blob: b61d2d30676afb9b659e237f087986bb283591b8 [file] [log] [blame]
/**************************************************************************************************
* *
* This file is part of BLASFEO. *
* *
* BLASFEO -- BLAS For Embedded Optimization. *
* Copyright (C) 2016-2017 by Gianluca Frison. *
* Developed at IMTEK (University of Freiburg) under the supervision of Moritz Diehl. *
* All rights reserved. *
* *
* HPMPC is free software; you can redistribute it and/or *
* modify it under the terms of the GNU Lesser General Public *
* License as published by the Free Software Foundation; either *
* version 2.1 of the License, or (at your option) any later version. *
* *
* HPMPC is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *
* See the GNU Lesser General Public License for more details. *
* *
* You should have received a copy of the GNU Lesser General Public *
* License along with HPMPC; if not, write to the Free Software *
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA *
* *
* Author: Gianluca Frison, giaf (at) dtu.dk *
* gianluca.frison (at) imtek.uni-freiburg.de *
* *
**************************************************************************************************/
#include <stdlib.h>
#include <stdio.h>
#include <sys/time.h>
#include "tools.h"
#include "../include/blasfeo_common.h"
#include "../include/blasfeo_i_aux.h"
#include "../include/blasfeo_d_aux.h"
#include "../include/blasfeo_d_kernel.h"
#include "../include/blasfeo_d_blas.h"
void d_back_ric_sv_libstr(int N, int *nx, int *nu, struct d_strmat *hsBAbt, struct d_strmat *hsRSQrq, struct d_strmat *hsL, struct d_strmat *hsLxt, struct d_strvec *hsux, struct d_strvec *hspi, struct d_strmat *hswork_mat, struct d_strvec *hswork_vec)
{
int nn;
// factorization and backward substitution
// last stage
dpotrf_l_libstr(nx[N]+1, nx[N], &hsRSQrq[N], 0, 0, &hsL[N], 0, 0);
dtrtr_l_libstr(nx[N], &hsL[N], 0, 0, &hsLxt[N], 0, 0);
// middle stages
for(nn=0; nn<N; nn++)
{
dtrmm_rutn_libstr(nu[N-nn-1]+nx[N-nn-1]+1, nx[N-nn], 1.0, &hsBAbt[N-nn-1], 0, 0, &hsLxt[N-nn], 0, 0, 0.0, &hswork_mat[0], 0, 0, &hswork_mat[0], 0, 0);
dgead_libstr(1, nx[N-nn], 1.0, &hsL[N-nn], nu[N-nn]+nx[N-nn], nu[N-nn], &hswork_mat[0], nu[N-nn-1]+nx[N-nn-1], 0);
#if 1
dsyrk_dpotrf_ln_libstr(nu[N-nn-1]+nx[N-nn-1]+1, nu[N-nn-1]+nx[N-nn-1], nx[N-nn], &hswork_mat[0], 0, 0, &hswork_mat[0], 0, 0, &hsRSQrq[N-nn-1], 0, 0, &hsL[N-nn-1], 0, 0);
#else
dsyrk_ln_libstr(nu[N-nn-1]+nx[N-nn-1]+1, nu[N-nn-1]+nx[N-nn-1], nx[N-nn], 1.0, &hswork_mat[0], 0, 0, &hswork_mat[0], 0, 0, 1.0, &hsRSQrq[N-nn-1], 0, 0, &hsL[N-nn-1], 0, 0);
dpotrf_l_libstr(nu[N-nn-1]+nx[N-nn-1]+1, nu[N-nn-1]+nx[N-nn-1], &hsL[N-nn-1], 0, 0, &hsL[N-nn-1], 0, 0);
#endif
dtrtr_l_libstr(nx[N-nn-1], &hsL[N-nn-1], nu[N-nn-1], nu[N-nn-1], &hsLxt[N-nn-1], 0, 0);
}
// forward substitution
// first stage
nn = 0;
drowex_libstr(nu[nn]+nx[nn], -1.0, &hsL[nn], nu[nn]+nx[nn], 0, &hsux[nn], 0);
dtrsv_ltn_libstr(nu[nn]+nx[nn], nu[nn]+nx[nn], &hsL[nn], 0, 0, &hsux[nn], 0, &hsux[nn], 0);
drowex_libstr(nx[nn+1], 1.0, &hsBAbt[nn], nu[nn]+nx[nn], 0, &hsux[nn+1], nu[nn+1]);
dgemv_t_libstr(nu[nn]+nx[nn], nx[nn+1], 1.0, &hsBAbt[nn], 0, 0, &hsux[nn], 0, 1.0, &hsux[nn+1], nu[nn+1], &hsux[nn+1], nu[nn+1]);
dveccp_libstr(nx[nn+1], 1.0, &hsux[nn+1], nu[nn+1], &hspi[nn], 0);
drowex_libstr(nx[nn+1], 1.0, &hsL[nn+1], nu[nn+1]+nx[nn+1], nu[nn+1], &hswork_vec[0], 0);
dtrmv_unn_libstr(nx[nn+1], &hsLxt[nn+1], 0, 0, &hspi[nn], 0, &hspi[nn], 0);
daxpy_libstr(nx[nn+1], 1.0, &hswork_vec[0], 0, &hspi[nn], 0);
dtrmv_utn_libstr(nx[nn+1], &hsLxt[nn+1], 0, 0, &hspi[nn], 0, &hspi[nn], 0);
// middle stages
for(nn=1; nn<N; nn++)
{
drowex_libstr(nu[nn], -1.0, &hsL[nn], nu[nn]+nx[nn], 0, &hsux[nn], 0);
dtrsv_ltn_libstr(nu[nn]+nx[nn], nu[nn], &hsL[nn], 0, 0, &hsux[nn], 0, &hsux[nn], 0);
drowex_libstr(nx[nn+1], 1.0, &hsBAbt[nn], nu[nn]+nx[nn], 0, &hsux[nn+1], nu[nn+1]);
dgemv_t_libstr(nu[nn]+nx[nn], nx[nn+1], 1.0, &hsBAbt[nn], 0, 0, &hsux[nn], 0, 1.0, &hsux[nn+1], nu[nn+1], &hsux[nn+1], nu[nn+1]);
dveccp_libstr(nx[nn+1], 1.0, &hsux[nn+1], nu[nn+1], &hspi[nn], 0);
drowex_libstr(nx[nn+1], 1.0, &hsL[nn+1], nu[nn+1]+nx[nn+1], nu[nn+1], &hswork_vec[0], 0);
dtrmv_unn_libstr(nx[nn+1], &hsLxt[nn+1], 0, 0, &hspi[nn], 0, &hspi[nn], 0);
daxpy_libstr(nx[nn+1], 1.0, &hswork_vec[0], 0, &hspi[nn], 0);
dtrmv_utn_libstr(nx[nn+1], &hsLxt[nn+1], 0, 0, &hspi[nn], 0, &hspi[nn], 0);
}
return;
}
void d_back_ric_trf_funnel1_libstr(int md, int *nx, int *nu, struct d_strmat *hsBAbt, struct d_strmat *hsRSQrq, struct d_strmat *hsL, struct d_strmat *hsLxt_old, struct d_strmat *hsLxt_new, struct d_strmat *hswork_mat)
{
int ii;
ii = 0;
dtrmm_rutn_libstr(nu[0]+nx[0], nx[1], 1.0, &hsBAbt[ii], 0, 0, &hsLxt_old[ii], 0, 0, 0.0, &hswork_mat[0], 0, 0, &hswork_mat[0], 0, 0);
dsyrk_ln_libstr(nu[0]+nx[0], nu[0]+nx[0], nx[1], 1.0, &hswork_mat[0], 0, 0, &hswork_mat[0], 0, 0, 1.0, &hsRSQrq[0], 0, 0, &hsL[0], 0, 0);
for(ii=1; ii<md; ii++)
{
dtrmm_rutn_libstr(nu[0]+nx[0], nx[1], 1.0, &hsBAbt[ii], 0, 0, &hsLxt_old[ii], 0, 0, 0.0, &hswork_mat[0], 0, 0, &hswork_mat[0], 0, 0);
dsyrk_ln_libstr(nu[0]+nx[0], nu[0]+nx[0], nx[1], 1.0, &hswork_mat[0], 0, 0, &hswork_mat[0], 0, 0, 1.0, &hsL[0], 0, 0, &hsL[0], 0, 0);
}
dpotrf_l_libstr(nu[0]+nx[0], nu[0]+nx[0], &hsL[0], 0, 0, &hsL[0], 0, 0);
dtrtr_l_libstr(nx[0], &hsL[0], nu[0], nu[0], &hsLxt_new[0], 0, 0);
return;
}
void d_back_ric_trf_step1_libstr(int *nx, int *nu, struct d_strmat *hsBAbt, struct d_strmat *hsRSQrq, struct d_strmat *hsL, struct d_strmat *hsLxt, struct d_strmat *hswork_mat)
{
dtrmm_rutn_libstr(nu[0]+nx[0], nx[1], 1.0, &hsBAbt[0], 0, 0, &hsLxt[1], 0, 0, 0.0, &hswork_mat[0], 0, 0, &hswork_mat[0], 0, 0);
dsyrk_ln_libstr(nu[0]+nx[0], nu[0]+nx[0], nx[1], 1.0, &hswork_mat[0], 0, 0, &hswork_mat[0], 0, 0, 1.0, &hsRSQrq[0], 0, 0, &hsL[0], 0, 0);
dpotrf_l_libstr(nu[0]+nx[0], nu[0]+nx[0], &hsL[0], 0, 0, &hsL[0], 0, 0);
dtrtr_l_libstr(nx[0], &hsL[0], nu[0], nu[0], &hsLxt[0], 0, 0);
return;
}
void d_back_ric_trf_stepN_libstr(int *nx, struct d_strmat *hsRSQrq, struct d_strmat *hsL, struct d_strmat *hsLxt)
{
dpotrf_l_libstr(nx[0], nx[0], &hsRSQrq[0], 0, 0, &hsL[0], 0, 0);
dtrtr_l_libstr(nx[0], &hsL[0], 0, 0, &hsLxt[0], 0, 0);
return;
}
void d_back_ric_trf_libstr(int N, int *nx, int *nu, struct d_strmat *hsBAbt, struct d_strmat *hsRSQrq, struct d_strmat *hsL, struct d_strmat *hsLxt, struct d_strmat *hswork_mat)
{
int nn;
// factorization
// last stage
d_back_ric_trf_stepN_libstr(&nx[N], &hsRSQrq[N], &hsL[N], &hsLxt[N]);
// middle stages
for(nn=0; nn<N; nn++)
{
d_back_ric_trf_step1_libstr(&nx[N-nn-1], &nu[N-nn-1], &hsBAbt[N-nn-1], &hsRSQrq[N-nn-1], &hsL[N-nn-1], &hsLxt[N-nn-1], hswork_mat);
}
return;
}
void d_back_ric_trs_libstr(int N, int *nx, int *nu, struct d_strmat *hsBAbt, struct d_strvec *hsb, struct d_strvec *hsrq, struct d_strmat *hsL, struct d_strmat *hsLxt, struct d_strvec *hsPb, struct d_strvec *hsux, struct d_strvec *hspi, struct d_strvec *hswork_vec)
{
int nn;
// backward substitution
// last stage
dveccp_libstr(nu[N]+nx[N], 1.0, &hsrq[N], 0, &hsux[N], 0);
// middle stages
for(nn=0; nn<N-1; nn++)
{
// compute Pb
dtrmv_unn_libstr(nx[N-nn], &hsLxt[N-nn], 0, 0, &hsb[N-nn-1], 0, &hsPb[N-nn-1], 0);
dtrmv_utn_libstr(nx[N-nn], &hsLxt[N-nn], 0, 0, &hsPb[N-nn-1], 0, &hsPb[N-nn-1], 0);
dveccp_libstr(nu[N-nn-1]+nx[N-nn-1], 1.0, &hsrq[N-nn-1], 0, &hsux[N-nn-1], 0);
dveccp_libstr(nx[N-nn], 1.0, &hsPb[N-nn-1], 0, &hswork_vec[0], 0);
daxpy_libstr(nx[N-nn], 1.0, &hsux[N-nn], nu[N-nn], &hswork_vec[0], 0);
dgemv_n_libstr(nu[N-nn-1]+nx[N-nn-1], nx[N-nn], 1.0, &hsBAbt[N-nn-1], 0, 0, &hswork_vec[0], 0, 1.0, &hsux[N-nn-1], 0, &hsux[N-nn-1], 0);
dtrsv_lnn_libstr(nu[N-nn-1]+nx[N-nn-1], nu[N-nn-1], &hsL[N-nn-1], 0, 0, &hsux[N-nn-1], 0, &hsux[N-nn-1], 0);
}
// first stage
nn = N-1;
dtrmv_unn_libstr(nx[N-nn], &hsLxt[N-nn], 0, 0, &hsb[N-nn-1], 0, &hsPb[N-nn-1], 0);
dtrmv_utn_libstr(nx[N-nn], &hsLxt[N-nn], 0, 0, &hsPb[N-nn-1], 0, &hsPb[N-nn-1], 0);
dveccp_libstr(nu[N-nn-1]+nx[N-nn-1], 1.0, &hsrq[N-nn-1], 0, &hsux[N-nn-1], 0);
dveccp_libstr(nx[N-nn], 1.0, &hsPb[N-nn-1], 0, &hswork_vec[0], 0);
daxpy_libstr(nx[N-nn], 1.0, &hsux[N-nn], nu[N-nn], &hswork_vec[0], 0);
dgemv_n_libstr(nu[N-nn-1]+nx[N-nn-1], nx[N-nn], 1.0, &hsBAbt[N-nn-1], 0, 0, &hswork_vec[0], 0, 1.0, &hsux[N-nn-1], 0, &hsux[N-nn-1], 0);
dtrsv_lnn_libstr(nu[N-nn-1]+nx[N-nn-1], nu[N-nn-1]+nx[N-nn-1], &hsL[N-nn-1], 0, 0, &hsux[N-nn-1], 0, &hsux[N-nn-1], 0);
// forward substitution
// first stage
nn = 0;
dveccp_libstr(nx[nn+1], 1.0, &hsux[nn+1], nu[nn+1], &hspi[nn], 0);
dveccp_libstr(nu[nn]+nx[nn], -1.0, &hsux[nn], 0, &hsux[nn], 0);
dtrsv_ltn_libstr(nu[nn]+nx[nn], nu[nn]+nx[nn], &hsL[nn], 0, 0, &hsux[nn], 0, &hsux[nn], 0);
dgemv_t_libstr(nu[nn]+nx[nn], nx[nn+1], 1.0, &hsBAbt[nn], 0, 0, &hsux[nn], 0, 1.0, &hsb[nn], 0, &hsux[nn+1], nu[nn+1]);
dveccp_libstr(nx[nn+1], 1.0, &hsux[nn+1], nu[nn+1], &hswork_vec[0], 0);
dtrmv_unn_libstr(nx[nn+1], &hsLxt[nn+1], 0, 0, &hswork_vec[0], 0, &hswork_vec[0], 0);
dtrmv_utn_libstr(nx[nn+1], &hsLxt[nn+1], 0, 0, &hswork_vec[0], 0, &hswork_vec[0], 0);
daxpy_libstr(nx[nn+1], 1.0, &hswork_vec[0], 0, &hspi[nn], 0);
// middle stages
for(nn=1; nn<N; nn++)
{
dveccp_libstr(nx[nn+1], 1.0, &hsux[nn+1], nu[nn+1], &hspi[nn], 0);
dveccp_libstr(nu[nn], -1.0, &hsux[nn], 0, &hsux[nn], 0);
dtrsv_ltn_libstr(nu[nn]+nx[nn], nu[nn], &hsL[nn], 0, 0, &hsux[nn], 0, &hsux[nn], 0);
dgemv_t_libstr(nu[nn]+nx[nn], nx[nn+1], 1.0, &hsBAbt[nn], 0, 0, &hsux[nn], 0, 1.0, &hsb[nn], 0, &hsux[nn+1], nu[nn+1]);
dveccp_libstr(nx[nn+1], 1.0, &hsux[nn+1], nu[nn+1], &hswork_vec[0], 0);
dtrmv_unn_libstr(nx[nn+1], &hsLxt[nn+1], 0, 0, &hswork_vec[0], 0, &hswork_vec[0], 0);
dtrmv_utn_libstr(nx[nn+1], &hsLxt[nn+1], 0, 0, &hswork_vec[0], 0, &hswork_vec[0], 0);
daxpy_libstr(nx[nn+1], 1.0, &hswork_vec[0], 0, &hspi[nn], 0);
}
return;
}
/************************************************
Mass-spring system: nx/2 masses connected each other with springs (in a row), and the first and the last one to walls. nu (<=nx) controls act on the first nu masses. The system is sampled with sampling time Ts.
************************************************/
void mass_spring_system(double Ts, int nx, int nu, int N, double *A, double *B, double *b, double *x0)
{
int nx2 = nx*nx;
int info = 0;
int pp = nx/2; // number of masses
/************************************************
* build the continuous time system
************************************************/
double *T; d_zeros(&T, pp, pp);
int ii;
for(ii=0; ii<pp; ii++) T[ii*(pp+1)] = -2;
for(ii=0; ii<pp-1; ii++) T[ii*(pp+1)+1] = 1;
for(ii=1; ii<pp; ii++) T[ii*(pp+1)-1] = 1;
double *Z; d_zeros(&Z, pp, pp);
double *I; d_zeros(&I, pp, pp); for(ii=0; ii<pp; ii++) I[ii*(pp+1)]=1.0; // = eye(pp);
double *Ac; d_zeros(&Ac, nx, nx);
dmcopy(pp, pp, Z, pp, Ac, nx);
dmcopy(pp, pp, T, pp, Ac+pp, nx);
dmcopy(pp, pp, I, pp, Ac+pp*nx, nx);
dmcopy(pp, pp, Z, pp, Ac+pp*(nx+1), nx);
free(T);
free(Z);
free(I);
d_zeros(&I, nu, nu); for(ii=0; ii<nu; ii++) I[ii*(nu+1)]=1.0; //I = eye(nu);
double *Bc; d_zeros(&Bc, nx, nu);
dmcopy(nu, nu, I, nu, Bc+pp, nx);
free(I);
/************************************************
* compute the discrete time system
************************************************/
double *bb; d_zeros(&bb, nx, 1);
dmcopy(nx, 1, bb, nx, b, nx);
dmcopy(nx, nx, Ac, nx, A, nx);
dscal_3l(nx2, Ts, A);
expm(nx, A);
d_zeros(&T, nx, nx);
d_zeros(&I, nx, nx); for(ii=0; ii<nx; ii++) I[ii*(nx+1)]=1.0; //I = eye(nx);
dmcopy(nx, nx, A, nx, T, nx);
daxpy_3l(nx2, -1.0, I, T);
dgemm_nn_3l(nx, nu, nx, T, nx, Bc, nx, B, nx);
free(T);
free(I);
int *ipiv = (int *) malloc(nx*sizeof(int));
dgesv_3l(nx, nu, Ac, nx, ipiv, B, nx, &info);
free(ipiv);
free(Ac);
free(Bc);
free(bb);
/************************************************
* initial state
************************************************/
if(nx==4)
{
x0[0] = 5;
x0[1] = 10;
x0[2] = 15;
x0[3] = 20;
}
else
{
int jj;
for(jj=0; jj<nx; jj++)
x0[jj] = 1;
}
}
int main()
{
printf("\nExample of LU factorization and backsolve\n\n");
#if defined(LA_HIGH_PERFORMANCE)
printf("\nLA provided by BLASFEO\n\n");
#elif defined(LA_BLAS)
printf("\nLA provided by BLAS\n\n");
#else
printf("\nLA provided by ???\n\n");
exit(2);
#endif
// loop index
int ii;
/************************************************
* problem size
************************************************/
// problem size
int N = 4;
int nx_ = 8;
int nu_ = 3;
// stage-wise variant size
int nx[N+1];
nx[0] = 0;
for(ii=1; ii<=N; ii++)
nx[ii] = nx_;
nx[N] = nx_;
int nu[N+1];
for(ii=0; ii<N; ii++)
nu[ii] = nu_;
nu[N] = 0;
/************************************************
* dynamical system
************************************************/
double *A; d_zeros(&A, nx_, nx_); // states update matrix
double *B; d_zeros(&B, nx_, nu_); // inputs matrix
double *b; d_zeros(&b, nx_, 1); // states offset
double *x0; d_zeros_align(&x0, nx_, 1); // initial state
double Ts = 0.5; // sampling time
mass_spring_system(Ts, nx_, nu_, N, A, B, b, x0);
for(ii=0; ii<nx_; ii++)
b[ii] = 0.1;
for(ii=0; ii<nx_; ii++)
x0[ii] = 0;
x0[0] = 2.5;
x0[1] = 2.5;
d_print_mat(nx_, nx_, A, nx_);
d_print_mat(nx_, nu_, B, nx_);
d_print_mat(1, nx_, b, 1);
d_print_mat(1, nx_, x0, 1);
/************************************************
* cost function
************************************************/
double *R; d_zeros(&R, nu_, nu_);
for(ii=0; ii<nu_; ii++) R[ii*(nu_+1)] = 2.0;
double *S; d_zeros(&S, nu_, nx_);
double *Q; d_zeros(&Q, nx_, nx_);
for(ii=0; ii<nx_; ii++) Q[ii*(nx_+1)] = 1.0;
double *r; d_zeros(&r, nu_, 1);
for(ii=0; ii<nu_; ii++) r[ii] = 0.2;
double *q; d_zeros(&q, nx_, 1);
for(ii=0; ii<nx_; ii++) q[ii] = 0.1;
d_print_mat(nu_, nu_, R, nu_);
d_print_mat(nu_, nx_, S, nu_);
d_print_mat(nx_, nx_, Q, nx_);
d_print_mat(1, nu_, r, 1);
d_print_mat(1, nx_, q, 1);
/************************************************
* matrices as strmat
************************************************/
struct d_strmat sA;
d_allocate_strmat(nx_, nx_, &sA);
d_cvt_mat2strmat(nx_, nx_, A, nx_, &sA, 0, 0);
struct d_strvec sb;
d_allocate_strvec(nx_, &sb);
d_cvt_vec2strvec(nx_, b, &sb, 0);
struct d_strvec sx0;
d_allocate_strvec(nx_, &sx0);
d_cvt_vec2strvec(nx_, x0, &sx0, 0);
struct d_strvec sb0;
d_allocate_strvec(nx_, &sb0);
double *b0; d_zeros(&b0, nx_, 1); // states offset
dgemv_n_libstr(nx_, nx_, 1.0, &sA, 0, 0, &sx0, 0, 1.0, &sb, 0, &sb0, 0);
d_print_tran_strvec(nx_, &sb0, 0);
struct d_strmat sBbt0;
d_allocate_strmat(nu_+nx_+1, nx_, &sBbt0);
d_cvt_tran_mat2strmat(nx_, nx_, B, nx_, &sBbt0, 0, 0);
drowin_libstr(nx_, 1.0, &sb0, 0, &sBbt0, nu_, 0);
d_print_strmat(nu_+1, nx_, &sBbt0, 0, 0);
struct d_strmat sBAbt1;
d_allocate_strmat(nu_+nx_+1, nx_, &sBAbt1);
d_cvt_tran_mat2strmat(nx_, nu_, B, nx_, &sBAbt1, 0, 0);
d_cvt_tran_mat2strmat(nx_, nx_, A, nx_, &sBAbt1, nu_, 0);
d_cvt_tran_mat2strmat(nx_, 1, b, nx_, &sBAbt1, nu_+nx_, 0);
d_print_strmat(nu_+nx_+1, nx_, &sBAbt1, 0, 0);
struct d_strvec sr0; // XXX no need to update r0 since S=0
d_allocate_strvec(nu_, &sr0);
d_cvt_vec2strvec(nu_, r, &sr0, 0);
struct d_strmat sRr0;
d_allocate_strmat(nu_+1, nu_, &sRr0);
d_cvt_mat2strmat(nu_, nu_, R, nu_, &sRr0, 0, 0);
drowin_libstr(nu_, 1.0, &sr0, 0, &sRr0, nu_, 0);
d_print_strmat(nu_+1, nu_, &sRr0, 0, 0);
struct d_strvec srq1;
d_allocate_strvec(nu_+nx_, &srq1);
d_cvt_vec2strvec(nu_, r, &srq1, 0);
d_cvt_vec2strvec(nx_, q, &srq1, nu_);
struct d_strmat sRSQrq1;
d_allocate_strmat(nu_+nx_+1, nu_+nx_, &sRSQrq1);
d_cvt_mat2strmat(nu_, nu_, R, nu_, &sRSQrq1, 0, 0);
d_cvt_tran_mat2strmat(nu_, nx_, S, nu_, &sRSQrq1, nu_, 0);
d_cvt_mat2strmat(nx_, nx_, Q, nx_, &sRSQrq1, nu_, nu_);
drowin_libstr(nu_+nx_, 1.0, &srq1, 0, &sRSQrq1, nu_+nx_, 0);
d_print_strmat(nu_+nx_+1, nu_+nx_, &sRSQrq1, 0, 0);
struct d_strvec sqN;
d_allocate_strvec(nx_, &sqN);
d_cvt_vec2strvec(nx_, q, &sqN, 0);
struct d_strmat sQqN;
d_allocate_strmat(nx_+1, nx_, &sQqN);
d_cvt_mat2strmat(nx_, nx_, Q, nx_, &sQqN, 0, 0);
drowin_libstr(nx_, 1.0, &sqN, 0, &sQqN, nx_, 0);
d_print_strmat(nx_+1, nx_, &sQqN, 0, 0);
/************************************************
* array of matrices
************************************************/
struct d_strmat hsBAbt[N];
struct d_strvec hsb[N];
struct d_strmat hsRSQrq[N+1];
struct d_strvec hsrq[N+1];
struct d_strmat hsL[N+1];
struct d_strmat hsLxt[N+1];
struct d_strvec hsPb[N];
struct d_strvec hsux[N+1];
struct d_strvec hspi[N];
struct d_strmat hswork_mat[1];
struct d_strvec hswork_vec[1];
hsBAbt[0] = sBbt0;
hsb[0] = sb0;
hsRSQrq[0] = sRr0;
hsrq[0] = sr0;
d_allocate_strmat(nu_+1, nu_, &hsL[0]);
// d_allocate_strmat(nu_+1, nu_, &hsLxt[0]);
d_allocate_strvec(nx_, &hsPb[0]);
d_allocate_strvec(nx_+nu_+1, &hsux[0]);
d_allocate_strvec(nx_, &hspi[0]);
for(ii=1; ii<N; ii++)
{
hsBAbt[ii] = sBAbt1;
hsb[ii] = sb;
hsRSQrq[ii] = sRSQrq1;
hsrq[ii] = srq1;
d_allocate_strmat(nu_+nx_+1, nu_+nx_, &hsL[ii]);
d_allocate_strmat(nx_, nu_+nx_, &hsLxt[ii]);
d_allocate_strvec(nx_, &hsPb[ii]);
d_allocate_strvec(nx_+nu_+1, &hsux[ii]);
d_allocate_strvec(nx_, &hspi[ii]);
}
hsRSQrq[N] = sQqN;
hsrq[N] = sqN;
d_allocate_strmat(nx_+1, nx_, &hsL[N]);
d_allocate_strmat(nx_, nx_, &hsLxt[N]);
d_allocate_strvec(nx_+nu_+1, &hsux[N]);
d_allocate_strmat(nu_+nx_+1, nx_, &hswork_mat[0]);
d_allocate_strvec(nx_, &hswork_vec[0]);
// for(ii=0; ii<N; ii++)
// d_print_strmat(nu[ii]+nx[ii]+1, nx[ii+1], &hsBAbt[ii], 0, 0);
// return 0;
/************************************************
* call Riccati solver
************************************************/
// timing
struct timeval tv0, tv1, tv2, tv3;
int nrep = 1000;
int rep;
gettimeofday(&tv0, NULL); // time
for(rep=0; rep<nrep; rep++)
{
// d_back_ric_sv_libstr(N, nx, nu, hsBAbt, hsRSQrq, hsL, hsLxt, hsux, hspi, hswork_mat, hswork_vec);
}
gettimeofday(&tv1, NULL); // time
for(rep=0; rep<nrep; rep++)
{
d_back_ric_trf_libstr(N, nx, nu, hsBAbt, hsRSQrq, hsL, hsLxt, hswork_mat);
}
gettimeofday(&tv2, NULL); // time
for(rep=0; rep<nrep; rep++)
{
d_back_ric_trs_libstr(N, nx, nu, hsBAbt, hsb, hsrq, hsL, hsLxt, hsPb, hsux, hspi, hswork_vec);
}
gettimeofday(&tv3, NULL); // time
float time_sv = (float) (tv1.tv_sec-tv0.tv_sec)/(nrep+0.0)+(tv1.tv_usec-tv0.tv_usec)/(nrep*1e6);
float time_trf = (float) (tv2.tv_sec-tv1.tv_sec)/(nrep+0.0)+(tv2.tv_usec-tv1.tv_usec)/(nrep*1e6);
float time_trs = (float) (tv3.tv_sec-tv2.tv_sec)/(nrep+0.0)+(tv3.tv_usec-tv2.tv_usec)/(nrep*1e6);
// print sol
printf("\nux = \n\n");
for(ii=0; ii<=N; ii++)
d_print_tran_strvec(nu[ii]+nx[ii], &hsux[ii], 0);
printf("\npi = \n\n");
for(ii=0; ii<N; ii++)
d_print_tran_strvec(nx[ii+1], &hspi[ii], 0);
printf("\ntime sv\t\ttime trf\t\ttime trs\n");
printf("\n%e\t%e\t%e\n", time_sv, time_trf, time_trs);
printf("\n");
/************************************************
* free memory
************************************************/
d_free(A);
d_free(B);
d_free(b);
d_free_align(x0);
d_free(R);
d_free(S);
d_free(Q);
d_free(r);
d_free(q);
d_free(b0);
d_free_strmat(&sA);
d_free_strvec(&sb);
d_free_strmat(&sBbt0);
d_free_strvec(&sb0);
d_free_strmat(&sBAbt1);
d_free_strmat(&sRr0);
d_free_strvec(&sr0);
d_free_strmat(&sRSQrq1);
d_free_strvec(&srq1);
d_free_strmat(&sQqN);
d_free_strvec(&sqN);
d_free_strmat(&hsL[0]);
// d_free_strmat(&hsLxt[0]);
d_free_strvec(&hsPb[0]);
d_free_strvec(&hsux[0]);
d_free_strvec(&hspi[0]);
for(ii=1; ii<N; ii++)
{
d_free_strmat(&hsL[ii]);
d_free_strmat(&hsLxt[ii]);
d_free_strvec(&hsPb[ii]);
d_free_strvec(&hsux[ii]);
d_free_strvec(&hspi[ii]);
}
d_free_strmat(&hsL[N]);
d_free_strmat(&hsLxt[N]);
d_free_strvec(&hsux[N]);
d_free_strmat(&hswork_mat[0]);
d_free_strvec(&hswork_vec[0]);
/************************************************
* return
************************************************/
return 0;
}