blob: a1fd17e7112d4a500e44f386b92b4f85b2b95a06 [file] [log] [blame]
#include "frc971/zeroing/zeroing.h"
#include <algorithm>
#include <cmath>
#include <limits>
#include <vector>
#include "frc971/zeroing/wrap.h"
namespace frc971 {
namespace zeroing {
namespace {
bool compare_encoder(const PotAndAbsolutePosition &left,
const PotAndAbsolutePosition &right) {
return left.encoder < right.encoder;
}
} // namespace
PotAndIndexPulseZeroingEstimator::PotAndIndexPulseZeroingEstimator(
const constants::PotAndIndexPulseZeroingConstants &constants)
: constants_(constants) {
start_pos_samples_.reserve(constants_.average_filter_size);
Reset();
}
void PotAndIndexPulseZeroingEstimator::Reset() {
samples_idx_ = 0;
offset_ = 0;
start_pos_samples_.clear();
zeroed_ = false;
wait_for_index_pulse_ = true;
last_used_index_pulse_count_ = 0;
error_ = false;
}
void PotAndIndexPulseZeroingEstimator::TriggerError() {
if (!error_) {
LOG(ERROR, "Manually triggered zeroing error.\n");
error_ = true;
}
}
double PotAndIndexPulseZeroingEstimator::CalculateStartPosition(
double start_average, double latched_encoder) const {
// We calculate an aproximation of the value of the last index position.
// Also account for index pulses not lining up with integer multiples of the
// index_diff.
double index_pos =
start_average + latched_encoder - constants_.measured_index_position;
// We round index_pos to the closest valid value of the index.
double accurate_index_pos = (round(index_pos / constants_.index_difference)) *
constants_.index_difference;
// Now we reverse the first calculation to get the accurate start position.
return accurate_index_pos - latched_encoder +
constants_.measured_index_position;
}
void PotAndIndexPulseZeroingEstimator::UpdateEstimate(
const PotAndIndexPosition &info) {
// We want to make sure that we encounter at least one index pulse while
// zeroing. So we take the index pulse count from the first sample after
// reset and wait for that count to change before we consider ourselves
// zeroed.
if (wait_for_index_pulse_) {
last_used_index_pulse_count_ = info.index_pulses;
wait_for_index_pulse_ = false;
}
if (start_pos_samples_.size() < constants_.average_filter_size) {
start_pos_samples_.push_back(info.pot - info.encoder);
} else {
start_pos_samples_[samples_idx_] = info.pot - info.encoder;
}
// Drop the oldest sample when we run this function the next time around.
samples_idx_ = (samples_idx_ + 1) % constants_.average_filter_size;
double sample_sum = 0.0;
for (size_t i = 0; i < start_pos_samples_.size(); ++i) {
sample_sum += start_pos_samples_[i];
}
// Calculates the average of the starting position.
double start_average = sample_sum / start_pos_samples_.size();
// If there are no index pulses to use or we don't have enough samples yet to
// have a well-filtered starting position then we use the filtered value as
// our best guess.
if (!zeroed_ &&
(info.index_pulses == last_used_index_pulse_count_ || !offset_ready())) {
offset_ = start_average;
} else if (!zeroed_ || last_used_index_pulse_count_ != info.index_pulses) {
// Note the accurate start position and the current index pulse count so
// that we only run this logic once per index pulse. That should be more
// resilient to corrupted intermediate data.
offset_ = CalculateStartPosition(start_average, info.latched_encoder);
last_used_index_pulse_count_ = info.index_pulses;
// TODO(austin): Reject encoder positions which have x% error rather than
// rounding to the closest index pulse.
// Save the first starting position.
if (!zeroed_) {
first_start_pos_ = offset_;
LOG(INFO, "latching start position %f\n", first_start_pos_);
}
// Now that we have an accurate starting position we can consider ourselves
// zeroed.
zeroed_ = true;
// Throw an error if first_start_pos is bigger/smaller than
// constants_.allowable_encoder_error * index_diff + start_pos.
if (::std::abs(first_start_pos_ - offset_) >
constants_.allowable_encoder_error * constants_.index_difference) {
if (!error_) {
LOG(ERROR,
"Encoder ticks out of range since last index pulse. first start "
"position: %f recent starting position: %f, allowable error: %f\n",
first_start_pos_, offset_,
constants_.allowable_encoder_error * constants_.index_difference);
error_ = true;
}
}
}
position_ = offset_ + info.encoder;
filtered_position_ = start_average + info.encoder;
}
PotAndIndexPulseZeroingEstimator::State
PotAndIndexPulseZeroingEstimator::GetEstimatorState() const {
State r;
r.error = error_;
r.zeroed = zeroed_;
r.position = position_;
r.pot_position = filtered_position_;
return r;
}
PotAndAbsEncoderZeroingEstimator::PotAndAbsEncoderZeroingEstimator(
const constants::PotAndAbsoluteEncoderZeroingConstants &constants)
: constants_(constants) {
relative_to_absolute_offset_samples_.reserve(constants_.average_filter_size);
offset_samples_.reserve(constants_.average_filter_size);
Reset();
}
void PotAndAbsEncoderZeroingEstimator::Reset() {
zeroed_ = false;
relative_to_absolute_offset_samples_.clear();
offset_samples_.clear();
buffered_samples_.clear();
error_ = false;
}
// So, this needs to be a multistep process. We need to first estimate the
// offset between the absolute encoder and the relative encoder. That process
// should get us an absolute number which is off by integer multiples of the
// distance/rev. In parallel, we can estimate the offset between the pot and
// encoder. When both estimates have converged, we can then compute the offset
// in a cycle, and which cycle, which gives us the accurate global offset.
//
// It's tricky to compute the offset between the absolute and relative encoder.
// We need to compute this inside 1 revolution. The easiest way to do this
// would be to wrap the encoder, subtract the two of them, and then average the
// result. That will struggle when they are off by PI. Instead, we need to
// wrap the number to +- PI from the current averaged offset.
//
// To guard against the robot moving while updating estimates, buffer a number
// of samples and check that the buffered samples are not different than the
// zeroing threshold. At any point that the samples differ too much, do not
// update estimates based on those samples.
void PotAndAbsEncoderZeroingEstimator::UpdateEstimate(
const PotAndAbsolutePosition &info) {
// Check for Abs Encoder NaN value that would mess up the rest of the zeroing
// code below. NaN values are given when the Absolute Encoder is disconnected.
if (::std::isnan(info.absolute_encoder)) {
error_ = true;
return;
}
bool moving = true;
if (buffered_samples_.size() < constants_.moving_buffer_size) {
// Not enough samples to start determining if the robot is moving or not,
// don't use the samples yet.
buffered_samples_.push_back(info);
} else {
// Have enough samples to start determining if the robot is moving or not.
buffered_samples_[buffered_samples_idx_] = info;
auto max_value =
::std::max_element(buffered_samples_.begin(), buffered_samples_.end(),
compare_encoder)
->encoder;
auto min_value =
::std::min_element(buffered_samples_.begin(), buffered_samples_.end(),
compare_encoder)
->encoder;
if (::std::abs(max_value - min_value) < constants_.zeroing_threshold) {
// Robot isn't moving, use middle sample to determine offsets.
moving = false;
}
}
buffered_samples_idx_ =
(buffered_samples_idx_ + 1) % constants_.moving_buffer_size;
if (!moving) {
// The robot is not moving, use the middle sample to determine offsets.
const int middle_index =
(buffered_samples_idx_ + (constants_.moving_buffer_size - 1) / 2) %
constants_.moving_buffer_size;
// Compute the sum of all the offset samples.
double relative_to_absolute_offset_sum = 0.0;
for (size_t i = 0; i < relative_to_absolute_offset_samples_.size(); ++i) {
relative_to_absolute_offset_sum +=
relative_to_absolute_offset_samples_[i];
}
// Compute the average offset between the absolute encoder and relative
// encoder. If we have 0 samples, assume it is 0.
double average_relative_to_absolute_offset =
relative_to_absolute_offset_samples_.size() == 0
? 0.0
: relative_to_absolute_offset_sum /
relative_to_absolute_offset_samples_.size();
// Now, compute the nearest absolute encoder value to the offset relative
// encoder position.
const double adjusted_absolute_encoder =
Wrap(buffered_samples_[middle_index].encoder +
average_relative_to_absolute_offset,
buffered_samples_[middle_index].absolute_encoder -
constants_.measured_absolute_position,
constants_.one_revolution_distance);
const double relative_to_absolute_offset =
adjusted_absolute_encoder - buffered_samples_[middle_index].encoder;
// Add the sample and update the average with the new reading.
const size_t relative_to_absolute_offset_samples_size =
relative_to_absolute_offset_samples_.size();
if (relative_to_absolute_offset_samples_size <
constants_.average_filter_size) {
average_relative_to_absolute_offset =
(average_relative_to_absolute_offset *
relative_to_absolute_offset_samples_size +
relative_to_absolute_offset) /
(relative_to_absolute_offset_samples_size + 1);
relative_to_absolute_offset_samples_.push_back(
relative_to_absolute_offset);
} else {
average_relative_to_absolute_offset -=
relative_to_absolute_offset_samples_[samples_idx_] /
relative_to_absolute_offset_samples_size;
relative_to_absolute_offset_samples_[samples_idx_] =
relative_to_absolute_offset;
average_relative_to_absolute_offset +=
relative_to_absolute_offset /
relative_to_absolute_offset_samples_size;
}
// Now compute the offset between the pot and relative encoder.
if (offset_samples_.size() < constants_.average_filter_size) {
offset_samples_.push_back(buffered_samples_[middle_index].pot -
buffered_samples_[middle_index].encoder);
} else {
offset_samples_[samples_idx_] = buffered_samples_[middle_index].pot -
buffered_samples_[middle_index].encoder;
}
// Drop the oldest sample when we run this function the next time around.
samples_idx_ = (samples_idx_ + 1) % constants_.average_filter_size;
double pot_relative_encoder_offset_sum = 0.0;
for (size_t i = 0; i < offset_samples_.size(); ++i) {
pot_relative_encoder_offset_sum += offset_samples_[i];
}
pot_relative_encoder_offset_ =
pot_relative_encoder_offset_sum / offset_samples_.size();
offset_ = Wrap(buffered_samples_[middle_index].encoder +
pot_relative_encoder_offset_,
average_relative_to_absolute_offset +
buffered_samples_[middle_index].encoder,
constants_.one_revolution_distance) -
buffered_samples_[middle_index].encoder;
if (offset_ready()) {
if (!zeroed_) {
first_offset_ = offset_;
}
if (::std::abs(first_offset_ - offset_) >
constants_.allowable_encoder_error *
constants_.one_revolution_distance) {
LOG(ERROR,
"Offset moved too far. Initial: %f, current %f, allowable change: "
"%f\n",
first_offset_, offset_, constants_.allowable_encoder_error *
constants_.one_revolution_distance);
error_ = true;
}
zeroed_ = true;
}
}
// Update the position.
filtered_position_ = pot_relative_encoder_offset_ + info.encoder;
position_ = offset_ + info.encoder;
}
PotAndAbsEncoderZeroingEstimator::State
PotAndAbsEncoderZeroingEstimator::GetEstimatorState() const {
State r;
r.error = error_;
r.zeroed = zeroed_;
r.position = position_;
r.pot_position = filtered_position_;
return r;
}
void PulseIndexZeroingEstimator::Reset() {
max_index_position_ = ::std::numeric_limits<double>::lowest();
min_index_position_ = ::std::numeric_limits<double>::max();
offset_ = 0;
last_used_index_pulse_count_ = 0;
zeroed_ = false;
error_ = false;
}
void PulseIndexZeroingEstimator::StoreIndexPulseMaxAndMin(
const IndexPosition &info) {
// If we have a new index pulse.
if (last_used_index_pulse_count_ != info.index_pulses) {
// If the latest pulses's position is outside the range we've currently
// seen, record it appropriately.
if (info.latched_encoder > max_index_position_) {
max_index_position_ = info.latched_encoder;
}
if (info.latched_encoder < min_index_position_) {
min_index_position_ = info.latched_encoder;
}
last_used_index_pulse_count_ = info.index_pulses;
}
}
int PulseIndexZeroingEstimator::IndexPulseCount() {
if (min_index_position_ > max_index_position_) {
// This condition means we haven't seen a pulse yet.
return 0;
}
// Calculate the number of pulses encountered so far.
return 1 + static_cast<int>(
::std::round((max_index_position_ - min_index_position_) /
constants_.index_difference));
}
void PulseIndexZeroingEstimator::UpdateEstimate(const IndexPosition &info) {
StoreIndexPulseMaxAndMin(info);
const int index_pulse_count = IndexPulseCount();
if (index_pulse_count > constants_.index_pulse_count) {
error_ = true;
}
// TODO(austin): Detect if the encoder or index pulse is unplugged.
// TODO(austin): Detect missing counts.
if (index_pulse_count == constants_.index_pulse_count && !zeroed_) {
offset_ = constants_.measured_index_position -
constants_.known_index_pulse * constants_.index_difference -
min_index_position_;
zeroed_ = true;
}
if (zeroed_) {
position_ = info.encoder + offset_;
}
}
} // namespace zeroing
} // namespace frc971