| #include "y2019/control_loops/superstructure/collision_avoidance.h" |
| |
| #include <cmath> |
| #include "y2019/control_loops/superstructure/superstructure.q.h" |
| |
| namespace y2019 { |
| namespace control_loops { |
| namespace superstructure { |
| |
| constexpr double CollisionAvoidance::kElevatorClearHeight; |
| constexpr double CollisionAvoidance::kElevatorClearWristDownHeight; |
| constexpr double CollisionAvoidance::kElevatorClearIntakeHeight; |
| constexpr double CollisionAvoidance::kWristMaxAngle; |
| constexpr double CollisionAvoidance::kWristMinAngle; |
| constexpr double CollisionAvoidance::kIntakeOutAngle; |
| constexpr double CollisionAvoidance::kIntakeInAngle; |
| constexpr double CollisionAvoidance::kWristElevatorCollisionMinAngle; |
| constexpr double CollisionAvoidance::kWristElevatorCollisionMaxAngle; |
| constexpr double |
| CollisionAvoidance::kWristElevatorCollisionMaxAngleWithoutObject; |
| constexpr double CollisionAvoidance::kEps; |
| constexpr double CollisionAvoidance::kEpsIntake; |
| constexpr double CollisionAvoidance::kEpsWrist; |
| |
| CollisionAvoidance::CollisionAvoidance() { |
| clear_min_wrist_goal(); |
| clear_max_wrist_goal(); |
| clear_min_elevator_goal(); |
| clear_min_intake_goal(); |
| clear_max_intake_goal(); |
| } |
| |
| bool CollisionAvoidance::IsCollided(const SuperstructureQueue::Status *status) { |
| return IsCollided(status->wrist.position, status->elevator.position, |
| status->intake.position, status->has_piece); |
| } |
| |
| bool CollisionAvoidance::IsCollided(const double wrist_position, |
| const double elevator_position, |
| const double intake_position, |
| const bool has_piece) { |
| const double wrist_elevator_collision_max_angle = |
| has_piece ? kWristElevatorCollisionMaxAngle |
| : kWristElevatorCollisionMaxAngleWithoutObject; |
| |
| // Elevator is down, so the wrist can't be close to vertical. |
| if (elevator_position < kElevatorClearHeight) { |
| if (wrist_position < wrist_elevator_collision_max_angle && |
| wrist_position > kWristElevatorCollisionMinAngle) { |
| return true; |
| } |
| } |
| |
| // Elevator is down so wrist can't go below horizontal in either direction. |
| if (elevator_position < kElevatorClearWristDownHeight) { |
| if (wrist_position > kWristMaxAngle) { |
| return true; |
| } |
| if (wrist_position < kWristMinAngle) { |
| return true; |
| } |
| } |
| |
| // Elevator is down so the intake has to be at either extreme. |
| if (elevator_position < kElevatorClearIntakeHeight && |
| wrist_position > kWristMaxAngle) { |
| if (intake_position < kIntakeOutAngle && intake_position > kIntakeInAngle) { |
| return true; |
| } |
| } |
| |
| // Nothing is hitting, we must be good. |
| return false; |
| } |
| |
| void CollisionAvoidance::UpdateGoal( |
| const SuperstructureQueue::Status *status, |
| const SuperstructureQueue::Goal *unsafe_goal) { |
| const double wrist_position = status->wrist.position; |
| const double elevator_position = status->elevator.position; |
| const double intake_position = status->intake.position; |
| const bool has_piece = status->has_piece; |
| |
| // Start with our constraints being wide open. |
| clear_max_wrist_goal(); |
| clear_min_wrist_goal(); |
| clear_max_intake_goal(); |
| clear_min_intake_goal(); |
| |
| const double wrist_elevator_collision_max_angle = |
| has_piece ? kWristElevatorCollisionMaxAngle |
| : kWristElevatorCollisionMaxAngleWithoutObject; |
| |
| // If the elevator is low enough, we also can't transition the wrist. |
| if (elevator_position < kElevatorClearHeight) { |
| // Figure out which side the wrist is on and stay there. |
| if (wrist_position < (2.0 * kWristElevatorCollisionMinAngle + |
| kWristElevatorCollisionMaxAngle) / |
| 3.0) { |
| update_max_wrist_goal(kWristElevatorCollisionMinAngle - kEpsWrist); |
| } else { |
| update_min_wrist_goal(wrist_elevator_collision_max_angle + kEpsWrist); |
| } |
| } |
| |
| // If the elevator is too low, the wrist needs to be above the clearance |
| // angles to avoid crashing the frame. |
| if (elevator_position < kElevatorClearWristDownHeight) { |
| update_min_wrist_goal(kWristMinAngle + kEpsWrist); |
| update_max_wrist_goal(kWristMaxAngle - kEpsWrist); |
| } |
| |
| constexpr double kIntakeMiddleAngle = |
| (kIntakeOutAngle + kIntakeInAngle) / 2.0; |
| |
| // If the elevator is too low, the intake can't transition from in to out or |
| // back. |
| if (elevator_position < kElevatorClearIntakeHeight && |
| wrist_position > wrist_elevator_collision_max_angle) { |
| // Figure out if the intake is in our out and keep it there. |
| if (intake_position < kIntakeMiddleAngle) { |
| update_max_intake_goal(kIntakeInAngle - kEpsIntake); |
| } else { |
| update_min_intake_goal(kIntakeOutAngle + kEpsIntake); |
| } |
| } |
| |
| // Start with an unconstrained elevator. |
| clear_min_elevator_goal(); |
| |
| // If the intake is within the collision range, don't let the elevator down. |
| if (intake_position > kIntakeInAngle && intake_position < kIntakeOutAngle && |
| wrist_position > wrist_elevator_collision_max_angle) { |
| update_min_elevator_goal(kElevatorClearIntakeHeight + kEps); |
| } |
| |
| // If the intake is in the collision range and the elevator is down, don't let |
| // the wrist go far down. |
| if (intake_position > kIntakeInAngle && intake_position < kIntakeOutAngle && |
| elevator_position < kElevatorClearIntakeHeight) { |
| update_max_wrist_goal(kWristMaxAngle - kEpsWrist); |
| } |
| |
| // If the wrist is within the elevator collision range, don't let the elevator |
| // go down. |
| if (wrist_position > kWristElevatorCollisionMinAngle && |
| wrist_position < wrist_elevator_collision_max_angle) { |
| update_min_elevator_goal(kElevatorClearHeight + kEps); |
| } |
| |
| // If the wrist is far enough down that we are going to hit the frame, don't |
| // let the elevator go too far down. |
| if (wrist_position > kWristMaxAngle || wrist_position < kWristMinAngle) { |
| update_min_elevator_goal(kElevatorClearWristDownHeight + kEps); |
| } |
| |
| if (unsafe_goal) { |
| const double wrist_goal = unsafe_goal->wrist.unsafe_goal; |
| const double intake_goal = unsafe_goal->intake.unsafe_goal; |
| |
| // Compute if we need to move the intake. |
| const bool intake_needs_to_move = (intake_position < kIntakeMiddleAngle) ^ |
| (intake_goal < kIntakeMiddleAngle); |
| |
| // Compute if we need to move the wrist across 0. |
| const bool wrist_needs_to_move = |
| (wrist_position < 0.0) ^ (wrist_goal < 0.0); |
| |
| // If we need to move the intake, we've got to shove the elevator up. The |
| // intake is already constrained so it can't hit anything until it's clear. |
| if (intake_needs_to_move && |
| wrist_position > wrist_elevator_collision_max_angle) { |
| update_min_elevator_goal(kElevatorClearIntakeHeight + kEps); |
| } |
| // If we need to move the wrist, we've got to shove the elevator up too. The |
| // wrist is already constrained so it can't hit anything until it's clear. |
| // If both the intake and wrist need to move, figure out which one will |
| // require the higher motion and move that. |
| if (wrist_needs_to_move) { |
| update_min_elevator_goal(kElevatorClearHeight + kEps); |
| } |
| |
| // TODO(austin): We won't shove the elevator up if the wrist is asked to go |
| // down below horizontal. I think that's fine. |
| } |
| } |
| |
| } // namespace superstructure |
| } // namespace control_loops |
| } // namespace y2019 |