| /************************************************************************************************** |
| * * |
| * This file is part of BLASFEO. * |
| * * |
| * BLASFEO -- BLAS For Embedded Optimization. * |
| * Copyright (C) 2016-2017 by Gianluca Frison. * |
| * Developed at IMTEK (University of Freiburg) under the supervision of Moritz Diehl. * |
| * All rights reserved. * |
| * * |
| * HPMPC is free software; you can redistribute it and/or * |
| * modify it under the terms of the GNU Lesser General Public * |
| * License as published by the Free Software Foundation; either * |
| * version 2.1 of the License, or (at your option) any later version. * |
| * * |
| * HPMPC is distributed in the hope that it will be useful, * |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of * |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * |
| * See the GNU Lesser General Public License for more details. * |
| * * |
| * You should have received a copy of the GNU Lesser General Public * |
| * License along with HPMPC; if not, write to the Free Software * |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * |
| * * |
| * Author: Gianluca Frison, giaf (at) dtu.dk * |
| * gianluca.frison (at) imtek.uni-freiburg.de * |
| * * |
| **************************************************************************************************/ |
| |
| #include <mmintrin.h> |
| #include <xmmintrin.h> // SSE |
| #include <emmintrin.h> // SSE2 |
| #include <pmmintrin.h> // SSE3 |
| #include <smmintrin.h> // SSE4 |
| #include <immintrin.h> // AVX |
| |
| |
| |
| // B is the diagonal of a matrix, beta==0.0 case |
| void kernel_sgemm_diag_right_4_a0_lib4(int kmax, float *alpha, float *A, int sda, float *B, float *D, int sdd) |
| { |
| |
| if(kmax<=0) |
| return; |
| |
| const int bs = 8; |
| |
| int k; |
| |
| __m256 |
| alpha0, |
| mask_f, |
| sign, |
| a_00, |
| b_00, b_11, b_22, b_33, |
| d_00, d_01, d_02, d_03; |
| |
| __m256i |
| mask_i; |
| |
| alpha0 = _mm256_broadcast_ss( alpha ); |
| |
| b_00 = _mm256_broadcast_ss( &B[0] ); |
| b_00 = _mm256_mul_ps( b_00, alpha0 ); |
| b_11 = _mm256_broadcast_ss( &B[1] ); |
| b_11 = _mm256_mul_ps( b_11, alpha0 ); |
| b_22 = _mm256_broadcast_ss( &B[2] ); |
| b_22 = _mm256_mul_ps( b_22, alpha0 ); |
| b_33 = _mm256_broadcast_ss( &B[3] ); |
| b_33 = _mm256_mul_ps( b_33, alpha0 ); |
| |
| for(k=0; k<kmax-7; k+=8) |
| { |
| |
| a_00 = _mm256_load_ps( &A[0] ); |
| d_00 = _mm256_mul_ps( a_00, b_00 ); |
| a_00 = _mm256_load_ps( &A[8] ); |
| d_01 = _mm256_mul_ps( a_00, b_11 ); |
| a_00 = _mm256_load_ps( &A[16] ); |
| d_02 = _mm256_mul_ps( a_00, b_22 ); |
| a_00 = _mm256_load_ps( &A[24] ); |
| d_03 = _mm256_mul_ps( a_00, b_33 ); |
| |
| _mm256_store_ps( &D[0], d_00 ); |
| _mm256_store_ps( &D[8], d_01 ); |
| _mm256_store_ps( &D[16], d_02 ); |
| _mm256_store_ps( &D[24], d_03 ); |
| |
| A += 8*sda; |
| D += 8*sdd; |
| |
| } |
| if(k<kmax) |
| { |
| |
| const float mask_f[] = {0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5}; |
| float m_f = kmax-k; |
| |
| mask_i = _mm256_castps_si256( _mm256_sub_ps( _mm256_loadu_ps( mask_f ), _mm256_broadcast_ss( &m_f ) ) ); |
| |
| a_00 = _mm256_load_ps( &A[0] ); |
| d_00 = _mm256_mul_ps( a_00, b_00 ); |
| a_00 = _mm256_load_ps( &A[8] ); |
| d_01 = _mm256_mul_ps( a_00, b_11 ); |
| a_00 = _mm256_load_ps( &A[16] ); |
| d_02 = _mm256_mul_ps( a_00, b_22 ); |
| a_00 = _mm256_load_ps( &A[24] ); |
| d_03 = _mm256_mul_ps( a_00, b_33 ); |
| |
| _mm256_maskstore_ps( &D[0], mask_i, d_00 ); |
| _mm256_maskstore_ps( &D[8], mask_i, d_01 ); |
| _mm256_maskstore_ps( &D[16], mask_i, d_02 ); |
| _mm256_maskstore_ps( &D[24], mask_i, d_03 ); |
| |
| } |
| |
| } |
| |
| |
| |
| // B is the diagonal of a matrix |
| void kernel_sgemm_diag_right_4_lib4(int kmax, float *alpha, float *A, int sda, float *B, float *beta, float *C, int sdc, float *D, int sdd) |
| { |
| |
| if(kmax<=0) |
| return; |
| |
| const int bs = 8; |
| |
| int k; |
| |
| __m256 |
| alpha0, beta0, |
| mask_f, |
| sign, |
| a_00, |
| b_00, b_11, b_22, b_33, |
| c_00, |
| d_00, d_01, d_02, d_03; |
| |
| __m256i |
| mask_i; |
| |
| alpha0 = _mm256_broadcast_ss( alpha ); |
| beta0 = _mm256_broadcast_ss( beta ); |
| |
| b_00 = _mm256_broadcast_ss( &B[0] ); |
| b_00 = _mm256_mul_ps( b_00, alpha0 ); |
| b_11 = _mm256_broadcast_ss( &B[1] ); |
| b_11 = _mm256_mul_ps( b_11, alpha0 ); |
| b_22 = _mm256_broadcast_ss( &B[2] ); |
| b_22 = _mm256_mul_ps( b_22, alpha0 ); |
| b_33 = _mm256_broadcast_ss( &B[3] ); |
| b_33 = _mm256_mul_ps( b_33, alpha0 ); |
| |
| for(k=0; k<kmax-7; k+=8) |
| { |
| |
| a_00 = _mm256_load_ps( &A[0] ); |
| d_00 = _mm256_mul_ps( a_00, b_00 ); |
| a_00 = _mm256_load_ps( &A[8] ); |
| d_01 = _mm256_mul_ps( a_00, b_11 ); |
| a_00 = _mm256_load_ps( &A[16] ); |
| d_02 = _mm256_mul_ps( a_00, b_22 ); |
| a_00 = _mm256_load_ps( &A[24] ); |
| d_03 = _mm256_mul_ps( a_00, b_33 ); |
| |
| c_00 = _mm256_load_ps( &C[0] ); |
| c_00 = _mm256_mul_ps( c_00, beta0 ); |
| d_00 = _mm256_add_ps( c_00, d_00 ); |
| c_00 = _mm256_load_ps( &C[8] ); |
| c_00 = _mm256_mul_ps( c_00, beta0 ); |
| d_01 = _mm256_add_ps( c_00, d_01 ); |
| c_00 = _mm256_load_ps( &C[16] ); |
| c_00 = _mm256_mul_ps( c_00, beta0 ); |
| d_02 = _mm256_add_ps( c_00, d_02 ); |
| c_00 = _mm256_load_ps( &C[24] ); |
| c_00 = _mm256_mul_ps( c_00, beta0 ); |
| d_03 = _mm256_add_ps( c_00, d_03 ); |
| |
| _mm256_store_ps( &D[0], d_00 ); |
| _mm256_store_ps( &D[8], d_01 ); |
| _mm256_store_ps( &D[16], d_02 ); |
| _mm256_store_ps( &D[24], d_03 ); |
| |
| A += 8*sda; |
| C += 8*sdc; |
| D += 8*sdd; |
| |
| } |
| if(k<kmax) |
| { |
| |
| const float mask_f[] = {0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5}; |
| float m_f = kmax-k; |
| |
| mask_i = _mm256_castps_si256( _mm256_sub_ps( _mm256_loadu_ps( mask_f ), _mm256_broadcast_ss( &m_f ) ) ); |
| |
| a_00 = _mm256_load_ps( &A[0] ); |
| d_00 = _mm256_mul_ps( a_00, b_00 ); |
| a_00 = _mm256_load_ps( &A[8] ); |
| d_01 = _mm256_mul_ps( a_00, b_11 ); |
| a_00 = _mm256_load_ps( &A[16] ); |
| d_02 = _mm256_mul_ps( a_00, b_22 ); |
| a_00 = _mm256_load_ps( &A[24] ); |
| d_03 = _mm256_mul_ps( a_00, b_33 ); |
| |
| c_00 = _mm256_load_ps( &C[0] ); |
| c_00 = _mm256_mul_ps( c_00, beta0 ); |
| d_00 = _mm256_add_ps( c_00, d_00 ); |
| c_00 = _mm256_load_ps( &C[8] ); |
| c_00 = _mm256_mul_ps( c_00, beta0 ); |
| d_01 = _mm256_add_ps( c_00, d_01 ); |
| c_00 = _mm256_load_ps( &C[16] ); |
| c_00 = _mm256_mul_ps( c_00, beta0 ); |
| d_02 = _mm256_add_ps( c_00, d_02 ); |
| c_00 = _mm256_load_ps( &C[24] ); |
| c_00 = _mm256_mul_ps( c_00, beta0 ); |
| d_03 = _mm256_add_ps( c_00, d_03 ); |
| |
| _mm256_maskstore_ps( &D[0], mask_i, d_00 ); |
| _mm256_maskstore_ps( &D[8], mask_i, d_01 ); |
| _mm256_maskstore_ps( &D[16], mask_i, d_02 ); |
| _mm256_maskstore_ps( &D[24], mask_i, d_03 ); |
| |
| } |
| |
| } |
| |
| |
| |
| // B is the diagonal of a matrix |
| void kernel_sgemm_diag_right_3_lib4(int kmax, float *alpha, float *A, int sda, float *B, float *beta, float *C, int sdc, float *D, int sdd) |
| { |
| |
| if(kmax<=0) |
| return; |
| |
| const int bs = 8; |
| |
| int k; |
| |
| __m256 |
| alpha0, beta0, |
| mask_f, |
| sign, |
| a_00, |
| b_00, b_11, b_22, |
| c_00, |
| d_00, d_01, d_02; |
| |
| __m256i |
| mask_i; |
| |
| alpha0 = _mm256_broadcast_ss( alpha ); |
| beta0 = _mm256_broadcast_ss( beta ); |
| |
| b_00 = _mm256_broadcast_ss( &B[0] ); |
| b_00 = _mm256_mul_ps( b_00, alpha0 ); |
| b_11 = _mm256_broadcast_ss( &B[1] ); |
| b_11 = _mm256_mul_ps( b_11, alpha0 ); |
| b_22 = _mm256_broadcast_ss( &B[2] ); |
| b_22 = _mm256_mul_ps( b_22, alpha0 ); |
| |
| for(k=0; k<kmax-7; k+=8) |
| { |
| |
| a_00 = _mm256_load_ps( &A[0] ); |
| d_00 = _mm256_mul_ps( a_00, b_00 ); |
| a_00 = _mm256_load_ps( &A[8] ); |
| d_01 = _mm256_mul_ps( a_00, b_11 ); |
| a_00 = _mm256_load_ps( &A[16] ); |
| d_02 = _mm256_mul_ps( a_00, b_22 ); |
| |
| c_00 = _mm256_load_ps( &C[0] ); |
| c_00 = _mm256_mul_ps( c_00, beta0 ); |
| d_00 = _mm256_add_ps( c_00, d_00 ); |
| c_00 = _mm256_load_ps( &C[8] ); |
| c_00 = _mm256_mul_ps( c_00, beta0 ); |
| d_01 = _mm256_add_ps( c_00, d_01 ); |
| c_00 = _mm256_load_ps( &C[16] ); |
| c_00 = _mm256_mul_ps( c_00, beta0 ); |
| d_02 = _mm256_add_ps( c_00, d_02 ); |
| |
| _mm256_store_ps( &D[0], d_00 ); |
| _mm256_store_ps( &D[8], d_01 ); |
| _mm256_store_ps( &D[16], d_02 ); |
| |
| A += 8*sda; |
| C += 8*sdc; |
| D += 8*sdd; |
| |
| } |
| if(k<kmax) |
| { |
| |
| const float mask_f[] = {0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5}; |
| float m_f = kmax-k; |
| |
| mask_i = _mm256_castps_si256( _mm256_sub_ps( _mm256_loadu_ps( mask_f ), _mm256_broadcast_ss( &m_f ) ) ); |
| |
| a_00 = _mm256_load_ps( &A[0] ); |
| d_00 = _mm256_mul_ps( a_00, b_00 ); |
| a_00 = _mm256_load_ps( &A[8] ); |
| d_01 = _mm256_mul_ps( a_00, b_11 ); |
| a_00 = _mm256_load_ps( &A[16] ); |
| d_02 = _mm256_mul_ps( a_00, b_22 ); |
| |
| c_00 = _mm256_load_ps( &C[0] ); |
| c_00 = _mm256_mul_ps( c_00, beta0 ); |
| d_00 = _mm256_add_ps( c_00, d_00 ); |
| c_00 = _mm256_load_ps( &C[8] ); |
| c_00 = _mm256_mul_ps( c_00, beta0 ); |
| d_01 = _mm256_add_ps( c_00, d_01 ); |
| c_00 = _mm256_load_ps( &C[16] ); |
| c_00 = _mm256_mul_ps( c_00, beta0 ); |
| d_02 = _mm256_add_ps( c_00, d_02 ); |
| |
| _mm256_maskstore_ps( &D[0], mask_i, d_00 ); |
| _mm256_maskstore_ps( &D[8], mask_i, d_01 ); |
| _mm256_maskstore_ps( &D[16], mask_i, d_02 ); |
| |
| } |
| |
| } |
| |
| |
| |
| // B is the diagonal of a matrix |
| void kernel_sgemm_diag_right_2_lib4(int kmax, float *alpha, float *A, int sda, float *B, float *beta, float *C, int sdc, float *D, int sdd) |
| { |
| |
| if(kmax<=0) |
| return; |
| |
| const int bs = 4; |
| |
| int k; |
| |
| __m256 |
| alpha0, beta0, |
| mask_f, |
| sign, |
| a_00, |
| b_00, b_11, |
| c_00, |
| d_00, d_01; |
| |
| __m256i |
| mask_i; |
| |
| alpha0 = _mm256_broadcast_ss( alpha ); |
| beta0 = _mm256_broadcast_ss( beta ); |
| |
| b_00 = _mm256_broadcast_ss( &B[0] ); |
| b_00 = _mm256_mul_ps( b_00, alpha0 ); |
| b_11 = _mm256_broadcast_ss( &B[1] ); |
| b_11 = _mm256_mul_ps( b_11, alpha0 ); |
| |
| for(k=0; k<kmax-7; k+=8) |
| { |
| |
| a_00 = _mm256_load_ps( &A[0] ); |
| d_00 = _mm256_mul_ps( a_00, b_00 ); |
| a_00 = _mm256_load_ps( &A[8] ); |
| d_01 = _mm256_mul_ps( a_00, b_11 ); |
| |
| c_00 = _mm256_load_ps( &C[0] ); |
| c_00 = _mm256_mul_ps( c_00, beta0 ); |
| d_00 = _mm256_add_ps( c_00, d_00 ); |
| c_00 = _mm256_load_ps( &C[8] ); |
| c_00 = _mm256_mul_ps( c_00, beta0 ); |
| d_01 = _mm256_add_ps( c_00, d_01 ); |
| |
| _mm256_store_ps( &D[0], d_00 ); |
| _mm256_store_ps( &D[8], d_01 ); |
| |
| A += 8*sda; |
| C += 8*sdc; |
| D += 8*sdd; |
| |
| } |
| if(k<kmax) |
| { |
| |
| const float mask_f[] = {0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5}; |
| float m_f = kmax-k; |
| |
| mask_i = _mm256_castps_si256( _mm256_sub_ps( _mm256_loadu_ps( mask_f ), _mm256_broadcast_ss( &m_f ) ) ); |
| |
| a_00 = _mm256_load_ps( &A[0] ); |
| d_00 = _mm256_mul_ps( a_00, b_00 ); |
| a_00 = _mm256_load_ps( &A[8] ); |
| d_01 = _mm256_mul_ps( a_00, b_11 ); |
| |
| c_00 = _mm256_load_ps( &C[0] ); |
| c_00 = _mm256_mul_ps( c_00, beta0 ); |
| d_00 = _mm256_add_ps( c_00, d_00 ); |
| c_00 = _mm256_load_ps( &C[8] ); |
| c_00 = _mm256_mul_ps( c_00, beta0 ); |
| d_01 = _mm256_add_ps( c_00, d_01 ); |
| |
| _mm256_maskstore_ps( &D[0], mask_i, d_00 ); |
| _mm256_maskstore_ps( &D[8], mask_i, d_01 ); |
| |
| } |
| |
| } |
| |
| |
| |
| // B is the diagonal of a matrix |
| void kernel_sgemm_diag_right_1_lib4(int kmax, float *alpha, float *A, int sda, float *B, float *beta, float *C, int sdc, float *D, int sdd) |
| { |
| |
| if(kmax<=0) |
| return; |
| |
| const int bs = 4; |
| |
| int k; |
| |
| __m256 |
| alpha0, beta0, |
| mask_f, |
| sign, |
| a_00, |
| b_00, |
| c_00, |
| d_00; |
| |
| __m256i |
| mask_i; |
| |
| alpha0 = _mm256_broadcast_ss( alpha ); |
| beta0 = _mm256_broadcast_ss( beta ); |
| |
| b_00 = _mm256_broadcast_ss( &B[0] ); |
| b_00 = _mm256_mul_ps( b_00, alpha0 ); |
| |
| for(k=0; k<kmax-7; k+=8) |
| { |
| |
| a_00 = _mm256_load_ps( &A[0] ); |
| d_00 = _mm256_mul_ps( a_00, b_00 ); |
| |
| c_00 = _mm256_load_ps( &C[0] ); |
| c_00 = _mm256_mul_ps( c_00, beta0 ); |
| d_00 = _mm256_add_ps( c_00, d_00 ); |
| |
| _mm256_store_ps( &D[0], d_00 ); |
| |
| A += 8*sda; |
| C += 8*sdc; |
| D += 8*sdd; |
| |
| } |
| if(k<kmax) |
| { |
| |
| const float mask_f[] = {0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5}; |
| float m_f = kmax-k; |
| |
| mask_i = _mm256_castps_si256( _mm256_sub_ps( _mm256_loadu_ps( mask_f ), _mm256_broadcast_ss( &m_f ) ) ); |
| |
| a_00 = _mm256_load_ps( &A[0] ); |
| d_00 = _mm256_mul_ps( a_00, b_00 ); |
| |
| c_00 = _mm256_load_ps( &C[0] ); |
| c_00 = _mm256_mul_ps( c_00, beta0 ); |
| d_00 = _mm256_add_ps( c_00, d_00 ); |
| |
| _mm256_maskstore_ps( &D[0], mask_i, d_00 ); |
| |
| } |
| |
| } |
| |
| |
| |
| |