X and Y dot are negated because we are interested in the derivative of |
| // (target_pos - robot_pos). |
| const double xdot = -linear_angular(0) * std::cos(status->theta()); |
| const double ydot = -linear_angular(0) * std::sin(status->theta()); |
| const double rel_x = goal.rel_pos().x(); |
| const double rel_y = goal.rel_pos().y(); |
| const double squared_norm = rel_x * rel_x + rel_y * rel_y; |
| // If squared_norm gets to be too close to zero, just zero out the relevant |
| // term to prevent NaNs. Note that this doesn't address the chattering that |
| // would likely occur if we were to get excessively close to the target. |
| const double atan_diff = (squared_norm < 1e-3) |
| ? 0.0 |
| : (rel_x * ydot - rel_y * xdot) / squared_norm; |
| // heading = atan2(relative_y, relative_x) - robot_theta |
| // dheading / dt = (rel_x * rel_y' - rel_y * rel_x') / (rel_x^2 + rel_y^2) - dtheta / dt |
| const double dheading_dt = atan_diff - linear_angular(1); |
| |
| goal_.mutable_message()->mutate_unsafe_goal(heading_to_goal); |
| goal_.mutable_message()->mutate_goal_velocity(dheading_dt); |
| } |
| |
| flatbuffers::Offset<AimerStatus> Aimer::PopulateStatus( |
| flatbuffers::FlatBufferBuilder *fbb) const { |
| AimerStatus::Builder builder(*fbb); |
| builder.add_turret_position(goal_.message().unsafe_goal()); |
| builder.add_turret_velocity(goal_.message().goal_velocity()); |
| builder.add_aiming_for_inner_port(aiming_for_inner_port_); |
| return builder.Finish(); |
| } |
| |
| } // namespace turret |
| } // namespace superstructure |
| } // namespace control_loops |
| } // namespace y2020 |