blob: 03a1b2159474ccaa19cf6afb1d3c1499ee002891 [file] [log] [blame]
#include "y2023/control_loops/superstructure/arm/arm.h"
#include "y2023/control_loops/superstructure/roll/integral_hybrid_roll_plant.h"
#include "y2023/control_loops/superstructure/roll/integral_roll_plant.h"
namespace y2023 {
namespace control_loops {
namespace superstructure {
namespace arm {
namespace {
namespace chrono = ::std::chrono;
using ::aos::monotonic_clock;
constexpr int kMaxBrownoutCount = 4;
} // namespace
Arm::Arm(std::shared_ptr<const constants::Values> values)
: values_(values),
state_(ArmState::UNINITIALIZED),
proximal_zeroing_estimator_(values_->arm_proximal.zeroing),
distal_zeroing_estimator_(values_->arm_distal.zeroing),
roll_joint_zeroing_estimator_(values_->roll_joint.zeroing),
proximal_offset_(0.0),
distal_offset_(0.0),
roll_joint_offset_(0.0),
alpha_unitizer_((::Eigen::DiagonalMatrix<double, 3>().diagonal()
<< (1.0 / kAlpha0Max()),
(1.0 / kAlpha1Max()), (1.0 / kAlpha2Max()))
.finished()),
dynamics_(kArmConstants),
close_enough_for_full_power_(false),
brownout_count_(0),
roll_joint_loop_(roll::MakeIntegralRollLoop()),
hybrid_roll_joint_loop_(roll::MakeIntegralHybridRollLoop()),
arm_ekf_(&dynamics_),
search_graph_(MakeSearchGraph(&dynamics_, &trajectories_, alpha_unitizer_,
kVMax(), &hybrid_roll_joint_loop_)),
// Go to the start of the first trajectory.
follower_(&dynamics_, &hybrid_roll_joint_loop_, NeutralPoint()),
points_(PointList()),
current_node_(0) {
int i = 0;
for (const auto &trajectory : trajectories_) {
AOS_LOG(INFO, "trajectory length for edge node %d: %f\n", i,
trajectory.trajectory.path().length());
++i;
}
}
void Arm::Reset() { state_ = ArmState::UNINITIALIZED; }
namespace {
// Proximal joint center in xy space
constexpr std::pair<double, double> kJointCenter = {-0.203, 0.787};
std::tuple<double, double, int> ArmThetasToXY(double theta_proximal,
double theta_distal) {
double theta_proximal_shifted = M_PI / 2.0 - theta_proximal;
double theta_distal_shifted = M_PI / 2.0 - theta_distal;
double x = std::cos(theta_proximal_shifted) * kArmConstants.l0 +
std::cos(theta_distal_shifted) * kArmConstants.l1 +
kJointCenter.first;
double y = std::sin(theta_proximal_shifted) * kArmConstants.l0 +
std::sin(theta_distal_shifted) * kArmConstants.l1 +
kJointCenter.second;
int circular_index =
std::floor((theta_distal_shifted - theta_proximal_shifted) / M_PI);
return std::make_tuple(x, y, circular_index);
}
} // namespace
flatbuffers::Offset<superstructure::ArmStatus> Arm::Iterate(
const ::aos::monotonic_clock::time_point /*monotonic_now*/,
const uint32_t *unsafe_goal, const superstructure::ArmPosition *position,
bool trajectory_override, double *proximal_output, double *distal_output,
double *roll_joint_output, flatbuffers::FlatBufferBuilder *fbb) {
::Eigen::Matrix<double, 2, 1> Y;
const bool outputs_disabled =
((proximal_output == nullptr) || (distal_output == nullptr) ||
(roll_joint_output == nullptr));
if (outputs_disabled) {
++brownout_count_;
} else {
brownout_count_ = 0;
}
// TODO(milind): should we default to the closest position?
uint32_t filtered_goal = arm::NeutralIndex();
if (unsafe_goal != nullptr) {
filtered_goal = *unsafe_goal;
}
::Eigen::Matrix<double, 2, 1> Y_arm;
Y_arm << position->proximal()->encoder() + proximal_offset_,
position->distal()->encoder() + distal_offset_;
::Eigen::Matrix<double, 1, 1> Y_roll_joint;
Y_roll_joint << position->roll_joint()->encoder() + roll_joint_offset_;
proximal_zeroing_estimator_.UpdateEstimate(*position->proximal());
distal_zeroing_estimator_.UpdateEstimate(*position->distal());
roll_joint_zeroing_estimator_.UpdateEstimate(*position->roll_joint());
if (proximal_output != nullptr) {
*proximal_output = 0.0;
}
if (distal_output != nullptr) {
*distal_output = 0.0;
}
if (roll_joint_output != nullptr) {
*roll_joint_output = 0.0;
}
arm_ekf_.Correct(Y_arm, kDt());
roll_joint_loop_.Correct(Y_roll_joint);
if (::std::abs(arm_ekf_.X_hat(0) - follower_.theta(0)) <= 0.05 &&
::std::abs(arm_ekf_.X_hat(2) - follower_.theta(1)) <= 0.05 &&
::std::abs(roll_joint_loop_.X_hat(0) - follower_.theta(2)) <= 0.05) {
close_enough_for_full_power_ = true;
}
if (::std::abs(arm_ekf_.X_hat(0) - follower_.theta(0)) >= 1.10 ||
::std::abs(arm_ekf_.X_hat(2) - follower_.theta(1)) >= 1.10 ||
::std::abs(roll_joint_loop_.X_hat(0) - follower_.theta(2)) >= 0.50) {
close_enough_for_full_power_ = false;
}
switch (state_) {
case ArmState::UNINITIALIZED:
// Wait in the uninitialized state until the intake is initialized.
AOS_LOG(DEBUG, "Uninitialized, waiting for intake\n");
state_ = ArmState::ZEROING;
proximal_zeroing_estimator_.Reset();
distal_zeroing_estimator_.Reset();
roll_joint_zeroing_estimator_.Reset();
break;
case ArmState::ZEROING:
// Zero by not moving.
if (zeroed()) {
state_ = ArmState::DISABLED;
proximal_offset_ = proximal_zeroing_estimator_.offset();
distal_offset_ = distal_zeroing_estimator_.offset();
roll_joint_offset_ = roll_joint_zeroing_estimator_.offset();
Y_arm << position->proximal()->encoder() + proximal_offset_,
position->distal()->encoder() + distal_offset_;
Y_roll_joint << position->roll_joint()->encoder() + roll_joint_offset_;
// TODO(austin): Offset ekf rather than reset it. Since we aren't
// moving at this point, it's pretty safe to do this.
::Eigen::Matrix<double, 4, 1> X_arm;
X_arm << Y_arm(0), 0.0, Y_arm(1), 0.0;
arm_ekf_.Reset(X_arm);
::Eigen::Matrix<double, 3, 1> X_roll_joint;
X_roll_joint << Y_roll_joint(0), 0.0, 0.0;
roll_joint_loop_.mutable_X_hat() = X_roll_joint;
} else {
break;
}
[[fallthrough]];
case ArmState::DISABLED: {
follower_.SwitchTrajectory(nullptr);
close_enough_for_full_power_ = false;
const ::Eigen::Matrix<double, 3, 1> current_theta =
(::Eigen::Matrix<double, 3, 1>() << arm_ekf_.X_hat(0),
arm_ekf_.X_hat(2), roll_joint_loop_.X_hat(0))
.finished();
uint32_t best_index = 0;
double best_distance = (points_[0] - current_theta).norm();
uint32_t current_index = 0;
for (const ::Eigen::Matrix<double, 3, 1> &point : points_) {
const double new_distance = (point - current_theta).norm();
if (new_distance < best_distance) {
best_distance = new_distance;
best_index = current_index;
}
++current_index;
}
follower_.set_theta(points_[best_index]);
current_node_ = best_index;
if (!outputs_disabled) {
state_ = ArmState::GOTO_PATH;
} else {
break;
}
}
[[fallthrough]];
case ArmState::GOTO_PATH:
if (outputs_disabled) {
state_ = ArmState::DISABLED;
} else if (trajectory_override) {
follower_.SwitchTrajectory(nullptr);
current_node_ = filtered_goal;
follower_.set_theta(points_[current_node_]);
state_ = ArmState::GOTO_PATH;
} else if (close_enough_for_full_power_) {
state_ = ArmState::RUNNING;
}
break;
case ArmState::RUNNING:
// ESTOP if we hit the hard limits.
// TODO(austin): Pick some sane limits.
if (proximal_zeroing_estimator_.error() ||
distal_zeroing_estimator_.error() ||
roll_joint_zeroing_estimator_.error()) {
AOS_LOG(ERROR, "Zeroing error ESTOP\n");
state_ = ArmState::ESTOP;
} else if (outputs_disabled && brownout_count_ > kMaxBrownoutCount) {
state_ = ArmState::DISABLED;
} else if (trajectory_override) {
follower_.SwitchTrajectory(nullptr);
current_node_ = filtered_goal;
follower_.set_theta(points_[current_node_]);
state_ = ArmState::GOTO_PATH;
}
break;
case ArmState::ESTOP:
AOS_LOG(ERROR, "Estop\n");
break;
}
const bool disable = outputs_disabled || (state_ != ArmState::RUNNING &&
state_ != ArmState::GOTO_PATH);
if (disable) {
close_enough_for_full_power_ = false;
}
if (state_ == ArmState::RUNNING && unsafe_goal != nullptr) {
if (current_node_ != filtered_goal) {
AOS_LOG(INFO, "Goal is different\n");
if (filtered_goal >= search_graph_.num_vertexes()) {
AOS_LOG(ERROR, "goal node out of range ESTOP\n");
state_ = ArmState::ESTOP;
} else if (follower_.path_distance_to_go() > 1e-3) {
// Still on the old path segment. Can't change yet.
} else {
search_graph_.SetGoal(filtered_goal);
size_t min_edge = 0;
double min_cost = ::std::numeric_limits<double>::infinity();
for (const SearchGraph::HalfEdge &edge :
search_graph_.Neighbors(current_node_)) {
const double cost = search_graph_.GetCostToGoal(edge.dest);
if (cost < min_cost) {
min_edge = edge.edge_id;
min_cost = cost;
}
}
// Ok, now we know which edge we are on. Figure out the path and
// trajectory.
const SearchGraph::Edge &next_edge = search_graph_.edges()[min_edge];
AOS_LOG(INFO, "Switching from node %d to %d along edge %d\n",
static_cast<int>(current_node_),
static_cast<int>(next_edge.end), static_cast<int>(min_edge));
vmax_ = trajectories_[min_edge].vmax;
follower_.SwitchTrajectory(&trajectories_[min_edge].trajectory);
current_node_ = next_edge.end;
}
}
}
const double max_operating_voltage =
close_enough_for_full_power_
? kOperatingVoltage()
: (state_ == ArmState::GOTO_PATH ? kGotoPathVMax() : kPathlessVMax());
::Eigen::Matrix<double, 9, 1> X_hat;
X_hat.block<6, 1>(0, 0) = arm_ekf_.X_hat();
X_hat.block<3, 1>(6, 0) = roll_joint_loop_.X_hat();
follower_.Update(X_hat, disable, kDt(), vmax_, max_operating_voltage);
AOS_LOG(INFO, "Max voltage: %f\n", max_operating_voltage);
arm_ekf_.Predict(follower_.U().head<2>(), kDt());
roll_joint_loop_.UpdateObserver(follower_.U().tail<1>(), kDtDuration());
flatbuffers::Offset<frc971::PotAndAbsoluteEncoderEstimatorState>
proximal_estimator_state_offset =
proximal_zeroing_estimator_.GetEstimatorState(fbb);
flatbuffers::Offset<frc971::PotAndAbsoluteEncoderEstimatorState>
distal_estimator_state_offset =
distal_zeroing_estimator_.GetEstimatorState(fbb);
flatbuffers::Offset<frc971::PotAndAbsoluteEncoderEstimatorState>
roll_joint_estimator_state_offset =
roll_joint_zeroing_estimator_.GetEstimatorState(fbb);
const auto [arm_x, arm_y, arm_circular_index] =
ArmThetasToXY(arm_ekf_.X_hat(0), arm_ekf_.X_hat(2));
superstructure::ArmStatus::Builder status_builder(*fbb);
status_builder.add_proximal_estimator_state(proximal_estimator_state_offset);
status_builder.add_distal_estimator_state(distal_estimator_state_offset);
status_builder.add_roll_joint_estimator_state(
roll_joint_estimator_state_offset);
status_builder.add_goal_theta0(follower_.theta(0));
status_builder.add_goal_theta1(follower_.theta(1));
status_builder.add_goal_theta2(follower_.theta(2));
status_builder.add_goal_omega0(follower_.omega(0));
status_builder.add_goal_omega1(follower_.omega(1));
status_builder.add_goal_omega2(follower_.omega(2));
status_builder.add_theta0(arm_ekf_.X_hat(0));
status_builder.add_theta1(arm_ekf_.X_hat(2));
status_builder.add_theta2(roll_joint_loop_.X_hat(0));
status_builder.add_omega0(arm_ekf_.X_hat(1));
status_builder.add_omega1(arm_ekf_.X_hat(3));
status_builder.add_omega2(roll_joint_loop_.X_hat(1));
status_builder.add_voltage_error0(arm_ekf_.X_hat(4));
status_builder.add_voltage_error1(arm_ekf_.X_hat(5));
status_builder.add_voltage_error2(roll_joint_loop_.X_hat(2));
status_builder.add_arm_x(arm_x);
status_builder.add_arm_y(arm_y);
status_builder.add_arm_circular_index(arm_circular_index);
if (!disable) {
*proximal_output = ::std::max(
-kOperatingVoltage(), ::std::min(kOperatingVoltage(), follower_.U(0)));
*distal_output = ::std::max(
-kOperatingVoltage(), ::std::min(kOperatingVoltage(), follower_.U(1)));
*roll_joint_output = ::std::max(
-kOperatingVoltage(), ::std::min(kOperatingVoltage(), follower_.U(2)));
}
status_builder.add_path_distance_to_go(follower_.path_distance_to_go());
status_builder.add_current_node(current_node_);
status_builder.add_zeroed(zeroed());
status_builder.add_estopped(estopped());
status_builder.add_state(state_);
status_builder.add_failed_solutions(follower_.failed_solutions());
return status_builder.Finish();
}
} // namespace arm
} // namespace superstructure
} // namespace control_loops
} // namespace y2023