| /************************************************************************************************** |
| * * |
| * This file is part of BLASFEO. * |
| * * |
| * BLASFEO -- BLAS For Embedded Optimization. * |
| * Copyright (C) 2016-2017 by Gianluca Frison. * |
| * Developed at IMTEK (University of Freiburg) under the supervision of Moritz Diehl. * |
| * All rights reserved. * |
| * * |
| * HPMPC is free software; you can redistribute it and/or * |
| * modify it under the terms of the GNU Lesser General Public * |
| * License as published by the Free Software Foundation; either * |
| * version 2.1 of the License, or (at your option) any later version. * |
| * * |
| * HPMPC is distributed in the hope that it will be useful, * |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of * |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * |
| * See the GNU Lesser General Public License for more details. * |
| * * |
| * You should have received a copy of the GNU Lesser General Public * |
| * License along with HPMPC; if not, write to the Free Software * |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * |
| * * |
| * Author: Gianluca Frison, giaf (at) dtu.dk * |
| * gianluca.frison (at) imtek.uni-freiburg.de * |
| * * |
| **************************************************************************************************/ |
| |
| #include <mmintrin.h> |
| #include <xmmintrin.h> // SSE |
| #include <emmintrin.h> // SSE2 |
| #include <pmmintrin.h> // SSE3 |
| #include <smmintrin.h> // SSE4 |
| #include <immintrin.h> // AVX |
| |
| |
| |
| // transposed of general matrices, read along panels, write across panels |
| void kernel_dgetr_4_lib4(int tri, int kmax, int kna, double alpha, double *A, double *C, int sdc) |
| { |
| |
| if(tri==1) |
| { |
| // A is lower triangular, C is upper triangular |
| // kmax+1 4-wide + end 3x3 triangle |
| |
| kmax += 1; |
| } |
| |
| const int bs = 4; |
| |
| __m256d |
| alph, |
| v0, v1, v2, v3, |
| v4, v5, v6, v7; |
| |
| alph = _mm256_broadcast_sd( &alpha ); |
| |
| int k; |
| |
| k = 0; |
| |
| if(kmax<kna) |
| goto cleanup_loop; |
| |
| if(kna>0) |
| { |
| for( ; k<kna; k++) |
| { |
| C[0+bs*0] = alpha * A[0+bs*0]; |
| C[0+bs*1] = alpha * A[1+bs*0]; |
| C[0+bs*2] = alpha * A[2+bs*0]; |
| C[0+bs*3] = alpha * A[3+bs*0]; |
| |
| C += 1; |
| A += bs; |
| } |
| C += bs*(sdc-1); |
| } |
| |
| for( ; k<kmax-7; k+=8) |
| { |
| |
| v0 = _mm256_load_pd( &A[0+bs*0] ); // 00 10 20 30 |
| v1 = _mm256_load_pd( &A[0+bs*1] ); // 01 11 21 31 |
| v4 = _mm256_unpacklo_pd( v0, v1 ); // 00 01 20 21 |
| v5 = _mm256_unpackhi_pd( v0, v1 ); // 10 11 30 31 |
| v2 = _mm256_load_pd( &A[0+bs*2] ); // 02 12 22 32 |
| v3 = _mm256_load_pd( &A[0+bs*3] ); // 03 13 23 33 |
| v6 = _mm256_unpacklo_pd( v2, v3 ); // 02 03 22 23 |
| v7 = _mm256_unpackhi_pd( v2, v3 ); // 12 13 32 33 |
| |
| A += bs*bs; |
| |
| v0 = _mm256_permute2f128_pd( v4, v6, 0x20 ); // 00 01 02 03 |
| v0 = _mm256_mul_pd( v0, alph ); |
| _mm256_store_pd( &C[0+bs*0], v0 ); |
| v2 = _mm256_permute2f128_pd( v4, v6, 0x31 ); // 20 21 22 23 |
| v2 = _mm256_mul_pd( v2, alph ); |
| _mm256_store_pd( &C[0+bs*2], v2 ); |
| v1 = _mm256_permute2f128_pd( v5, v7, 0x20 ); // 10 11 12 13 |
| v1 = _mm256_mul_pd( v1, alph ); |
| _mm256_store_pd( &C[0+bs*1], v1 ); |
| v3 = _mm256_permute2f128_pd( v5, v7, 0x31 ); // 30 31 32 33 |
| v3 = _mm256_mul_pd( v3, alph ); |
| _mm256_store_pd( &C[0+bs*3], v3 ); |
| |
| C += bs*sdc; |
| |
| v0 = _mm256_load_pd( &A[0+bs*0] ); // 00 10 20 30 |
| v1 = _mm256_load_pd( &A[0+bs*1] ); // 01 11 21 31 |
| v4 = _mm256_unpacklo_pd( v0, v1 ); // 00 01 20 21 |
| v5 = _mm256_unpackhi_pd( v0, v1 ); // 10 11 30 31 |
| v2 = _mm256_load_pd( &A[0+bs*2] ); // 02 12 22 32 |
| v3 = _mm256_load_pd( &A[0+bs*3] ); // 03 13 23 33 |
| v6 = _mm256_unpacklo_pd( v2, v3 ); // 02 03 22 23 |
| v7 = _mm256_unpackhi_pd( v2, v3 ); // 12 13 32 33 |
| |
| A += bs*bs; |
| |
| v0 = _mm256_permute2f128_pd( v4, v6, 0x20 ); // 00 01 02 03 |
| v0 = _mm256_mul_pd( v0, alph ); |
| _mm256_store_pd( &C[0+bs*0], v0 ); |
| v2 = _mm256_permute2f128_pd( v4, v6, 0x31 ); // 20 21 22 23 |
| v2 = _mm256_mul_pd( v2, alph ); |
| _mm256_store_pd( &C[0+bs*2], v2 ); |
| v1 = _mm256_permute2f128_pd( v5, v7, 0x20 ); // 10 11 12 13 |
| v1 = _mm256_mul_pd( v1, alph ); |
| _mm256_store_pd( &C[0+bs*1], v1 ); |
| v3 = _mm256_permute2f128_pd( v5, v7, 0x31 ); // 30 31 32 33 |
| v3 = _mm256_mul_pd( v3, alph ); |
| _mm256_store_pd( &C[0+bs*3], v3 ); |
| |
| C += bs*sdc; |
| |
| } |
| |
| for( ; k<kmax-3; k+=4) |
| { |
| |
| v0 = _mm256_load_pd( &A[0+bs*0] ); // 00 10 20 30 |
| v1 = _mm256_load_pd( &A[0+bs*1] ); // 01 11 21 31 |
| v4 = _mm256_unpacklo_pd( v0, v1 ); // 00 01 20 21 |
| v5 = _mm256_unpackhi_pd( v0, v1 ); // 10 11 30 31 |
| v2 = _mm256_load_pd( &A[0+bs*2] ); // 02 12 22 32 |
| v3 = _mm256_load_pd( &A[0+bs*3] ); // 03 13 23 33 |
| v6 = _mm256_unpacklo_pd( v2, v3 ); // 02 03 22 23 |
| v7 = _mm256_unpackhi_pd( v2, v3 ); // 12 13 32 33 |
| |
| A += bs*bs; |
| |
| v0 = _mm256_permute2f128_pd( v4, v6, 0x20 ); // 00 01 02 03 |
| v0 = _mm256_mul_pd( v0, alph ); |
| _mm256_store_pd( &C[0+bs*0], v0 ); |
| v2 = _mm256_permute2f128_pd( v4, v6, 0x31 ); // 20 21 22 23 |
| v2 = _mm256_mul_pd( v2, alph ); |
| _mm256_store_pd( &C[0+bs*2], v2 ); |
| v1 = _mm256_permute2f128_pd( v5, v7, 0x20 ); // 10 11 12 13 |
| v1 = _mm256_mul_pd( v1, alph ); |
| _mm256_store_pd( &C[0+bs*1], v1 ); |
| v3 = _mm256_permute2f128_pd( v5, v7, 0x31 ); // 30 31 32 33 |
| v3 = _mm256_mul_pd( v3, alph ); |
| _mm256_store_pd( &C[0+bs*3], v3 ); |
| |
| C += bs*sdc; |
| |
| } |
| |
| cleanup_loop: |
| |
| for( ; k<kmax; k++) |
| { |
| C[0+bs*0] = alpha * A[0+bs*0]; |
| C[0+bs*1] = alpha * A[1+bs*0]; |
| C[0+bs*2] = alpha * A[2+bs*0]; |
| C[0+bs*3] = alpha * A[3+bs*0]; |
| |
| C += 1; |
| A += bs; |
| } |
| |
| if(tri==1) |
| { |
| // end 3x3 triangle |
| kna = (bs-(bs-kna+kmax)%bs)%bs; |
| |
| if(kna==1) |
| { |
| C[0+bs*1] = alpha * A[1+bs*0]; |
| C[0+bs*2] = alpha * A[2+bs*0]; |
| C[0+bs*3] = alpha * A[3+bs*0]; |
| C[1+bs*(sdc+1)] = alpha * A[2+bs*1]; |
| C[1+bs*(sdc+2)] = alpha * A[3+bs*1]; |
| C[2+bs*(sdc+2)] = alpha * A[3+bs*2]; |
| } |
| else if(kna==2) |
| { |
| C[0+bs*1] = alpha * A[1+bs*0]; |
| C[0+bs*2] = alpha * A[2+bs*0]; |
| C[0+bs*3] = alpha * A[3+bs*0]; |
| C[1+bs*2] = alpha * A[2+bs*1]; |
| C[1+bs*3] = alpha * A[3+bs*1]; |
| C[2+bs*(sdc+2)] = alpha * A[3+bs*2]; |
| } |
| else |
| { |
| C[0+bs*1] = alpha * A[1+bs*0]; |
| C[0+bs*2] = alpha * A[2+bs*0]; |
| C[0+bs*3] = alpha * A[3+bs*0]; |
| C[1+bs*2] = alpha * A[2+bs*1]; |
| C[1+bs*3] = alpha * A[3+bs*1]; |
| C[2+bs*3] = alpha * A[3+bs*2]; |
| } |
| } |
| |
| } |
| |
| |
| |
| // transposed of general matrices, read along panels, write across panels |
| void kernel_dgetr_3_lib4(int tri, int kmax, int kna, double alpha, double *A, double *C, int sdc) |
| { |
| |
| if(tri==1) |
| { |
| // A is lower triangular, C is upper triangular |
| // kmax+1 3-wide + end 2x2 triangle |
| |
| kmax += 1; |
| } |
| |
| const int bs = 4; |
| |
| int k; |
| |
| k = 0; |
| |
| if(kmax<kna) |
| goto cleanup_loop; |
| |
| if(kna>0) |
| { |
| for( ; k<kna; k++) |
| { |
| C[0+bs*0] = alpha * A[0+bs*0]; |
| C[0+bs*1] = alpha * A[1+bs*0]; |
| C[0+bs*2] = alpha * A[2+bs*0]; |
| |
| C += 1; |
| A += bs; |
| } |
| C += bs*(sdc-1); |
| } |
| |
| for( ; k<kmax-3; k+=4) |
| { |
| C[0+bs*0] = alpha * A[0+bs*0]; |
| C[0+bs*1] = alpha * A[1+bs*0]; |
| C[0+bs*2] = alpha * A[2+bs*0]; |
| |
| C[1+bs*0] = alpha * A[0+bs*1]; |
| C[1+bs*1] = alpha * A[1+bs*1]; |
| C[1+bs*2] = alpha * A[2+bs*1]; |
| |
| C[2+bs*0] = alpha * A[0+bs*2]; |
| C[2+bs*1] = alpha * A[1+bs*2]; |
| C[2+bs*2] = alpha * A[2+bs*2]; |
| |
| C[3+bs*0] = alpha * A[0+bs*3]; |
| C[3+bs*1] = alpha * A[1+bs*3]; |
| C[3+bs*2] = alpha * A[2+bs*3]; |
| |
| C += bs*sdc; |
| A += bs*bs; |
| } |
| |
| cleanup_loop: |
| |
| for( ; k<kmax; k++) |
| { |
| C[0+bs*0] = alpha * A[0+bs*0]; |
| C[0+bs*1] = alpha * A[1+bs*0]; |
| C[0+bs*2] = alpha * A[2+bs*0]; |
| |
| C += 1; |
| A += bs; |
| } |
| |
| if(tri==1) |
| { |
| // end 2x2 triangle |
| kna = (bs-(bs-kna+kmax)%bs)%bs; |
| |
| if(kna==1) |
| { |
| C[0+bs*1] = alpha * A[1+bs*0]; |
| C[0+bs*2] = alpha * A[2+bs*0]; |
| C[1+bs*(sdc+1)] = alpha * A[2+bs*1]; |
| } |
| else |
| { |
| C[0+bs*1] = alpha * A[1+bs*0]; |
| C[0+bs*2] = alpha * A[2+bs*0]; |
| C[1+bs*2] = alpha * A[2+bs*1]; |
| } |
| } |
| |
| } |
| |
| |
| |
| // transposed of general matrices, read along panels, write across panels |
| void kernel_dgetr_2_lib4(int tri, int kmax, int kna, double alpha, double *A, double *C, int sdc) |
| { |
| |
| if(tri==1) |
| { |
| // A is lower triangular, C is upper triangular |
| // kmax+1 2-wide + end 1x1 triangle |
| |
| kmax += 1; |
| } |
| |
| const int bs = 4; |
| |
| int k; |
| |
| k = 0; |
| |
| if(kmax<kna) |
| goto cleanup_loop; |
| |
| if(kna>0) |
| { |
| for( ; k<kna; k++) |
| { |
| C[0+bs*0] = alpha * A[0+bs*0]; |
| C[0+bs*1] = alpha * A[1+bs*0]; |
| |
| C += 1; |
| A += bs; |
| } |
| C += bs*(sdc-1); |
| } |
| |
| for( ; k<kmax-3; k+=4) |
| { |
| C[0+bs*0] = alpha * A[0+bs*0]; |
| C[0+bs*1] = alpha * A[1+bs*0]; |
| |
| C[1+bs*0] = alpha * A[0+bs*1]; |
| C[1+bs*1] = alpha * A[1+bs*1]; |
| |
| C[2+bs*0] = alpha * A[0+bs*2]; |
| C[2+bs*1] = alpha * A[1+bs*2]; |
| |
| C[3+bs*0] = alpha * A[0+bs*3]; |
| C[3+bs*1] = alpha * A[1+bs*3]; |
| |
| C += bs*sdc; |
| A += bs*bs; |
| } |
| |
| cleanup_loop: |
| |
| for( ; k<kmax; k++) |
| { |
| C[0+bs*0] = alpha * A[0+bs*0]; |
| C[0+bs*1] = alpha * A[1+bs*0]; |
| |
| C += 1; |
| A += bs; |
| } |
| |
| if(tri==1) |
| { |
| // end 1x1 triangle |
| C[0+bs*1] = alpha * A[1+bs*0]; |
| } |
| |
| } |
| |
| |
| |
| // transposed of general matrices, read along panels, write across panels |
| void kernel_dgetr_1_lib4(int tri, int kmax, int kna, double alpha, double *A, double *C, int sdc) |
| { |
| |
| if(tri==1) |
| { |
| // A is lower triangular, C is upper triangular |
| // kmax+1 1-wide |
| |
| kmax += 1; |
| } |
| |
| const int bs = 4; |
| |
| int k; |
| |
| k = 0; |
| |
| if(kmax<kna) |
| goto cleanup_loop; |
| |
| if(kna>0) |
| { |
| for( ; k<kna; k++) |
| { |
| C[0+bs*0] = alpha * A[0+bs*0]; |
| |
| C += 1; |
| A += bs; |
| } |
| C += bs*(sdc-1); |
| } |
| |
| for( ; k<kmax-3; k+=4) |
| { |
| C[0+bs*0] = alpha * A[0+bs*0]; |
| |
| C[1+bs*0] = alpha * A[0+bs*1]; |
| |
| C[2+bs*0] = alpha * A[0+bs*2]; |
| |
| C[3+bs*0] = alpha * A[0+bs*3]; |
| |
| C += bs*sdc; |
| A += bs*bs; |
| } |
| |
| cleanup_loop: |
| |
| for( ; k<kmax; k++) |
| { |
| C[0+bs*0] = alpha * A[0+bs*0]; |
| |
| C += 1; |
| A += bs; |
| } |
| |
| } |
| |
| |
| |
| // transposed of general matrices, read across panels, write along panels |
| void kernel_dgetr_4_0_lib4(int kmax, double *A, int sda, double *B) |
| { |
| const int ps = 4; |
| __m256d |
| v0, v1, v2, v3, v4, v5, v6, v7; |
| int k; |
| for(k=0; k<kmax-3; k+=4) |
| { |
| |
| v0 = _mm256_load_pd( &A[0+ps*0] ); // 00 10 20 30 |
| v1 = _mm256_load_pd( &A[0+ps*1] ); // 01 11 21 31 |
| v4 = _mm256_unpacklo_pd( v0, v1 ); // 00 01 20 21 |
| v5 = _mm256_unpackhi_pd( v0, v1 ); // 10 11 30 31 |
| v2 = _mm256_load_pd( &A[0+ps*2] ); // 02 12 22 32 |
| v3 = _mm256_load_pd( &A[0+ps*3] ); // 03 13 23 33 |
| v6 = _mm256_unpacklo_pd( v2, v3 ); // 02 03 22 23 |
| v7 = _mm256_unpackhi_pd( v2, v3 ); // 12 13 32 33 |
| |
| v0 = _mm256_permute2f128_pd( v4, v6, 0x20 ); // 00 01 02 03 |
| _mm256_store_pd( &B[0+ps*0], v0 ); |
| v2 = _mm256_permute2f128_pd( v4, v6, 0x31 ); // 20 21 22 23 |
| _mm256_store_pd( &B[0+ps*2], v2 ); |
| v1 = _mm256_permute2f128_pd( v5, v7, 0x20 ); // 10 11 12 13 |
| _mm256_store_pd( &B[0+ps*1], v1 ); |
| v3 = _mm256_permute2f128_pd( v5, v7, 0x31 ); // 30 31 32 33 |
| _mm256_store_pd( &B[0+ps*3], v3 ); |
| |
| A += ps*sda; |
| B += ps*ps; |
| } |
| for( ; k<kmax; k++) |
| { |
| // |
| B[0+ps*0] = A[0+ps*0]; |
| B[1+ps*0] = A[0+ps*1]; |
| B[2+ps*0] = A[0+ps*2]; |
| B[3+ps*0] = A[0+ps*3]; |
| |
| A += 1; |
| B += ps; |
| } |
| return; |
| } |
| |