blob: 9a19201ce095b5029cde7b687837817236b5647c [file] [log] [blame]
#ifndef FRC971_CONTROL_LOOPS_PROFILED_SUBSYSTEM_H_
#define FRC971_CONTROL_LOOPS_PROFILED_SUBSYSTEM_H_
#include <array>
#include <chrono>
#include <memory>
#include <utility>
#include "Eigen/Dense"
#include "aos/common/controls/control_loop.h"
#include "aos/common/util/trapezoid_profile.h"
#include "frc971/control_loops/control_loops.q.h"
#include "frc971/control_loops/profiled_subsystem.q.h"
#include "frc971/control_loops/simple_capped_state_feedback_loop.h"
#include "frc971/control_loops/state_feedback_loop.h"
#include "frc971/zeroing/zeroing.h"
#include "frc971/constants.h"
namespace frc971 {
namespace control_loops {
// TODO(Brian): Use a tuple instead of an array to support heterogeneous zeroing
// styles.
template <int number_of_states, int number_of_axes,
class ZeroingEstimator =
::frc971::zeroing::PotAndIndexPulseZeroingEstimator>
class ProfiledSubsystem {
public:
ProfiledSubsystem(
::std::unique_ptr<::frc971::control_loops::SimpleCappedStateFeedbackLoop<
number_of_states, number_of_axes, number_of_axes>> loop,
::std::array<ZeroingEstimator, number_of_axes> &&estimators)
: loop_(::std::move(loop)), estimators_(::std::move(estimators)) {
zeroed_.fill(false);
unprofiled_goal_.setZero();
}
// Returns whether an error has occured
bool error() const {
for (const auto &estimator : estimators_) {
if (estimator.error()) {
return true;
}
}
return false;
}
void Reset() {
zeroed_.fill(false);
initialized_ = false;
for (auto &estimator : estimators_) {
estimator.Reset();
}
}
// Returns the controller.
const StateFeedbackLoop<number_of_states, number_of_axes, number_of_axes> &
controller() const {
return *loop_;
}
int controller_index() const { return loop_->controller_index(); }
// Returns whether the estimators have been initialized and zeroed.
bool initialized() const { return initialized_; }
bool zeroed() const {
for (int i = 0; i < number_of_axes; ++i) {
if (!zeroed_[i]) {
return false;
}
}
return true;
}
bool zeroed(int index) const { return zeroed_[index]; };
// Returns the filtered goal.
const Eigen::Matrix<double, number_of_states, 1> &goal() const {
return loop_->R();
}
double goal(int row, int col) const { return loop_->R(row, col); }
// Returns the unprofiled goal.
const Eigen::Matrix<double, number_of_states, 1> &unprofiled_goal() const {
return unprofiled_goal_;
}
double unprofiled_goal(int row, int col) const {
return unprofiled_goal_(row, col);
}
// Returns the current state estimate.
const Eigen::Matrix<double, number_of_states, 1> &X_hat() const {
return loop_->X_hat();
}
double X_hat(int row, int col) const { return loop_->X_hat(row, col); }
// Returns the current internal estimator state for logging.
typename ZeroingEstimator::State EstimatorState(int index) {
typename ZeroingEstimator::State estimator_state;
::frc971::zeroing::PopulateEstimatorState(estimators_[index],
&estimator_state);
return estimator_state;
}
// Sets the maximum voltage that will be commanded by the loop.
void set_max_voltage(::std::array<double, number_of_axes> voltages) {
for (int i = 0; i < number_of_axes; ++i) {
loop_->set_max_voltage(i, voltages[i]);
}
}
protected:
void set_zeroed(int index, bool val) { zeroed_[index] = val; }
// TODO(austin): It's a bold assumption to assume that we will have the same
// number of sensors as axes. So far, that's been fine.
::std::unique_ptr<::frc971::control_loops::SimpleCappedStateFeedbackLoop<
number_of_states, number_of_axes, number_of_axes>> loop_;
// The goal that the profile tries to reach.
Eigen::Matrix<double, number_of_states, 1> unprofiled_goal_;
bool initialized_ = false;
::std::array<ZeroingEstimator, number_of_axes> estimators_;
private:
::std::array<bool, number_of_axes> zeroed_;
};
template <typename ZeroingEstimator =
::frc971::zeroing::PotAndIndexPulseZeroingEstimator>
class SingleDOFProfiledSubsystem
: public ::frc971::control_loops::ProfiledSubsystem<3, 1, ZeroingEstimator> {
public:
SingleDOFProfiledSubsystem(
::std::unique_ptr<SimpleCappedStateFeedbackLoop<3, 1, 1>> loop,
const typename ZeroingEstimator::ZeroingConstants &zeroing_constants,
const ::frc971::constants::Range &range, double default_angular_velocity,
double default_angular_acceleration);
// Updates our estimator with the latest position.
void Correct(typename ZeroingEstimator::Position position);
// Runs the controller and profile generator for a cycle.
void Update(bool disabled);
// Fills out the ProfiledJointStatus structure with the current state.
template <class StatusType>
void PopulateStatus(StatusType *status);
// Forces the current goal to the provided goal, bypassing the profiler.
void ForceGoal(double goal);
// Sets the unprofiled goal. The profiler will generate a profile to go to
// this goal.
void set_unprofiled_goal(double unprofiled_goal);
// Limits our profiles to a max velocity and acceleration for proper motion.
void AdjustProfile(const ::frc971::ProfileParameters &profile_parameters);
void AdjustProfile(double max_angular_velocity,
double max_angular_acceleration);
// Returns true if we have exceeded any hard limits.
bool CheckHardLimits();
// Returns the requested voltage.
double voltage() const { return this->loop_->U(0, 0); }
// Returns the current position.
double position() const { return this->Y_(0, 0); }
// For testing:
// Triggers an estimator error.
void TriggerEstimatorError() { this->estimators_[0].TriggerError(); }
const ::frc971::constants::Range &range() const { return range_; }
private:
// Limits the provided goal to the soft limits. Prints "name" when it fails
// to aid debugging.
void CapGoal(const char *name, Eigen::Matrix<double, 3, 1> *goal);
void UpdateOffset(double offset);
aos::util::TrapezoidProfile profile_;
// Current measurement.
Eigen::Matrix<double, 1, 1> Y_;
// Current offset. Y_ = offset_ + raw_sensor;
Eigen::Matrix<double, 1, 1> offset_;
const ::frc971::constants::Range range_;
const double default_velocity_;
const double default_acceleration_;
double last_position_ = 0;
};
namespace internal {
double UseUnlessZero(double target_value, double default_value);
} // namespace internal
template <class ZeroingEstimator>
SingleDOFProfiledSubsystem<ZeroingEstimator>::SingleDOFProfiledSubsystem(
::std::unique_ptr<SimpleCappedStateFeedbackLoop<3, 1, 1>> loop,
const typename ZeroingEstimator::ZeroingConstants &zeroing_constants,
const ::frc971::constants::Range &range, double default_velocity,
double default_acceleration)
: ProfiledSubsystem<3, 1, ZeroingEstimator>(::std::move(loop),
{{zeroing_constants}}),
profile_(::aos::controls::kLoopFrequency),
range_(range),
default_velocity_(default_velocity),
default_acceleration_(default_acceleration) {
Y_.setZero();
offset_.setZero();
AdjustProfile(0.0, 0.0);
}
template <class ZeroingEstimator>
void SingleDOFProfiledSubsystem<ZeroingEstimator>::UpdateOffset(double offset) {
const double doffset = offset - offset_(0, 0);
LOG(INFO, "Adjusting offset from %f to %f\n", offset_(0, 0), offset);
this->loop_->mutable_X_hat()(0, 0) += doffset;
this->Y_(0, 0) += doffset;
last_position_ += doffset;
this->loop_->mutable_R(0, 0) += doffset;
profile_.MoveGoal(doffset);
offset_(0, 0) = offset;
CapGoal("R", &this->loop_->mutable_R());
}
template <class ZeroingEstimator>
template <class StatusType>
void SingleDOFProfiledSubsystem<ZeroingEstimator>::PopulateStatus(
StatusType *status) {
status->zeroed = this->zeroed();
status->state = -1;
// We don't know, so default to the bad case.
status->estopped = true;
status->position = this->X_hat(0, 0);
status->velocity = this->X_hat(1, 0);
status->goal_position = this->goal(0, 0);
status->goal_velocity = this->goal(1, 0);
status->unprofiled_goal_position = this->unprofiled_goal(0, 0);
status->unprofiled_goal_velocity = this->unprofiled_goal(1, 0);
status->voltage_error = this->X_hat(2, 0);
status->calculated_velocity =
(position() - last_position_) /
::std::chrono::duration_cast<::std::chrono::duration<double>>(
::aos::controls::kLoopFrequency)
.count();
status->estimator_state = this->EstimatorState(0);
Eigen::Matrix<double, 3, 1> error = this->controller().error();
status->position_power = this->controller().K(0, 0) * error(0, 0);
status->velocity_power = this->controller().K(0, 1) * error(1, 0);
}
template <class ZeroingEstimator>
void SingleDOFProfiledSubsystem<ZeroingEstimator>::Correct(
typename ZeroingEstimator::Position new_position) {
this->estimators_[0].UpdateEstimate(new_position);
if (this->estimators_[0].error()) {
LOG(ERROR, "zeroing error\n");
return;
}
if (!this->initialized_) {
if (this->estimators_[0].offset_ready()) {
UpdateOffset(this->estimators_[0].offset());
this->initialized_ = true;
}
}
if (!this->zeroed(0) && this->estimators_[0].zeroed()) {
UpdateOffset(this->estimators_[0].offset());
this->set_zeroed(0, true);
}
last_position_ = position();
this->Y_ << new_position.encoder;
this->Y_ += this->offset_;
this->loop_->Correct(Y_);
}
template <class ZeroingEstimator>
void SingleDOFProfiledSubsystem<ZeroingEstimator>::CapGoal(
const char *name, Eigen::Matrix<double, 3, 1> *goal) {
// Limit the goal to min/max allowable positions.
if ((*goal)(0, 0) > range_.upper) {
LOG(WARNING, "Goal %s above limit, %f > %f\n", name, (*goal)(0, 0),
range_.upper);
(*goal)(0, 0) = range_.upper;
}
if ((*goal)(0, 0) < range_.lower) {
LOG(WARNING, "Goal %s below limit, %f < %f\n", name, (*goal)(0, 0),
range_.lower);
(*goal)(0, 0) = range_.lower;
}
}
template <class ZeroingEstimator>
void SingleDOFProfiledSubsystem<ZeroingEstimator>::ForceGoal(double goal) {
set_unprofiled_goal(goal);
this->loop_->mutable_R() = this->unprofiled_goal_;
this->loop_->mutable_next_R() = this->loop_->R();
const ::Eigen::Matrix<double, 3, 1> &R = this->loop_->R();
this->profile_.MoveCurrentState(R.block<2, 1>(0, 0));
}
template <class ZeroingEstimator>
void SingleDOFProfiledSubsystem<ZeroingEstimator>::set_unprofiled_goal(
double unprofiled_goal) {
this->unprofiled_goal_(0, 0) = unprofiled_goal;
this->unprofiled_goal_(1, 0) = 0.0;
this->unprofiled_goal_(2, 0) = 0.0;
CapGoal("unprofiled R", &this->unprofiled_goal_);
}
template <class ZeroingEstimator>
void SingleDOFProfiledSubsystem<ZeroingEstimator>::Update(bool disable) {
if (!disable) {
::Eigen::Matrix<double, 2, 1> goal_state = profile_.Update(
this->unprofiled_goal_(0, 0), this->unprofiled_goal_(1, 0));
this->loop_->mutable_next_R(0, 0) = goal_state(0, 0);
this->loop_->mutable_next_R(1, 0) = goal_state(1, 0);
this->loop_->mutable_next_R(2, 0) = 0.0;
CapGoal("next R", &this->loop_->mutable_next_R());
}
this->loop_->Update(disable);
if (!disable && this->loop_->U(0, 0) != this->loop_->U_uncapped(0, 0)) {
const ::Eigen::Matrix<double, 3, 1> &R = this->loop_->R();
profile_.MoveCurrentState(R.block<2, 1>(0, 0));
}
}
template <class ZeroingEstimator>
bool SingleDOFProfiledSubsystem<ZeroingEstimator>::CheckHardLimits() {
// Returns whether hard limits have been exceeded.
if (position() > range_.upper_hard || position() < range_.lower_hard) {
LOG(ERROR,
"SingleDOFProfiledSubsystem at %f out of bounds [%f, %f], ESTOPing\n",
position(), range_.lower_hard, range_.upper_hard);
return true;
}
return false;
}
template <class ZeroingEstimator>
void SingleDOFProfiledSubsystem<ZeroingEstimator>::AdjustProfile(
const ::frc971::ProfileParameters &profile_parameters) {
AdjustProfile(profile_parameters.max_velocity,
profile_parameters.max_acceleration);
}
template <class ZeroingEstimator>
void SingleDOFProfiledSubsystem<ZeroingEstimator>::AdjustProfile(
double max_angular_velocity, double max_angular_acceleration) {
profile_.set_maximum_velocity(
internal::UseUnlessZero(max_angular_velocity, default_velocity_));
profile_.set_maximum_acceleration(
internal::UseUnlessZero(max_angular_acceleration, default_acceleration_));
}
} // namespace control_loops
} // namespace frc971
#endif // FRC971_CONTROL_LOOPS_PROFILED_SUBSYSTEM_H_