| #ifndef FRC971_CONTROL_LOOPS_DRIVETRAIN_FIELD_ESTIMATOR_H_ |
| #define FRC971_CONTROL_LOOPS_DRIVETRAIN_FIELD_ESTIMATOR_H_ |
| |
| #include "aos/events/event-loop.h" |
| #include "frc971/control_loops/drivetrain/drivetrain_config.h" |
| #include "frc971/control_loops/drivetrain/hybrid_ekf.h" |
| #include "frc971/control_loops/pose.h" |
| |
| namespace frc971 { |
| namespace control_loops { |
| namespace drivetrain { |
| |
| // An interface for target selection. This provides an object that will take in |
| // state updates and then determine what poes we should be driving to. |
| class TargetSelectorInterface { |
| public: |
| // Take the state as [x, y, theta, left_vel, right_vel] |
| // If unable to determine what target to go for, returns false. If a viable |
| // target is selected, then returns true and sets target_pose. |
| // command_speed is the goal speed of the current drivetrain, generally |
| // generated from the throttle and meant to signify driver intent. |
| // TODO(james): Some implementations may also want a drivetrain goal so that |
| // driver intent can be divined more directly. |
| virtual bool UpdateSelection(const ::Eigen::Matrix<double, 5, 1> &state, |
| double command_speed) = 0; |
| // Gets the current target pose. Should only be called if UpdateSelection has |
| // returned true. |
| virtual TypedPose<double> TargetPose() const = 0; |
| // The "radius" of the target--for y2019, we wanted to drive in so that a disc |
| // with radius r would hit the plane of the target at an offset of exactly r |
| // from the TargetPose--this is distinct from wanting the center of the |
| // robot to project straight onto the center of the target. |
| virtual double TargetRadius() const = 0; |
| }; |
| |
| // Defines an interface for classes that provide field-global localization. |
| class LocalizerInterface { |
| public: |
| // Perform a single step of the filter, using the information that is |
| // available on every drivetrain iteration. |
| // The user should pass in the U that the real system experienced from the |
| // previous timestep until now; internally, any filters will first perform a |
| // prediction step to get the estimate at time now, and then will apply |
| // corrections based on the encoder/gyro/accelerometer values from time now. |
| // TODO(james): Consider letting implementations subscribe to the sensor |
| // values themselves, and then only passing in U. This requires more |
| // coordination on timing, however. |
| virtual void Update(const ::Eigen::Matrix<double, 2, 1> &U, |
| ::aos::monotonic_clock::time_point now, |
| double left_encoder, double right_encoder, |
| double gyro_rate, double longitudinal_accelerometer) = 0; |
| // Reset the absolute position of the estimator. |
| virtual void ResetPosition(::aos::monotonic_clock::time_point t, double x, |
| double y, double theta, double theta_uncertainty, |
| bool reset_theta) = 0; |
| // There are several subtly different norms floating around for state |
| // matrices. In order to avoid that mess, we jus tprovide direct accessors for |
| // the values that most people care about. |
| virtual double x() const = 0; |
| virtual double y() const = 0; |
| virtual double theta() const = 0; |
| virtual double left_velocity() const = 0; |
| virtual double right_velocity() const = 0; |
| virtual double left_encoder() const = 0; |
| virtual double right_encoder() const = 0; |
| virtual double left_voltage_error() const = 0; |
| virtual double right_voltage_error() const = 0; |
| virtual TargetSelectorInterface *target_selector() = 0; |
| }; |
| |
| // A target selector, primarily for testing purposes, that just lets a user |
| // manually set the target selector state. |
| class TrivialTargetSelector : public TargetSelectorInterface { |
| public: |
| bool UpdateSelection(const ::Eigen::Matrix<double, 5, 1> &, double) override { |
| return has_target_; |
| } |
| TypedPose<double> TargetPose() const override { return pose_; } |
| double TargetRadius() const override { return target_radius_; } |
| |
| void set_pose(const TypedPose<double> &pose) { pose_ = pose; } |
| void set_target_radius(double radius) { target_radius_ = radius; } |
| void set_has_target(bool has_target) { has_target_ = has_target; } |
| bool has_target() const { return has_target_; } |
| |
| private: |
| bool has_target_ = true; |
| TypedPose<double> pose_; |
| double target_radius_ = 0.0; |
| }; |
| |
| // Uses the generic HybridEkf implementation to provide a basic field estimator. |
| // This provides no method for using cameras or the such to get global |
| // measurements and just assumes that you can dead-reckon perfectly. |
| class DeadReckonEkf : public LocalizerInterface { |
| typedef HybridEkf<double> Ekf; |
| typedef typename Ekf::StateIdx StateIdx; |
| |
| public: |
| DeadReckonEkf(::aos::EventLoop *event_loop, |
| const DrivetrainConfig<double> &dt_config) |
| : ekf_(dt_config) { |
| event_loop->OnRun([this, event_loop]() { |
| ekf_.ResetInitialState(event_loop->monotonic_now(), Ekf::State::Zero(), |
| ekf_.P()); |
| }); |
| target_selector_.set_has_target(false); |
| } |
| |
| void Update(const ::Eigen::Matrix<double, 2, 1> &U, |
| ::aos::monotonic_clock::time_point now, double left_encoder, |
| double right_encoder, double gyro_rate, |
| double /*longitudinal_accelerometer*/) override { |
| ekf_.UpdateEncodersAndGyro(left_encoder, right_encoder, gyro_rate, U, now); |
| } |
| |
| void ResetPosition(::aos::monotonic_clock::time_point t, double x, double y, |
| double theta, double /*theta_override*/, |
| bool /*reset_theta*/) override { |
| const double left_encoder = ekf_.X_hat(StateIdx::kLeftEncoder); |
| const double right_encoder = ekf_.X_hat(StateIdx::kRightEncoder); |
| ekf_.ResetInitialState(t, (Ekf::State() << x, y, theta, left_encoder, 0, |
| right_encoder, 0, 0, 0, |
| 0).finished(), |
| ekf_.P()); |
| }; |
| |
| double x() const override { return ekf_.X_hat(StateIdx::kX); } |
| double y() const override { return ekf_.X_hat(StateIdx::kY); } |
| double theta() const override { return ekf_.X_hat(StateIdx::kTheta); } |
| double left_encoder() const override { |
| return ekf_.X_hat(StateIdx::kLeftEncoder); |
| } |
| double right_encoder() const override { |
| return ekf_.X_hat(StateIdx::kRightEncoder); |
| } |
| double left_velocity() const override { |
| return ekf_.X_hat(StateIdx::kLeftVelocity); |
| } |
| double right_velocity() const override { |
| return ekf_.X_hat(StateIdx::kRightVelocity); |
| } |
| double left_voltage_error() const override { |
| return ekf_.X_hat(StateIdx::kLeftVoltageError); |
| } |
| double right_voltage_error() const override { |
| return ekf_.X_hat(StateIdx::kRightVoltageError); |
| } |
| |
| TrivialTargetSelector *target_selector() override { |
| return &target_selector_; |
| } |
| |
| private: |
| Ekf ekf_; |
| TrivialTargetSelector target_selector_; |
| }; |
| |
| } // namespace drivetrain |
| } // namespace control_loops |
| } // namespace frc971 |
| |
| #endif // FRC971_CONTROL_LOOPS_DRIVETRAIN_FIELD_ESTIMATOR_H_ |