blob: e6dbb1f842eb7ecd711e03403389e7a6b1c654ec [file] [log] [blame]
#include <inttypes.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <array>
#include <chrono>
#include <cmath>
#include <functional>
#include <mutex>
#include <thread>
#include "frc971/wpilib/ahal/AnalogInput.h"
#include "frc971/wpilib/ahal/Counter.h"
#include "frc971/wpilib/ahal/DigitalGlitchFilter.h"
#include "frc971/wpilib/ahal/DriverStation.h"
#include "frc971/wpilib/ahal/Encoder.h"
#include "frc971/wpilib/ahal/VictorSP.h"
#include "ctre/phoenix/CANifier.h"
#undef ERROR
#include "aos/commonmath.h"
#include "aos/events/event-loop.h"
#include "aos/events/shm-event-loop.h"
#include "aos/init.h"
#include "aos/logging/logging.h"
#include "aos/logging/queue_logging.h"
#include "aos/make_unique.h"
#include "aos/robot_state/robot_state.q.h"
#include "aos/time/time.h"
#include "aos/util/log_interval.h"
#include "aos/util/phased_loop.h"
#include "aos/util/wrapping_counter.h"
#include "ctre/phoenix/motorcontrol/can/TalonSRX.h"
#include "frc971/autonomous/auto.q.h"
#include "frc971/control_loops/drivetrain/drivetrain.q.h"
#include "frc971/wpilib/ADIS16448.h"
#include "frc971/wpilib/buffered_pcm.h"
#include "frc971/wpilib/buffered_solenoid.h"
#include "frc971/wpilib/dma.h"
#include "frc971/wpilib/drivetrain_writer.h"
#include "frc971/wpilib/encoder_and_potentiometer.h"
#include "frc971/wpilib/joystick_sender.h"
#include "frc971/wpilib/logging.q.h"
#include "frc971/wpilib/loop_output_handler.h"
#include "frc971/wpilib/pdp_fetcher.h"
#include "frc971/wpilib/sensor_reader.h"
#include "frc971/wpilib/wpilib_robot_base.h"
#include "y2019/constants.h"
#include "y2019/control_loops/drivetrain/camera.q.h"
#include "y2019/control_loops/superstructure/superstructure.q.h"
#include "y2019/jevois/spi.h"
#include "y2019/status_light.q.h"
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
using ::frc971::control_loops::drivetrain_queue;
using ::y2019::control_loops::superstructure::superstructure_queue;
using ::y2019::constants::Values;
using ::aos::monotonic_clock;
namespace chrono = ::std::chrono;
using aos::make_unique;
namespace y2019 {
namespace wpilib {
namespace {
constexpr double kMaxBringupPower = 12.0;
// TODO(Brian): Fix the interpretation of the result of GetRaw here and in the
// DMA stuff and then removing the * 2.0 in *_translate.
// The low bit is direction.
// TODO(brian): Use ::std::max instead once we have C++14 so that can be
// constexpr.
template <typename T>
constexpr T max(T a, T b) {
return (a > b) ? a : b;
}
template <typename T, typename... Rest>
constexpr T max(T a, T b, T c, Rest... rest) {
return max(max(a, b), c, rest...);
}
double drivetrain_translate(int32_t in) {
return ((static_cast<double>(in) /
Values::kDrivetrainEncoderCountsPerRevolution()) *
(2.0 * M_PI)) *
Values::kDrivetrainEncoderRatio() *
control_loops::drivetrain::kWheelRadius;
}
double drivetrain_velocity_translate(double in) {
return (((1.0 / in) / Values::kDrivetrainCyclesPerRevolution()) *
(2.0 * M_PI)) *
Values::kDrivetrainEncoderRatio() *
control_loops::drivetrain::kWheelRadius;
}
double elevator_pot_translate(double voltage) {
return voltage * Values::kElevatorPotRatio() *
(10.0 /*turns*/ / 5.0 /*volts*/) * (2 * M_PI /*radians*/);
}
double wrist_pot_translate(double voltage) {
return voltage * Values::kWristPotRatio() * (5.0 /*turns*/ / 5.0 /*volts*/) *
(2 * M_PI /*radians*/);
}
double stilts_pot_translate(double voltage) {
return voltage * Values::kStiltsPotRatio() *
(10.0 /*turns*/ / 5.0 /*volts*/) * (2 * M_PI /*radians*/);
}
constexpr double kMaxFastEncoderPulsesPerSecond =
max(Values::kMaxDrivetrainEncoderPulsesPerSecond(),
Values::kMaxIntakeEncoderPulsesPerSecond());
static_assert(kMaxFastEncoderPulsesPerSecond <= 1300000,
"fast encoders are too fast");
constexpr double kMaxMediumEncoderPulsesPerSecond =
max(Values::kMaxElevatorEncoderPulsesPerSecond(),
Values::kMaxWristEncoderPulsesPerSecond());
static_assert(kMaxMediumEncoderPulsesPerSecond <= 400000,
"medium encoders are too fast");
// Class to send position messages with sensor readings to our loops.
class SensorReader : public ::frc971::wpilib::SensorReader {
public:
SensorReader(::aos::EventLoop *event_loop)
: ::frc971::wpilib::SensorReader(event_loop),
auto_mode_sender_(
event_loop->MakeSender<::frc971::autonomous::AutonomousMode>(
".frc971.autonomous.auto_mode")) {
// Set to filter out anything shorter than 1/4 of the minimum pulse width
// we should ever see.
UpdateFastEncoderFilterHz(kMaxFastEncoderPulsesPerSecond);
UpdateMediumEncoderFilterHz(kMaxMediumEncoderPulsesPerSecond);
}
// Elevator
void set_elevator_encoder(::std::unique_ptr<frc::Encoder> encoder) {
medium_encoder_filter_.Add(encoder.get());
elevator_encoder_.set_encoder(::std::move(encoder));
}
void set_elevator_absolute_pwm(
::std::unique_ptr<frc::DigitalInput> absolute_pwm) {
elevator_encoder_.set_absolute_pwm(::std::move(absolute_pwm));
}
void set_elevator_potentiometer(
::std::unique_ptr<frc::AnalogInput> potentiometer) {
elevator_encoder_.set_potentiometer(::std::move(potentiometer));
}
// Intake
void set_intake_encoder(::std::unique_ptr<frc::Encoder> encoder) {
medium_encoder_filter_.Add(encoder.get());
intake_encoder_.set_encoder(::std::move(encoder));
}
void set_intake_absolute_pwm(
::std::unique_ptr<frc::DigitalInput> absolute_pwm) {
intake_encoder_.set_absolute_pwm(::std::move(absolute_pwm));
}
// Wrist
void set_wrist_encoder(::std::unique_ptr<frc::Encoder> encoder) {
medium_encoder_filter_.Add(encoder.get());
wrist_encoder_.set_encoder(::std::move(encoder));
}
void set_wrist_absolute_pwm(
::std::unique_ptr<frc::DigitalInput> absolute_pwm) {
wrist_encoder_.set_absolute_pwm(::std::move(absolute_pwm));
}
void set_wrist_potentiometer(
::std::unique_ptr<frc::AnalogInput> potentiometer) {
wrist_encoder_.set_potentiometer(::std::move(potentiometer));
}
// Stilts
void set_stilts_encoder(::std::unique_ptr<frc::Encoder> encoder) {
medium_encoder_filter_.Add(encoder.get());
stilts_encoder_.set_encoder(::std::move(encoder));
}
void set_stilts_absolute_pwm(
::std::unique_ptr<frc::DigitalInput> absolute_pwm) {
stilts_encoder_.set_absolute_pwm(::std::move(absolute_pwm));
}
void set_stilts_potentiometer(
::std::unique_ptr<frc::AnalogInput> potentiometer) {
stilts_encoder_.set_potentiometer(::std::move(potentiometer));
}
void set_platform_left_detect(
::std::unique_ptr<frc::DigitalInput> platform_left_detect) {
platform_left_detect_ = ::std::move(platform_left_detect);
}
void set_platform_right_detect(
::std::unique_ptr<frc::DigitalInput> platform_right_detect) {
platform_right_detect_ = ::std::move(platform_right_detect);
}
// Vacuum pressure sensor
void set_vacuum_sensor(int port) {
vacuum_sensor_ = make_unique<frc::AnalogInput>(port);
}
// Auto mode switches.
void set_autonomous_mode(int i, ::std::unique_ptr<frc::DigitalInput> sensor) {
autonomous_modes_.at(i) = ::std::move(sensor);
}
void RunIteration() override {
{
auto drivetrain_message = drivetrain_queue.position.MakeMessage();
drivetrain_message->left_encoder =
drivetrain_translate(drivetrain_left_encoder_->GetRaw());
drivetrain_message->left_speed =
drivetrain_velocity_translate(drivetrain_left_encoder_->GetPeriod());
drivetrain_message->right_encoder =
-drivetrain_translate(drivetrain_right_encoder_->GetRaw());
drivetrain_message->right_speed = -drivetrain_velocity_translate(
drivetrain_right_encoder_->GetPeriod());
drivetrain_message.Send();
}
const auto values = constants::GetValues();
{
auto superstructure_message = superstructure_queue.position.MakeMessage();
// Elevator
CopyPosition(elevator_encoder_, &superstructure_message->elevator,
Values::kElevatorEncoderCountsPerRevolution(),
Values::kElevatorEncoderRatio(), elevator_pot_translate,
false, values.elevator.potentiometer_offset);
// Intake
CopyPosition(intake_encoder_, &superstructure_message->intake_joint,
Values::kIntakeEncoderCountsPerRevolution(),
Values::kIntakeEncoderRatio(), false);
// Wrist
CopyPosition(wrist_encoder_, &superstructure_message->wrist,
Values::kWristEncoderCountsPerRevolution(),
Values::kWristEncoderRatio(), wrist_pot_translate, false,
values.wrist.potentiometer_offset);
// Stilts
CopyPosition(stilts_encoder_, &superstructure_message->stilts,
Values::kStiltsEncoderCountsPerRevolution(),
Values::kStiltsEncoderRatio(), stilts_pot_translate, false,
values.stilts.potentiometer_offset);
// Suction
constexpr float kMinVoltage = 0.5;
constexpr float kMaxVoltage = 2.1;
superstructure_message->suction_pressure =
(vacuum_sensor_->GetVoltage() - kMinVoltage) /
(kMaxVoltage - kMinVoltage);
superstructure_message->platform_left_detect =
!platform_left_detect_->Get();
superstructure_message->platform_right_detect =
!platform_right_detect_->Get();
superstructure_message.Send();
}
{
auto auto_mode_message = auto_mode_sender_.MakeMessage();
auto_mode_message->mode = 0;
for (size_t i = 0; i < autonomous_modes_.size(); ++i) {
if (autonomous_modes_[i] && autonomous_modes_[i]->Get()) {
auto_mode_message->mode |= 1 << i;
}
}
LOG_STRUCT(DEBUG, "auto mode", *auto_mode_message);
auto_mode_message.Send();
}
}
private:
::aos::Sender<::frc971::autonomous::AutonomousMode> auto_mode_sender_;
::frc971::wpilib::AbsoluteEncoderAndPotentiometer elevator_encoder_,
wrist_encoder_, stilts_encoder_;
::std::unique_ptr<frc::DigitalInput> platform_left_detect_;
::std::unique_ptr<frc::DigitalInput> platform_right_detect_;
::std::unique_ptr<frc::AnalogInput> vacuum_sensor_;
::std::array<::std::unique_ptr<frc::DigitalInput>, 2> autonomous_modes_;
::frc971::wpilib::AbsoluteEncoder intake_encoder_;
// TODO(sabina): Add wrist and elevator hall effects.
};
class CameraReader {
public:
CameraReader(::aos::EventLoop *event_loop)
: camera_frame_sender_(
event_loop
->MakeSender<::y2019::control_loops::drivetrain::CameraFrame>(
".y2019.control_loops.drivetrain.camera_frames")),
camera_log_fetcher_(
event_loop->MakeFetcher<::y2019::CameraLog>(".y2019.camera_log")) {}
CameraReader(const CameraReader &) = delete;
CameraReader &operator=(const CameraReader &) = delete;
void set_spi(frc::SPI *spi) {
spi_ = spi;
spi_->SetClockRate(1e6);
spi_->SetChipSelectActiveHigh();
spi_->SetClockActiveLow();
spi_->SetSampleDataOnFalling();
// It ignores you if you try changing this...
spi_->SetMSBFirst();
}
void set_activate_usb(std::unique_ptr<frc::DigitalInput> activate_usb) {
activate_usb_ = std::move(activate_usb);
}
void set_activate_passthrough(
std::unique_ptr<frc::DigitalInput> activate_passthrough) {
activate_passthrough_ = std::move(activate_passthrough);
}
void DoSpiTransaction() {
using namespace frc971::jevois;
RoborioToTeensy to_teensy{};
to_teensy.realtime_now = aos::realtime_clock::now();
camera_log_fetcher_.Fetch();
if (activate_usb_ && !activate_usb_->Get()) {
to_teensy.camera_command = CameraCommand::kUsb;
} else if (activate_passthrough_ && !activate_passthrough_->Get()) {
to_teensy.camera_command = CameraCommand::kCameraPassthrough;
} else if (camera_log_fetcher_.get() && camera_log_fetcher_->log) {
to_teensy.camera_command = CameraCommand::kLog;
} else {
to_teensy.camera_command = CameraCommand::kNormal;
}
std::array<char, spi_transfer_size() + 1> to_send{};
{
const auto to_send_data =
gsl::make_span(to_send).last<spi_transfer_size()>();
const auto encoded = SpiPackToTeensy(to_teensy);
std::copy(encoded.begin(), encoded.end(), to_send_data.begin());
}
rx_clearer_.ClearRxFifo();
// First, send recieve a dummy byte because the Teensy can't control what it
// sends for the first byte.
std::array<char, spi_transfer_size() + 1> to_receive;
DoTransaction(to_send, to_receive);
const auto unpacked = SpiUnpackToRoborio(
gsl::make_span(to_receive).last(spi_transfer_size()));
if (!unpacked) {
LOG(INFO, "Decoding SPI data failed\n");
return;
}
const auto now = aos::monotonic_clock::now();
for (const auto &received : unpacked->frames) {
auto to_send = camera_frame_sender_.MakeMessage();
// Add an extra 10ms delay to account for unmodeled delays that Austin
// thinks exists.
to_send->timestamp =
std::chrono::nanoseconds(
(now - received.age - ::std::chrono::milliseconds(10))
.time_since_epoch()).count();
to_send->num_targets = received.targets.size();
for (size_t i = 0; i < received.targets.size(); ++i) {
to_send->targets[i].distance = received.targets[i].distance;
to_send->targets[i].height = received.targets[i].height;
to_send->targets[i].heading = received.targets[i].heading;
to_send->targets[i].skew = received.targets[i].skew;
}
to_send->camera = received.camera_index;
LOG_STRUCT(DEBUG, "camera_frames", *to_send);
to_send.Send();
}
if (dummy_spi_) {
uint8_t dummy_send, dummy_receive;
dummy_spi_->Transaction(&dummy_send, &dummy_receive, 1);
}
}
void DoTransaction(gsl::span<char> to_send, gsl::span<char> to_receive) {
CHECK_EQ(to_send.size(), to_receive.size());
const auto result = spi_->Transaction(
reinterpret_cast<uint8_t *>(to_send.data()),
reinterpret_cast<uint8_t *>(to_receive.data()), to_send.size());
if (result == to_send.size()) {
return;
}
if (result == -1) {
LOG(INFO, "SPI::Transaction of %zd bytes failed\n", to_send.size());
return;
}
LOG(FATAL, "SPI::Transaction returned something weird\n");
}
void SetDummySPI(frc::SPI::Port port) {
dummy_spi_.reset(new frc::SPI(port));
// Pick the same settings here in case the roboRIO decides to try something
// stupid when switching.
if (dummy_spi_) {
dummy_spi_->SetClockRate(1e5);
dummy_spi_->SetChipSelectActiveLow();
dummy_spi_->SetClockActiveLow();
dummy_spi_->SetSampleDataOnFalling();
dummy_spi_->SetMSBFirst();
}
}
private:
::aos::Sender<::y2019::control_loops::drivetrain::CameraFrame>
camera_frame_sender_;
::aos::Fetcher<::y2019::CameraLog> camera_log_fetcher_;
frc::SPI *spi_ = nullptr;
::std::unique_ptr<frc::SPI> dummy_spi_;
std::unique_ptr<frc::DigitalInput> activate_usb_;
std::unique_ptr<frc::DigitalInput> activate_passthrough_;
frc971::wpilib::SpiRxClearer rx_clearer_;
};
class SuperstructureWriter : public ::frc971::wpilib::LoopOutputHandler {
public:
SuperstructureWriter(::aos::EventLoop *event_loop)
: ::frc971::wpilib::LoopOutputHandler(event_loop),
robot_state_fetcher_(
event_loop->MakeFetcher<::aos::RobotState>(".aos.robot_state")) {}
void set_elevator_victor(::std::unique_ptr<::frc::VictorSP> t) {
elevator_victor_ = ::std::move(t);
}
void set_suction_victor(::std::unique_ptr<::frc::VictorSP> t) {
suction_victor_ = ::std::move(t);
}
void set_intake_victor(::std::unique_ptr<::frc::VictorSP> t) {
intake_victor_ = ::std::move(t);
}
void set_wrist_victor(::std::unique_ptr<::frc::VictorSP> t) {
wrist_victor_ = ::std::move(t);
}
void set_stilts_victor(::std::unique_ptr<::frc::VictorSP> t) {
stilts_victor_ = ::std::move(t);
}
private:
void Read() override {
::y2019::control_loops::superstructure::superstructure_queue.output
.FetchAnother();
}
void Write() override {
auto &queue =
::y2019::control_loops::superstructure::superstructure_queue.output;
LOG_STRUCT(DEBUG, "will output", *queue);
elevator_victor_->SetSpeed(::aos::Clip(queue->elevator_voltage,
-kMaxBringupPower,
kMaxBringupPower) /
12.0);
intake_victor_->SetSpeed(::aos::Clip(queue->intake_joint_voltage,
-kMaxBringupPower, kMaxBringupPower) /
12.0);
wrist_victor_->SetSpeed(::aos::Clip(-queue->wrist_voltage,
-kMaxBringupPower, kMaxBringupPower) /
12.0);
stilts_victor_->SetSpeed(::aos::Clip(queue->stilts_voltage,
-kMaxBringupPower, kMaxBringupPower) /
12.0);
robot_state_fetcher_.Fetch();
const double battery_voltage = robot_state_fetcher_.get()
? robot_state_fetcher_->voltage_battery
: 12.0;
// Throw a fast low pass filter on the battery voltage so we don't respond
// too fast to noise.
filtered_battery_voltage_ =
0.5 * filtered_battery_voltage_ + 0.5 * battery_voltage;
suction_victor_->SetSpeed(::aos::Clip(
queue->pump_voltage / filtered_battery_voltage_, -1.0, 1.0));
}
void Stop() override {
LOG(WARNING, "Superstructure output too old.\n");
elevator_victor_->SetDisabled();
intake_victor_->SetDisabled();
wrist_victor_->SetDisabled();
stilts_victor_->SetDisabled();
suction_victor_->SetDisabled();
}
::aos::Fetcher<::aos::RobotState> robot_state_fetcher_;
::std::unique_ptr<::frc::VictorSP> elevator_victor_, intake_victor_,
wrist_victor_, stilts_victor_, suction_victor_;
double filtered_battery_voltage_ = 12.0;
};
class SolenoidWriter {
public:
SolenoidWriter(::aos::EventLoop *event_loop)
: event_loop_(event_loop),
superstructure_fetcher_(event_loop->MakeFetcher<
::y2019::control_loops::superstructure::
SuperstructureQueue::Output>(
".y2019.control_loops.superstructure.superstructure_queue.output")),
status_light_fetcher_(event_loop->MakeFetcher<::y2019::StatusLight>(
".y2019.status_light")) {}
void set_big_suction_cup(int index0, int index1) {
big_suction_cup0_ = pcm_.MakeSolenoid(index0);
big_suction_cup1_ = pcm_.MakeSolenoid(index1);
}
void set_small_suction_cup(int index0, int index1) {
small_suction_cup0_ = pcm_.MakeSolenoid(index0);
small_suction_cup1_ = pcm_.MakeSolenoid(index1);
}
void set_intake_roller_talon(
::std::unique_ptr<::ctre::phoenix::motorcontrol::can::TalonSRX> t) {
intake_rollers_talon_ = ::std::move(t);
intake_rollers_talon_->ConfigContinuousCurrentLimit(10.0, 0);
intake_rollers_talon_->EnableCurrentLimit(true);
}
void operator()() {
::aos::SetCurrentThreadName("Solenoids");
::aos::SetCurrentThreadRealtimePriority(27);
::aos::time::PhasedLoop phased_loop(::std::chrono::milliseconds(20),
::std::chrono::milliseconds(1));
while (run_) {
{
const int iterations = phased_loop.SleepUntilNext();
if (iterations != 1) {
LOG(DEBUG, "Solenoids skipped %d iterations\n", iterations - 1);
}
}
{
superstructure_fetcher_.Fetch();
if (superstructure_fetcher_.get()) {
LOG_STRUCT(DEBUG, "solenoids", *superstructure_fetcher_);
big_suction_cup0_->Set(
!superstructure_fetcher_->intake_suction_bottom);
big_suction_cup1_->Set(
!superstructure_fetcher_->intake_suction_bottom);
small_suction_cup0_->Set(superstructure_fetcher_->intake_suction_top);
small_suction_cup1_->Set(superstructure_fetcher_->intake_suction_top);
intake_rollers_talon_->Set(
ctre::phoenix::motorcontrol::ControlMode::PercentOutput,
::aos::Clip(superstructure_fetcher_->intake_roller_voltage,
-kMaxBringupPower, kMaxBringupPower) /
12.0);
}
}
{
::frc971::wpilib::PneumaticsToLog to_log;
pcm_.Flush();
to_log.read_solenoids = pcm_.GetAll();
LOG_STRUCT(DEBUG, "pneumatics info", to_log);
}
status_light_fetcher_.Fetch();
// If we don't have a light request (or it's an old one), we are borked.
// Flash the red light slowly.
if (!status_light_fetcher_.get() ||
status_light_fetcher_.get()->sent_time + chrono::milliseconds(100) <
event_loop_->monotonic_now()) {
StatusLight color;
color.red = 0.0;
color.green = 0.0;
color.blue = 0.0;
++light_flash_;
if (light_flash_ > 10) {
color.red = 0.5;
}
if (light_flash_ > 20) {
light_flash_ = 0;
}
LOG_STRUCT(DEBUG, "color", color);
SetColor(color);
} else {
LOG_STRUCT(DEBUG, "color", *status_light_fetcher_.get());
SetColor(*status_light_fetcher_.get());
}
}
}
void SetColor(const StatusLight &status_light) {
// Save CAN bandwidth and CPU at the cost of RT. Only change the light when
// it actually changes. This is pretty low priority anyways.
static int time_since_last_send = 0;
++time_since_last_send;
if (time_since_last_send > 10) {
time_since_last_send = 0;
}
if (status_light.green != last_green_ || time_since_last_send == 0) {
canifier_.SetLEDOutput(status_light.green,
::ctre::phoenix::CANifier::LEDChannelA);
last_green_ = status_light.green;
}
if (status_light.blue != last_blue_ || time_since_last_send == 0) {
canifier_.SetLEDOutput(status_light.blue,
::ctre::phoenix::CANifier::LEDChannelC);
last_blue_ = status_light.blue;
}
if (status_light.red != last_red_ || time_since_last_send == 0) {
canifier_.SetLEDOutput(status_light.red,
::ctre::phoenix::CANifier::LEDChannelB);
last_red_ = status_light.red;
}
}
void Quit() { run_ = false; }
private:
::aos::EventLoop *event_loop_;
::frc971::wpilib::BufferedPcm pcm_;
::std::unique_ptr<::frc971::wpilib::BufferedSolenoid> big_suction_cup0_,
big_suction_cup1_, small_suction_cup0_, small_suction_cup1_;
::std::unique_ptr<::ctre::phoenix::motorcontrol::can::TalonSRX>
intake_rollers_talon_;
::aos::Fetcher<
::y2019::control_loops::superstructure::SuperstructureQueue::Output>
superstructure_fetcher_;
::aos::Fetcher<::y2019::StatusLight> status_light_fetcher_;
::ctre::phoenix::CANifier canifier_{0};
::std::atomic<bool> run_{true};
double last_red_ = -1.0;
double last_green_ = -1.0;
double last_blue_ = -1.0;
int light_flash_ = 0;
};
class WPILibRobot : public ::frc971::wpilib::WPILibRobotBase {
public:
::std::unique_ptr<frc::Encoder> make_encoder(int index) {
return make_unique<frc::Encoder>(10 + index * 2, 11 + index * 2, false,
frc::Encoder::k4X);
}
void Run() override {
::aos::InitNRT();
::aos::SetCurrentThreadName("StartCompetition");
::aos::ShmEventLoop event_loop;
::aos::ShmEventLoop solenoid_event_loop;
::frc971::wpilib::JoystickSender joystick_sender(&event_loop);
::std::thread joystick_thread(::std::ref(joystick_sender));
::frc971::wpilib::PDPFetcher pdp_fetcher(&event_loop);
::std::thread pdp_fetcher_thread(::std::ref(pdp_fetcher));
SensorReader reader(&event_loop);
reader.set_drivetrain_left_encoder(make_encoder(0));
reader.set_drivetrain_right_encoder(make_encoder(1));
reader.set_elevator_encoder(make_encoder(4));
reader.set_elevator_absolute_pwm(make_unique<frc::DigitalInput>(4));
reader.set_elevator_potentiometer(make_unique<frc::AnalogInput>(4));
reader.set_wrist_encoder(make_encoder(5));
reader.set_wrist_absolute_pwm(make_unique<frc::DigitalInput>(5));
reader.set_wrist_potentiometer(make_unique<frc::AnalogInput>(5));
reader.set_intake_encoder(make_encoder(2));
reader.set_intake_absolute_pwm(make_unique<frc::DigitalInput>(2));
reader.set_stilts_encoder(make_encoder(3));
reader.set_stilts_absolute_pwm(make_unique<frc::DigitalInput>(3));
reader.set_stilts_potentiometer(make_unique<frc::AnalogInput>(3));
reader.set_pwm_trigger(true);
reader.set_vacuum_sensor(7);
reader.set_platform_right_detect(make_unique<frc::DigitalInput>(6));
reader.set_platform_left_detect(make_unique<frc::DigitalInput>(7));
reader.set_autonomous_mode(0, make_unique<frc::DigitalInput>(22));
reader.set_autonomous_mode(0, make_unique<frc::DigitalInput>(23));
::std::thread reader_thread(::std::ref(reader));
CameraReader camera_reader(&event_loop);
frc::SPI camera_spi(frc::SPI::Port::kOnboardCS3);
camera_reader.set_spi(&camera_spi);
camera_reader.SetDummySPI(frc::SPI::Port::kOnboardCS2);
// Austin says 8, 9, 24, and 25 are good options to choose from for these.
camera_reader.set_activate_usb(make_unique<frc::DigitalInput>(24));
camera_reader.set_activate_passthrough(make_unique<frc::DigitalInput>(25));
auto imu_trigger = make_unique<frc::DigitalInput>(0);
::frc971::wpilib::ADIS16448 imu(&event_loop, frc::SPI::Port::kOnboardCS1,
imu_trigger.get());
imu.set_spi_idle_callback(
[&camera_reader]() { camera_reader.DoSpiTransaction(); });
auto imu_reset = make_unique<frc::DigitalOutput>(1);
imu.set_reset(imu_reset.get());
::std::thread imu_thread(::std::ref(imu));
// While as of 2/9/18 the drivetrain Victors are SPX, it appears as though
// they are identical, as far as DrivetrainWriter is concerned, to the SP
// variety so all the Victors are written as SPs.
::frc971::wpilib::DrivetrainWriter drivetrain_writer(&event_loop);
drivetrain_writer.set_left_controller0(
::std::unique_ptr<::frc::VictorSP>(new ::frc::VictorSP(0)), true);
drivetrain_writer.set_right_controller0(
::std::unique_ptr<::frc::VictorSP>(new ::frc::VictorSP(1)), false);
::std::thread drivetrain_writer_thread(::std::ref(drivetrain_writer));
SuperstructureWriter superstructure_writer(&event_loop);
superstructure_writer.set_elevator_victor(
::std::unique_ptr<::frc::VictorSP>(new ::frc::VictorSP(4)));
// TODO(austin): Do the vacuum
superstructure_writer.set_suction_victor(
::std::unique_ptr<::frc::VictorSP>(new ::frc::VictorSP(6)));
superstructure_writer.set_intake_victor(
::std::unique_ptr<::frc::VictorSP>(new ::frc::VictorSP(2)));
superstructure_writer.set_wrist_victor(
::std::unique_ptr<::frc::VictorSP>(new ::frc::VictorSP(5)));
superstructure_writer.set_stilts_victor(
::std::unique_ptr<::frc::VictorSP>(new ::frc::VictorSP(3)));
::std::thread superstructure_writer_thread(
::std::ref(superstructure_writer));
SolenoidWriter solenoid_writer(&solenoid_event_loop);
solenoid_writer.set_intake_roller_talon(
make_unique<::ctre::phoenix::motorcontrol::can::TalonSRX>(10));
solenoid_writer.set_big_suction_cup(0, 1);
solenoid_writer.set_small_suction_cup(2, 3);
::std::thread solenoid_writer_thread(::std::ref(solenoid_writer));
// Wait forever. Not much else to do...
while (true) {
const int r = select(0, nullptr, nullptr, nullptr, nullptr);
if (r != 0) {
PLOG(WARNING, "infinite select failed");
} else {
PLOG(WARNING, "infinite select succeeded??\n");
}
}
LOG(ERROR, "Exiting WPILibRobot\n");
solenoid_writer.Quit();
solenoid_writer_thread.join();
joystick_sender.Quit();
joystick_thread.join();
pdp_fetcher.Quit();
pdp_fetcher_thread.join();
reader.Quit();
reader_thread.join();
imu.Quit();
imu_thread.join();
drivetrain_writer.Quit();
drivetrain_writer_thread.join();
superstructure_writer.Quit();
superstructure_writer_thread.join();
::aos::Cleanup();
}
};
} // namespace
} // namespace wpilib
} // namespace y2019
AOS_ROBOT_CLASS(::y2019::wpilib::WPILibRobot);