| #include "y2022/vision/blob_detector.h" |
| |
| #include <cmath> |
| #include <optional> |
| #include <string> |
| |
| #include "aos/network/team_number.h" |
| #include "aos/time/time.h" |
| #include "opencv2/features2d.hpp" |
| #include "opencv2/imgproc.hpp" |
| |
| DEFINE_uint64(green_delta, 50, |
| "Required difference between green pixels vs. red and blue"); |
| DEFINE_bool(use_outdoors, false, |
| "If true, change thresholds to handle outdoor illumination"); |
| |
| namespace y2022 { |
| namespace vision { |
| |
| cv::Mat BlobDetector::ThresholdImage(cv::Mat bgr_image) { |
| cv::Mat binarized_image(cv::Size(bgr_image.cols, bgr_image.rows), CV_8UC1); |
| for (int row = 0; row < bgr_image.rows; row++) { |
| for (int col = 0; col < bgr_image.cols; col++) { |
| cv::Vec3b pixel = bgr_image.at<cv::Vec3b>(row, col); |
| uint8_t blue = pixel.val[0]; |
| uint8_t green = pixel.val[1]; |
| uint8_t red = pixel.val[2]; |
| // Simple filter that looks for green pixels sufficiently brigher than |
| // red and blue |
| if ((green > blue + FLAGS_green_delta) && |
| (green > red + FLAGS_green_delta)) { |
| binarized_image.at<uint8_t>(row, col) = 255; |
| } else { |
| binarized_image.at<uint8_t>(row, col) = 0; |
| } |
| } |
| } |
| |
| return binarized_image; |
| } |
| |
| std::vector<std::vector<cv::Point>> BlobDetector::FindBlobs( |
| cv::Mat binarized_image) { |
| // find the contours (blob outlines) |
| std::vector<std::vector<cv::Point>> contours; |
| std::vector<cv::Vec4i> hierarchy; |
| cv::findContours(binarized_image, contours, hierarchy, cv::RETR_CCOMP, |
| cv::CHAIN_APPROX_SIMPLE); |
| |
| return contours; |
| } |
| |
| std::vector<BlobDetector::BlobStats> BlobDetector::ComputeStats( |
| std::vector<std::vector<cv::Point>> blobs) { |
| std::vector<BlobDetector::BlobStats> blob_stats; |
| for (auto blob : blobs) { |
| // Make the blob convex before finding bounding box |
| std::vector<cv::Point> convex_blob; |
| cv::convexHull(blob, convex_blob); |
| auto blob_size = cv::boundingRect(convex_blob).size(); |
| cv::Moments moments = cv::moments(convex_blob); |
| |
| const auto centroid = |
| cv::Point(moments.m10 / moments.m00, moments.m01 / moments.m00); |
| const double aspect_ratio = |
| static_cast<double>(blob_size.width) / blob_size.height; |
| const double area = moments.m00; |
| const size_t num_points = blob.size(); |
| |
| blob_stats.emplace_back( |
| BlobStats{centroid, aspect_ratio, area, num_points}); |
| } |
| return blob_stats; |
| } |
| |
| namespace { |
| |
| // Linear equation in the form ax + by = c |
| struct Line { |
| public: |
| double a, b, c; |
| |
| std::optional<cv::Point2d> Intersection(const Line &l) const { |
| // Use Cramer's rule to solve for the intersection |
| const double denominator = Determinant(a, b, l.a, l.b); |
| const double numerator_x = Determinant(c, b, l.c, l.b); |
| const double numerator_y = Determinant(a, c, l.a, l.c); |
| |
| std::optional<cv::Point2d> intersection = std::nullopt; |
| // Return nullopt if the denominator is 0, meaning the same slopes |
| if (denominator != 0) { |
| intersection = |
| cv::Point2d(numerator_x / denominator, numerator_y / denominator); |
| } |
| |
| return intersection; |
| } |
| |
| private: // Determinant of [[a, b], [c, d]] |
| static double Determinant(double a, double b, double c, double d) { |
| return (a * d) - (b * c); |
| } |
| }; |
| |
| struct Circle { |
| public: |
| cv::Point2d center; |
| double radius; |
| |
| static std::optional<Circle> Fit(std::vector<cv::Point2d> centroids) { |
| CHECK_EQ(centroids.size(), 3ul); |
| // For the 3 points, we have 3 equations in the form |
| // (x - h)^2 + (y - k)^2 = r^2 |
| // Manipulate them to solve for the center and radius |
| // (x1 - h)^2 + (y1 - k)^2 = r^2 -> |
| // x1^2 + h^2 - 2x1h + y1^2 + k^2 - 2y1k = r^2 |
| // Also, (x2 - h)^2 + (y2 - k)^2 = r^2 |
| // Subtracting these two, we get |
| // x1^2 - x2^2 - 2h(x1 - x2) + y1^2 - y2^2 - 2k(y1 - y2) = 0 -> |
| // h(x1 - x2) + k(y1 - y2) = (-x1^2 + x2^2 - y1^2 + y2^2) / -2 |
| // Doing the same with equations 1 and 3, we get the second linear equation |
| // h(x1 - x3) + k(y1 - y3) = (-x1^2 + x3^2 - y1^2 + y3^2) / -2 |
| // Now, we can solve for their intersection and find the center |
| const auto l = |
| Line{centroids[0].x - centroids[1].x, centroids[0].y - centroids[1].y, |
| (-std::pow(centroids[0].x, 2) + std::pow(centroids[1].x, 2) - |
| std::pow(centroids[0].y, 2) + std::pow(centroids[1].y, 2)) / |
| -2.0}; |
| const auto m = |
| Line{centroids[0].x - centroids[2].x, centroids[0].y - centroids[2].y, |
| (-std::pow(centroids[0].x, 2) + std::pow(centroids[2].x, 2) - |
| std::pow(centroids[0].y, 2) + std::pow(centroids[2].y, 2)) / |
| -2.0}; |
| const auto center = l.Intersection(m); |
| |
| std::optional<Circle> circle = std::nullopt; |
| if (center) { |
| // Now find the radius |
| const double radius = cv::norm(centroids[0] - *center); |
| circle = Circle{*center, radius}; |
| } |
| return circle; |
| } |
| |
| double DistanceTo(cv::Point2d p) const { |
| const auto p_prime = TranslateToOrigin(p); |
| // Now, the distance is simply the difference between distance from the |
| // origin to p' and the radius. |
| return std::abs(cv::norm(p_prime) - radius); |
| } |
| |
| bool InAngleRange(cv::Point2d p, double theta_min, double theta_max) const { |
| auto p_prime = TranslateToOrigin(p); |
| // Flip the y because y values go downwards. |
| p_prime.y *= -1; |
| const double theta = std::atan2(p_prime.y, p_prime.x); |
| return (theta >= theta_min && theta <= theta_max); |
| } |
| |
| private: |
| // Translate the point on the circle |
| // as if the circle's center is the origin (0,0) |
| cv::Point2d TranslateToOrigin(cv::Point2d p) const { |
| return cv::Point2d(p.x - center.x, p.y - center.y); |
| } |
| }; |
| |
| } // namespace |
| |
| std::pair<std::vector<std::vector<cv::Point>>, cv::Point> |
| BlobDetector::FilterBlobs(std::vector<std::vector<cv::Point>> blobs, |
| std::vector<BlobDetector::BlobStats> blob_stats) { |
| std::vector<std::vector<cv::Point>> filtered_blobs; |
| std::vector<BlobStats> filtered_stats; |
| |
| auto blob_it = blobs.begin(); |
| auto stats_it = blob_stats.begin(); |
| while (blob_it < blobs.end() && stats_it < blob_stats.end()) { |
| // To estimate the maximum y, we can figure out the y value of the blobs |
| // when the camera is the farthest from the target, at the field corner. |
| // We can solve for the pitch of the blob: |
| // blob_pitch = atan((height_tape - height_camera) / depth) + camera_pitch |
| // The triangle with the height of the tape above the camera and the camera |
| // depth is similar to the one with the focal length in y pixels and the y |
| // coordinate offset from the center of the image. |
| // Therefore y_offset = focal_length_y * tan(blob_pitch), and |
| // y = -(y_offset - offset_y) |
| constexpr int kMaxY = 400; |
| constexpr double kTapeAspectRatio = 5.0 / 2.0; |
| constexpr double kAspectRatioThreshold = 1.6; |
| constexpr double kMinArea = 10; |
| constexpr size_t kMinNumPoints = 6; |
| |
| // Remove all blobs that are at the bottom of the image, have a different |
| // aspect ratio than the tape, or have too little area or points. |
| if ((stats_it->centroid.y <= kMaxY) && |
| (std::abs(kTapeAspectRatio - stats_it->aspect_ratio) < |
| kAspectRatioThreshold) && |
| (stats_it->area >= kMinArea) && |
| (stats_it->num_points >= kMinNumPoints)) { |
| filtered_blobs.push_back(*blob_it); |
| filtered_stats.push_back(*stats_it); |
| } |
| blob_it++; |
| stats_it++; |
| } |
| |
| // Threshold for mean distance from a blob centroid to a circle. |
| constexpr double kCircleDistanceThreshold = 5.0; |
| // We should only expect to see blobs between these angles on a circle. |
| constexpr double kMinBlobAngle = M_PI / 3; |
| constexpr double kMaxBlobAngle = M_PI - kMinBlobAngle; |
| std::vector<std::vector<cv::Point>> blob_circle; |
| std::vector<cv::Point2d> centroids; |
| |
| // If we see more than this number of blobs after filtering based on |
| // color/size, the circle fit may detect noise so just return no blobs. |
| constexpr size_t kMinFilteredBlobs = 3; |
| constexpr size_t kMaxFilteredBlobs = 50; |
| if (filtered_blobs.size() >= kMinFilteredBlobs && |
| filtered_blobs.size() <= kMaxFilteredBlobs) { |
| constexpr size_t kRansacIterations = 15; |
| for (size_t i = 0; i < kRansacIterations; i++) { |
| // Pick 3 random blobs and see how many fit on their circle |
| const size_t j = std::rand() % filtered_blobs.size(); |
| const size_t k = std::rand() % filtered_blobs.size(); |
| const size_t l = std::rand() % filtered_blobs.size(); |
| |
| // Restart if the random indices clash |
| if ((j == k) || (j == l) || (k == l)) { |
| i--; |
| continue; |
| } |
| |
| std::vector<std::vector<cv::Point>> current_blobs{ |
| filtered_blobs[j], filtered_blobs[k], filtered_blobs[l]}; |
| std::vector<cv::Point2d> current_centroids{filtered_stats[j].centroid, |
| filtered_stats[k].centroid, |
| filtered_stats[l].centroid}; |
| const std::optional<Circle> circle = Circle::Fit(current_centroids); |
| |
| // Make sure that a circle could be created from the points |
| if (!circle) { |
| continue; |
| } |
| |
| // Only try to fit points to this circle if all of these are between |
| // certain angles. |
| if (circle->InAngleRange(current_centroids[0], kMinBlobAngle, |
| kMaxBlobAngle) && |
| circle->InAngleRange(current_centroids[1], kMinBlobAngle, |
| kMaxBlobAngle) && |
| circle->InAngleRange(current_centroids[2], kMinBlobAngle, |
| kMaxBlobAngle)) { |
| for (size_t m = 0; m < filtered_blobs.size(); m++) { |
| // Add this blob to the list if it is close to the circle, is on the |
| // top half, and isn't one of the other blobs |
| if ((m != i) && (m != j) && (m != k) && |
| circle->InAngleRange(filtered_stats[m].centroid, kMinBlobAngle, |
| kMaxBlobAngle) && |
| (circle->DistanceTo(filtered_stats[m].centroid) < |
| kCircleDistanceThreshold)) { |
| current_blobs.emplace_back(filtered_blobs[m]); |
| current_centroids.emplace_back(filtered_stats[m].centroid); |
| } |
| } |
| |
| if (current_blobs.size() > blob_circle.size()) { |
| blob_circle = current_blobs; |
| centroids = current_centroids; |
| } |
| } |
| } |
| } |
| |
| cv::Point avg_centroid(-1, -1); |
| if (centroids.size() > 0) { |
| for (auto centroid : centroids) { |
| avg_centroid.x += centroid.x; |
| avg_centroid.y += centroid.y; |
| } |
| avg_centroid.x /= centroids.size(); |
| avg_centroid.y /= centroids.size(); |
| } |
| |
| return {blob_circle, avg_centroid}; |
| } |
| |
| void BlobDetector::DrawBlobs( |
| cv::Mat view_image, |
| const std::vector<std::vector<cv::Point>> &unfiltered_blobs, |
| const std::vector<std::vector<cv::Point>> &filtered_blobs, |
| const std::vector<BlobStats> &blob_stats, cv::Point centroid) { |
| CHECK_GT(view_image.cols, 0); |
| if (unfiltered_blobs.size() > 0) { |
| // Draw blobs unfilled, with red color border |
| cv::drawContours(view_image, unfiltered_blobs, -1, cv::Scalar(0, 0, 255), |
| 0); |
| } |
| |
| cv::drawContours(view_image, filtered_blobs, -1, cv::Scalar(0, 255, 0), |
| cv::FILLED); |
| |
| // Draw blob centroids |
| for (auto stats : blob_stats) { |
| cv::circle(view_image, stats.centroid, 2, cv::Scalar(255, 0, 0), |
| cv::FILLED); |
| } |
| |
| // Draw average centroid |
| cv::circle(view_image, centroid, 3, cv::Scalar(255, 255, 0), cv::FILLED); |
| } |
| |
| void BlobDetector::ExtractBlobs(cv::Mat bgr_image, |
| BlobDetector::BlobResult *blob_result) { |
| auto start = aos::monotonic_clock::now(); |
| blob_result->binarized_image = ThresholdImage(bgr_image); |
| blob_result->unfiltered_blobs = FindBlobs(blob_result->binarized_image); |
| blob_result->blob_stats = ComputeStats(blob_result->unfiltered_blobs); |
| auto filtered_pair = |
| FilterBlobs(blob_result->unfiltered_blobs, blob_result->blob_stats); |
| blob_result->filtered_blobs = filtered_pair.first; |
| blob_result->centroid = filtered_pair.second; |
| auto end = aos::monotonic_clock::now(); |
| LOG(INFO) << "Blob detection elapsed time: " |
| << std::chrono::duration<double, std::milli>(end - start).count() |
| << " ms"; |
| } |
| |
| } // namespace vision |
| } // namespace y2022 |