| #include <map> |
| #include <opencv2/calib3d.hpp> |
| #include <opencv2/features2d.hpp> |
| #include <opencv2/highgui/highgui.hpp> |
| #include <opencv2/imgproc.hpp> |
| #include <random> |
| |
| #include "aos/events/shm_event_loop.h" |
| #include "aos/init.h" |
| #include "aos/time/time.h" |
| #include "frc971/vision/vision_generated.h" |
| #include "y2022/vision/blob_detector.h" |
| #include "y2022/vision/calibration_data.h" |
| #include "y2022/vision/target_estimate_generated.h" |
| #include "y2022/vision/target_estimator.h" |
| |
| DEFINE_string(capture, "", |
| "If set, capture a single image and save it to this filename."); |
| DEFINE_string(channel, "/camera", "Channel name for the image."); |
| DEFINE_string(config, "aos_config.json", "Path to the config file to use."); |
| DEFINE_string(png_dir, "", "Path to a set of images to display."); |
| DEFINE_string(calibration_node, "", |
| "If reading locally, use the calibration for this node"); |
| DEFINE_int32( |
| calibration_team_number, 971, |
| "If reading locally, use the calibration for a node with this team number"); |
| DEFINE_uint64(skip, 0, |
| "Number of images to skip if doing local reading (png_dir set)."); |
| DEFINE_bool(show_features, true, "Show the blobs."); |
| DEFINE_bool(display_estimation, false, |
| "If true, display the target estimation graphically"); |
| |
| namespace y2022 { |
| namespace vision { |
| namespace { |
| |
| using namespace frc971::vision; |
| |
| std::map<int64_t, BlobDetector::BlobResult> target_est_map; |
| aos::Fetcher<frc971::vision::CameraImage> image_fetcher; |
| aos::Fetcher<y2022::vision::TargetEstimate> target_estimate_fetcher; |
| |
| std::vector<cv::Point> FbsToCvPoints( |
| const flatbuffers::Vector<const Point *> &points_fbs) { |
| std::vector<cv::Point> points; |
| for (const Point *point : points_fbs) { |
| points.emplace_back(point->x(), point->y()); |
| } |
| return points; |
| } |
| |
| std::vector<std::vector<cv::Point>> FbsToCvBlobs( |
| const flatbuffers::Vector<flatbuffers::Offset<Blob>> *blobs_fbs) { |
| if (blobs_fbs == nullptr) { |
| return {}; |
| } |
| std::vector<std::vector<cv::Point>> blobs; |
| for (const auto blob : *blobs_fbs) { |
| blobs.emplace_back(FbsToCvPoints(*blob->points())); |
| } |
| return blobs; |
| } |
| |
| std::vector<BlobDetector::BlobStats> FbsToBlobStats( |
| const flatbuffers::Vector<flatbuffers::Offset<BlobStatsFbs>> |
| &blob_stats_fbs) { |
| std::vector<BlobDetector::BlobStats> blob_stats; |
| for (const auto stats_fbs : blob_stats_fbs) { |
| cv::Point centroid{stats_fbs->centroid()->x(), stats_fbs->centroid()->y()}; |
| cv::Size size{stats_fbs->size()->width(), stats_fbs->size()->height()}; |
| blob_stats.emplace_back(BlobDetector::BlobStats{ |
| centroid, size, stats_fbs->aspect_ratio(), stats_fbs->area(), |
| static_cast<size_t>(stats_fbs->num_points())}); |
| } |
| return blob_stats; |
| } |
| |
| bool DisplayLoop() { |
| int64_t target_timestamp = 0; |
| if (target_estimate_fetcher.Fetch()) { |
| const TargetEstimate *target_est = target_estimate_fetcher.get(); |
| CHECK(target_est != nullptr) |
| << "Got null when trying to fetch target estimate"; |
| |
| target_timestamp = target_est->image_monotonic_timestamp_ns(); |
| if (target_est->blob_result()->filtered_blobs()->size() > 0) { |
| VLOG(2) << "Got blobs for timestamp " << target_est << "\n"; |
| } |
| // Store the TargetEstimate data so we can match timestamp with image |
| target_est_map[target_timestamp] = BlobDetector::BlobResult{ |
| cv::Mat(), |
| FbsToCvBlobs(target_est->blob_result()->filtered_blobs()), |
| FbsToCvBlobs(target_est->blob_result()->unfiltered_blobs()), |
| FbsToBlobStats(*target_est->blob_result()->blob_stats()), |
| FbsToBlobStats(*target_est->blob_result()->filtered_stats()), |
| cv::Point{target_est->blob_result()->centroid()->x(), |
| target_est->blob_result()->centroid()->y()}}; |
| // Only keep last 10 matches |
| while (target_est_map.size() > 10u) { |
| target_est_map.erase(target_est_map.begin()); |
| } |
| } |
| int64_t image_timestamp = 0; |
| if (!image_fetcher.Fetch()) { |
| VLOG(2) << "Couldn't fetch image"; |
| return true; |
| } |
| const CameraImage *image = image_fetcher.get(); |
| CHECK(image != nullptr) << "Couldn't read image"; |
| image_timestamp = image->monotonic_timestamp_ns(); |
| VLOG(2) << "Got image at timestamp: " << image_timestamp; |
| |
| // Create color image: |
| cv::Mat image_color_mat(cv::Size(image->cols(), image->rows()), CV_8UC2, |
| (void *)image->data()->data()); |
| cv::Mat bgr_image(cv::Size(image->cols(), image->rows()), CV_8UC3); |
| cv::cvtColor(image_color_mat, bgr_image, cv::COLOR_YUV2BGR_YUYV); |
| |
| if (!FLAGS_capture.empty()) { |
| cv::imwrite(FLAGS_capture, bgr_image); |
| return false; |
| } |
| |
| auto target_est_it = target_est_map.find(image_timestamp); |
| if (target_est_it != target_est_map.end()) { |
| LOG(INFO) << image->monotonic_timestamp_ns() << ": # unfiltered blobs: " |
| << target_est_it->second.unfiltered_blobs.size() |
| << "; # filtered blobs: " |
| << target_est_it->second.filtered_blobs.size(); |
| |
| cv::Mat ret_image = |
| cv::Mat::zeros(cv::Size(image->cols(), image->rows()), CV_8UC3); |
| BlobDetector::DrawBlobs(target_est_it->second, ret_image); |
| cv::imshow("blobs", ret_image); |
| } |
| |
| cv::imshow("image", bgr_image); |
| |
| int keystroke = cv::waitKey(1); |
| if ((keystroke & 0xFF) == static_cast<int>('c')) { |
| // Convert again, to get clean image |
| cv::cvtColor(image_color_mat, bgr_image, cv::COLOR_YUV2BGR_YUYV); |
| std::stringstream name; |
| name << "capture-" << aos::realtime_clock::now() << ".png"; |
| cv::imwrite(name.str(), bgr_image); |
| LOG(INFO) << "Saved image file: " << name.str(); |
| } else if ((keystroke & 0xFF) == static_cast<int>('q')) { |
| return false; |
| } |
| return true; |
| } |
| |
| void ViewerMain() { |
| aos::FlatbufferDetachedBuffer<aos::Configuration> config = |
| aos::configuration::ReadConfig(FLAGS_config); |
| |
| aos::ShmEventLoop event_loop(&config.message()); |
| |
| image_fetcher = |
| event_loop.MakeFetcher<frc971::vision::CameraImage>(FLAGS_channel); |
| |
| target_estimate_fetcher = |
| event_loop.MakeFetcher<y2022::vision::TargetEstimate>(FLAGS_channel); |
| |
| // Run the display loop |
| event_loop.AddPhasedLoop( |
| [&event_loop](int) { |
| if (!DisplayLoop()) { |
| LOG(INFO) << "Calling event_loop Exit"; |
| event_loop.Exit(); |
| }; |
| }, |
| ::std::chrono::milliseconds(100)); |
| |
| event_loop.Run(); |
| } |
| |
| // TODO(milind): delete this when viewer can accumulate local images and results |
| void ViewerLocal() { |
| std::vector<cv::String> file_list; |
| cv::glob(FLAGS_png_dir + "/*.png", file_list, false); |
| |
| const aos::FlatbufferSpan<calibration::CalibrationData> calibration_data( |
| CalibrationData()); |
| |
| const calibration::CameraCalibration *calibration = nullptr; |
| for (const calibration::CameraCalibration *candidate : |
| *calibration_data.message().camera_calibrations()) { |
| if ((candidate->node_name()->string_view() == FLAGS_calibration_node) && |
| (candidate->team_number() == FLAGS_calibration_team_number)) { |
| calibration = candidate; |
| break; |
| } |
| } |
| |
| CHECK(calibration) << "No calibration data found for node \"" |
| << FLAGS_calibration_node << "\" with team number " |
| << FLAGS_calibration_team_number; |
| |
| auto intrinsics_float = cv::Mat(3, 3, CV_32F, |
| const_cast<void *>(static_cast<const void *>( |
| calibration->intrinsics()->data()))); |
| cv::Mat intrinsics; |
| intrinsics_float.convertTo(intrinsics, CV_64F); |
| |
| const frc971::vision::calibration::TransformationMatrix *transform = |
| calibration->has_turret_extrinsics() ? calibration->turret_extrinsics() |
| : calibration->fixed_extrinsics(); |
| |
| const auto extrinsics_float = cv::Mat( |
| 4, 4, CV_32F, |
| const_cast<void *>(static_cast<const void *>(transform->data()->data()))); |
| cv::Mat extrinsics; |
| extrinsics_float.convertTo(extrinsics, CV_64F); |
| |
| TargetEstimator estimator(intrinsics, extrinsics); |
| |
| for (auto it = file_list.begin() + FLAGS_skip; it < file_list.end(); it++) { |
| LOG(INFO) << "Reading file " << *it; |
| cv::Mat image_mat = cv::imread(it->c_str()); |
| BlobDetector::BlobResult blob_result; |
| blob_result.binarized_image = |
| cv::Mat::zeros(cv::Size(image_mat.cols, image_mat.rows), CV_8UC1); |
| BlobDetector::ExtractBlobs(image_mat, &blob_result); |
| |
| cv::Mat ret_image = |
| cv::Mat::zeros(cv::Size(image_mat.cols, image_mat.rows), CV_8UC3); |
| BlobDetector::DrawBlobs(blob_result, ret_image); |
| |
| LOG(INFO) << ": # blobs: " << blob_result.filtered_blobs.size() |
| << " (# removed: " |
| << blob_result.unfiltered_blobs.size() - |
| blob_result.filtered_blobs.size() |
| << ")"; |
| |
| if (blob_result.filtered_blobs.size() > 0) { |
| estimator.Solve(blob_result.filtered_stats, |
| FLAGS_display_estimation ? std::make_optional(ret_image) |
| : std::nullopt); |
| estimator.DrawEstimate(ret_image); |
| } |
| |
| cv::imshow("image", image_mat); |
| cv::imshow("mask", blob_result.binarized_image); |
| cv::imshow("blobs", ret_image); |
| |
| int keystroke = cv::waitKey(0); |
| if ((keystroke & 0xFF) == static_cast<int>('q')) { |
| return; |
| } |
| } |
| } |
| } // namespace |
| } // namespace vision |
| } // namespace y2022 |
| |
| // Quick and lightweight viewer for images |
| int main(int argc, char **argv) { |
| aos::InitGoogle(&argc, &argv); |
| if (FLAGS_png_dir != "") |
| y2022::vision::ViewerLocal(); |
| else |
| y2022::vision::ViewerMain(); |
| } |