blob: e471b4255bc7648fbb34a99297ec23becbee29ec [file] [log] [blame]
/*----------------------------------------------------------------------------*/
/* Copyright (c) FIRST 2008. All Rights Reserved. */
/* Open Source Software - may be modified and shared by FRC teams. The code */
/* must be accompanied by the FIRST BSD license file in $(WIND_BASE)/WPILib. */
/*----------------------------------------------------------------------------*/
#include "RobotDrive.h"
#include "CANJaguar.h"
#include "GenericHID.h"
#include "Joystick.h"
#include "Jaguar.h"
#include "NetworkCommunication/UsageReporting.h"
#include "Utility.h"
#include "WPIErrors.h"
#include <math.h>
#define max(x, y) (((x) > (y)) ? (x) : (y))
const INT32 RobotDrive::kMaxNumberOfMotors;
/*
* Driving functions
* These functions provide an interface to multiple motors that is used for C programming
* The Drive(speed, direction) function is the main part of the set that makes it easy
* to set speeds and direction independently in one call.
*/
/**
* Common function to initialize all the robot drive constructors.
* Create a motor safety object (the real reason for the common code) and
* initialize all the motor assignments. The default timeout is set for the robot drive.
*/
void RobotDrive::InitRobotDrive() {
m_frontLeftMotor = NULL;
m_frontRightMotor = NULL;
m_rearRightMotor = NULL;
m_rearLeftMotor = NULL;
m_sensitivity = 0.5;
m_maxOutput = 1.0;
m_safetyHelper = new MotorSafetyHelper(this);
m_safetyHelper->SetSafetyEnabled(true);
}
/** Constructor for RobotDrive with 2 motors specified with channel numbers.
* Set up parameters for a two wheel drive system where the
* left and right motor pwm channels are specified in the call.
* This call assumes Jaguars for controlling the motors.
* @param leftMotorChannel The PWM channel number on the default digital module that drives the left motor.
* @param rightMotorChannel The PWM channel number on the default digital module that drives the right motor.
*/
RobotDrive::RobotDrive(UINT32 leftMotorChannel, UINT32 rightMotorChannel)
{
InitRobotDrive();
m_rearLeftMotor = new Jaguar(leftMotorChannel);
m_rearRightMotor = new Jaguar(rightMotorChannel);
for (INT32 i=0; i < kMaxNumberOfMotors; i++)
{
m_invertedMotors[i] = 1;
}
SetLeftRightMotorOutputs(0.0, 0.0);
m_deleteSpeedControllers = true;
}
/**
* Constructor for RobotDrive with 4 motors specified with channel numbers.
* Set up parameters for a four wheel drive system where all four motor
* pwm channels are specified in the call.
* This call assumes Jaguars for controlling the motors.
* @param frontLeftMotor Front left motor channel number on the default digital module
* @param rearLeftMotor Rear Left motor channel number on the default digital module
* @param frontRightMotor Front right motor channel number on the default digital module
* @param rearRightMotor Rear Right motor channel number on the default digital module
*/
RobotDrive::RobotDrive(UINT32 frontLeftMotor, UINT32 rearLeftMotor,
UINT32 frontRightMotor, UINT32 rearRightMotor)
{
InitRobotDrive();
m_rearLeftMotor = new Jaguar(rearLeftMotor);
m_rearRightMotor = new Jaguar(rearRightMotor);
m_frontLeftMotor = new Jaguar(frontLeftMotor);
m_frontRightMotor = new Jaguar(frontRightMotor);
for (INT32 i=0; i < kMaxNumberOfMotors; i++)
{
m_invertedMotors[i] = 1;
}
SetLeftRightMotorOutputs(0.0, 0.0);
m_deleteSpeedControllers = true;
}
/**
* Constructor for RobotDrive with 2 motors specified as SpeedController objects.
* The SpeedController version of the constructor enables programs to use the RobotDrive classes with
* subclasses of the SpeedController objects, for example, versions with ramping or reshaping of
* the curve to suit motor bias or deadband elimination.
* @param leftMotor The left SpeedController object used to drive the robot.
* @param rightMotor the right SpeedController object used to drive the robot.
*/
RobotDrive::RobotDrive(SpeedController *leftMotor, SpeedController *rightMotor)
{
InitRobotDrive();
if (leftMotor == NULL || rightMotor == NULL)
{
wpi_setWPIError(NullParameter);
m_rearLeftMotor = m_rearRightMotor = NULL;
return;
}
m_rearLeftMotor = leftMotor;
m_rearRightMotor = rightMotor;
for (INT32 i=0; i < kMaxNumberOfMotors; i++)
{
m_invertedMotors[i] = 1;
}
m_deleteSpeedControllers = false;
}
RobotDrive::RobotDrive(SpeedController &leftMotor, SpeedController &rightMotor)
{
InitRobotDrive();
m_rearLeftMotor = &leftMotor;
m_rearRightMotor = &rightMotor;
for (INT32 i=0; i < kMaxNumberOfMotors; i++)
{
m_invertedMotors[i] = 1;
}
m_deleteSpeedControllers = false;
}
/**
* Constructor for RobotDrive with 4 motors specified as SpeedController objects.
* Speed controller input version of RobotDrive (see previous comments).
* @param rearLeftMotor The back left SpeedController object used to drive the robot.
* @param frontLeftMotor The front left SpeedController object used to drive the robot
* @param rearRightMotor The back right SpeedController object used to drive the robot.
* @param frontRightMotor The front right SpeedController object used to drive the robot.
*/
RobotDrive::RobotDrive(SpeedController *frontLeftMotor, SpeedController *rearLeftMotor,
SpeedController *frontRightMotor, SpeedController *rearRightMotor)
{
InitRobotDrive();
if (frontLeftMotor == NULL || rearLeftMotor == NULL || frontRightMotor == NULL || rearRightMotor == NULL)
{
wpi_setWPIError(NullParameter);
return;
}
m_frontLeftMotor = frontLeftMotor;
m_rearLeftMotor = rearLeftMotor;
m_frontRightMotor = frontRightMotor;
m_rearRightMotor = rearRightMotor;
for (INT32 i=0; i < kMaxNumberOfMotors; i++)
{
m_invertedMotors[i] = 1;
}
m_deleteSpeedControllers = false;
}
RobotDrive::RobotDrive(SpeedController &frontLeftMotor, SpeedController &rearLeftMotor,
SpeedController &frontRightMotor, SpeedController &rearRightMotor)
{
InitRobotDrive();
m_frontLeftMotor = &frontLeftMotor;
m_rearLeftMotor = &rearLeftMotor;
m_frontRightMotor = &frontRightMotor;
m_rearRightMotor = &rearRightMotor;
for (INT32 i=0; i < kMaxNumberOfMotors; i++)
{
m_invertedMotors[i] = 1;
}
m_deleteSpeedControllers = false;
}
/**
* RobotDrive destructor.
* Deletes motor objects that were not passed in and created internally only.
**/
RobotDrive::~RobotDrive()
{
if (m_deleteSpeedControllers)
{
delete m_frontLeftMotor;
delete m_rearLeftMotor;
delete m_frontRightMotor;
delete m_rearRightMotor;
}
delete m_safetyHelper;
}
/**
* Drive the motors at "speed" and "curve".
*
* The speed and curve are -1.0 to +1.0 values where 0.0 represents stopped and
* not turning. The algorithm for adding in the direction attempts to provide a constant
* turn radius for differing speeds.
*
* This function will most likely be used in an autonomous routine.
*
* @param outputMagnitude The forward component of the output magnitude to send to the motors.
* @param curve The rate of turn, constant for different forward speeds.
*/
void RobotDrive::Drive(float outputMagnitude, float curve)
{
float leftOutput, rightOutput;
static bool reported = false;
if (!reported)
{
nUsageReporting::report(nUsageReporting::kResourceType_RobotDrive, GetNumMotors(), nUsageReporting::kRobotDrive_ArcadeRatioCurve);
reported = true;
}
if (curve < 0)
{
float value = log(-curve);
float ratio = (value - m_sensitivity)/(value + m_sensitivity);
if (ratio == 0) ratio =.0000000001;
leftOutput = outputMagnitude / ratio;
rightOutput = outputMagnitude;
}
else if (curve > 0)
{
float value = log(curve);
float ratio = (value - m_sensitivity)/(value + m_sensitivity);
if (ratio == 0) ratio =.0000000001;
leftOutput = outputMagnitude;
rightOutput = outputMagnitude / ratio;
}
else
{
leftOutput = outputMagnitude;
rightOutput = outputMagnitude;
}
SetLeftRightMotorOutputs(leftOutput, rightOutput);
}
/**
* Provide tank steering using the stored robot configuration.
* Drive the robot using two joystick inputs. The Y-axis will be selected from
* each Joystick object.
* @param leftStick The joystick to control the left side of the robot.
* @param rightStick The joystick to control the right side of the robot.
*/
void RobotDrive::TankDrive(GenericHID *leftStick, GenericHID *rightStick, bool squaredInputs)
{
if (leftStick == NULL || rightStick == NULL)
{
wpi_setWPIError(NullParameter);
return;
}
TankDrive(leftStick->GetY(), rightStick->GetY(), squaredInputs);
}
void RobotDrive::TankDrive(GenericHID &leftStick, GenericHID &rightStick, bool squaredInputs)
{
TankDrive(leftStick.GetY(), rightStick.GetY(), squaredInputs);
}
/**
* Provide tank steering using the stored robot configuration.
* This function lets you pick the axis to be used on each Joystick object for the left
* and right sides of the robot.
* @param leftStick The Joystick object to use for the left side of the robot.
* @param leftAxis The axis to select on the left side Joystick object.
* @param rightStick The Joystick object to use for the right side of the robot.
* @param rightAxis The axis to select on the right side Joystick object.
*/
void RobotDrive::TankDrive(GenericHID *leftStick, UINT32 leftAxis,
GenericHID *rightStick, UINT32 rightAxis, bool squaredInputs)
{
if (leftStick == NULL || rightStick == NULL)
{
wpi_setWPIError(NullParameter);
return;
}
TankDrive(leftStick->GetRawAxis(leftAxis), rightStick->GetRawAxis(rightAxis), squaredInputs);
}
void RobotDrive::TankDrive(GenericHID &leftStick, UINT32 leftAxis,
GenericHID &rightStick, UINT32 rightAxis, bool squaredInputs)
{
TankDrive(leftStick.GetRawAxis(leftAxis), rightStick.GetRawAxis(rightAxis), squaredInputs);
}
/**
* Provide tank steering using the stored robot configuration.
* This function lets you directly provide joystick values from any source.
* @param leftValue The value of the left stick.
* @param rightValue The value of the right stick.
*/
void RobotDrive::TankDrive(float leftValue, float rightValue, bool squaredInputs)
{
static bool reported = false;
if (!reported)
{
nUsageReporting::report(nUsageReporting::kResourceType_RobotDrive, GetNumMotors(), nUsageReporting::kRobotDrive_Tank);
reported = true;
}
// square the inputs (while preserving the sign) to increase fine control while permitting full power
leftValue = Limit(leftValue);
rightValue = Limit(rightValue);
if(squaredInputs)
{
if (leftValue >= 0.0)
{
leftValue = (leftValue * leftValue);
}
else
{
leftValue = -(leftValue * leftValue);
}
if (rightValue >= 0.0)
{
rightValue = (rightValue * rightValue);
}
else
{
rightValue = -(rightValue * rightValue);
}
}
SetLeftRightMotorOutputs(leftValue, rightValue);
}
/**
* Arcade drive implements single stick driving.
* Given a single Joystick, the class assumes the Y axis for the move value and the X axis
* for the rotate value.
* (Should add more information here regarding the way that arcade drive works.)
* @param stick The joystick to use for Arcade single-stick driving. The Y-axis will be selected
* for forwards/backwards and the X-axis will be selected for rotation rate.
* @param squaredInputs If true, the sensitivity will be increased for small values
*/
void RobotDrive::ArcadeDrive(GenericHID *stick, bool squaredInputs)
{
// simply call the full-featured ArcadeDrive with the appropriate values
ArcadeDrive(stick->GetY(), stick->GetX(), squaredInputs);
}
/**
* Arcade drive implements single stick driving.
* Given a single Joystick, the class assumes the Y axis for the move value and the X axis
* for the rotate value.
* (Should add more information here regarding the way that arcade drive works.)
* @param stick The joystick to use for Arcade single-stick driving. The Y-axis will be selected
* for forwards/backwards and the X-axis will be selected for rotation rate.
* @param squaredInputs If true, the sensitivity will be increased for small values
*/
void RobotDrive::ArcadeDrive(GenericHID &stick, bool squaredInputs)
{
// simply call the full-featured ArcadeDrive with the appropriate values
ArcadeDrive(stick.GetY(), stick.GetX(), squaredInputs);
}
/**
* Arcade drive implements single stick driving.
* Given two joystick instances and two axis, compute the values to send to either two
* or four motors.
* @param moveStick The Joystick object that represents the forward/backward direction
* @param moveAxis The axis on the moveStick object to use for fowards/backwards (typically Y_AXIS)
* @param rotateStick The Joystick object that represents the rotation value
* @param rotateAxis The axis on the rotation object to use for the rotate right/left (typically X_AXIS)
* @param squaredInputs Setting this parameter to true increases the sensitivity at lower speeds
*/
void RobotDrive::ArcadeDrive(GenericHID* moveStick, UINT32 moveAxis,
GenericHID* rotateStick, UINT32 rotateAxis,
bool squaredInputs)
{
float moveValue = moveStick->GetRawAxis(moveAxis);
float rotateValue = rotateStick->GetRawAxis(rotateAxis);
ArcadeDrive(moveValue, rotateValue, squaredInputs);
}
/**
* Arcade drive implements single stick driving.
* Given two joystick instances and two axis, compute the values to send to either two
* or four motors.
* @param moveStick The Joystick object that represents the forward/backward direction
* @param moveAxis The axis on the moveStick object to use for fowards/backwards (typically Y_AXIS)
* @param rotateStick The Joystick object that represents the rotation value
* @param rotateAxis The axis on the rotation object to use for the rotate right/left (typically X_AXIS)
* @param squaredInputs Setting this parameter to true increases the sensitivity at lower speeds
*/
void RobotDrive::ArcadeDrive(GenericHID &moveStick, UINT32 moveAxis,
GenericHID &rotateStick, UINT32 rotateAxis,
bool squaredInputs)
{
float moveValue = moveStick.GetRawAxis(moveAxis);
float rotateValue = rotateStick.GetRawAxis(rotateAxis);
ArcadeDrive(moveValue, rotateValue, squaredInputs);
}
/**
* Arcade drive implements single stick driving.
* This function lets you directly provide joystick values from any source.
* @param moveValue The value to use for fowards/backwards
* @param rotateValue The value to use for the rotate right/left
* @param squaredInputs If set, increases the sensitivity at low speeds
*/
void RobotDrive::ArcadeDrive(float moveValue, float rotateValue, bool squaredInputs)
{
static bool reported = false;
if (!reported)
{
nUsageReporting::report(nUsageReporting::kResourceType_RobotDrive, GetNumMotors(), nUsageReporting::kRobotDrive_ArcadeStandard);
reported = true;
}
// local variables to hold the computed PWM values for the motors
float leftMotorOutput;
float rightMotorOutput;
moveValue = Limit(moveValue);
rotateValue = Limit(rotateValue);
if (squaredInputs)
{
// square the inputs (while preserving the sign) to increase fine control while permitting full power
if (moveValue >= 0.0)
{
moveValue = (moveValue * moveValue);
}
else
{
moveValue = -(moveValue * moveValue);
}
if (rotateValue >= 0.0)
{
rotateValue = (rotateValue * rotateValue);
}
else
{
rotateValue = -(rotateValue * rotateValue);
}
}
if (moveValue > 0.0)
{
if (rotateValue > 0.0)
{
leftMotorOutput = moveValue - rotateValue;
rightMotorOutput = max(moveValue, rotateValue);
}
else
{
leftMotorOutput = max(moveValue, -rotateValue);
rightMotorOutput = moveValue + rotateValue;
}
}
else
{
if (rotateValue > 0.0)
{
leftMotorOutput = - max(-moveValue, rotateValue);
rightMotorOutput = moveValue + rotateValue;
}
else
{
leftMotorOutput = moveValue - rotateValue;
rightMotorOutput = - max(-moveValue, -rotateValue);
}
}
SetLeftRightMotorOutputs(leftMotorOutput, rightMotorOutput);
}
/**
* Drive method for Mecanum wheeled robots.
*
* A method for driving with Mecanum wheeled robots. There are 4 wheels
* on the robot, arranged so that the front and back wheels are toed in 45 degrees.
* When looking at the wheels from the top, the roller axles should form an X across the robot.
*
* This is designed to be directly driven by joystick axes.
*
* @param x The speed that the robot should drive in the X direction. [-1.0..1.0]
* @param y The speed that the robot should drive in the Y direction.
* This input is inverted to match the forward == -1.0 that joysticks produce. [-1.0..1.0]
* @param rotation The rate of rotation for the robot that is completely independent of
* the translation. [-1.0..1.0]
* @param gyroAngle The current angle reading from the gyro. Use this to implement field-oriented controls.
*/
void RobotDrive::MecanumDrive_Cartesian(float x, float y, float rotation, float gyroAngle)
{
static bool reported = false;
if (!reported)
{
nUsageReporting::report(nUsageReporting::kResourceType_RobotDrive, GetNumMotors(), nUsageReporting::kRobotDrive_MecanumCartesian);
reported = true;
}
double xIn = x;
double yIn = y;
// Negate y for the joystick.
yIn = -yIn;
// Compenstate for gyro angle.
RotateVector(xIn, yIn, gyroAngle);
double wheelSpeeds[kMaxNumberOfMotors];
wheelSpeeds[kFrontLeftMotor] = xIn + yIn + rotation;
wheelSpeeds[kFrontRightMotor] = -xIn + yIn - rotation;
wheelSpeeds[kRearLeftMotor] = -xIn + yIn + rotation;
wheelSpeeds[kRearRightMotor] = xIn + yIn - rotation;
Normalize(wheelSpeeds);
UINT8 syncGroup = 0x80;
m_frontLeftMotor->Set(wheelSpeeds[kFrontLeftMotor] * m_invertedMotors[kFrontLeftMotor] * m_maxOutput, syncGroup);
m_frontRightMotor->Set(wheelSpeeds[kFrontRightMotor] * m_invertedMotors[kFrontRightMotor] * m_maxOutput, syncGroup);
m_rearLeftMotor->Set(wheelSpeeds[kRearLeftMotor] * m_invertedMotors[kRearLeftMotor] * m_maxOutput, syncGroup);
m_rearRightMotor->Set(wheelSpeeds[kRearRightMotor] * m_invertedMotors[kRearRightMotor] * m_maxOutput, syncGroup);
CANJaguar::UpdateSyncGroup(syncGroup);
m_safetyHelper->Feed();
}
/**
* Drive method for Mecanum wheeled robots.
*
* A method for driving with Mecanum wheeled robots. There are 4 wheels
* on the robot, arranged so that the front and back wheels are toed in 45 degrees.
* When looking at the wheels from the top, the roller axles should form an X across the robot.
*
* @param magnitude The speed that the robot should drive in a given direction. [-1.0..1.0]
* @param direction The direction the robot should drive in degrees. The direction and maginitute are
* independent of the rotation rate.
* @param rotation The rate of rotation for the robot that is completely independent of
* the magnitute or direction. [-1.0..1.0]
*/
void RobotDrive::MecanumDrive_Polar(float magnitude, float direction, float rotation)
{
static bool reported = false;
if (!reported)
{
nUsageReporting::report(nUsageReporting::kResourceType_RobotDrive, GetNumMotors(), nUsageReporting::kRobotDrive_MecanumPolar);
reported = true;
}
// Normalized for full power along the Cartesian axes.
magnitude = Limit(magnitude) * sqrt(2.0);
// The rollers are at 45 degree angles.
double dirInRad = (direction + 45.0) * 3.14159 / 180.0;
double cosD = cos(dirInRad);
double sinD = sin(dirInRad);
double wheelSpeeds[kMaxNumberOfMotors];
wheelSpeeds[kFrontLeftMotor] = sinD * magnitude + rotation;
wheelSpeeds[kFrontRightMotor] = cosD * magnitude - rotation;
wheelSpeeds[kRearLeftMotor] = cosD * magnitude + rotation;
wheelSpeeds[kRearRightMotor] = sinD * magnitude - rotation;
Normalize(wheelSpeeds);
UINT8 syncGroup = 0x80;
m_frontLeftMotor->Set(wheelSpeeds[kFrontLeftMotor] * m_invertedMotors[kFrontLeftMotor] * m_maxOutput, syncGroup);
m_frontRightMotor->Set(wheelSpeeds[kFrontRightMotor] * m_invertedMotors[kFrontRightMotor] * m_maxOutput, syncGroup);
m_rearLeftMotor->Set(wheelSpeeds[kRearLeftMotor] * m_invertedMotors[kRearLeftMotor] * m_maxOutput, syncGroup);
m_rearRightMotor->Set(wheelSpeeds[kRearRightMotor] * m_invertedMotors[kRearRightMotor] * m_maxOutput, syncGroup);
CANJaguar::UpdateSyncGroup(syncGroup);
m_safetyHelper->Feed();
}
/**
* Holonomic Drive method for Mecanum wheeled robots.
*
* This is an alias to MecanumDrive_Polar() for backward compatability
*
* @param magnitude The speed that the robot should drive in a given direction. [-1.0..1.0]
* @param direction The direction the robot should drive. The direction and maginitute are
* independent of the rotation rate.
* @param rotation The rate of rotation for the robot that is completely independent of
* the magnitute or direction. [-1.0..1.0]
*/
void RobotDrive::HolonomicDrive(float magnitude, float direction, float rotation)
{
MecanumDrive_Polar(magnitude, direction, rotation);
}
/** Set the speed of the right and left motors.
* This is used once an appropriate drive setup function is called such as
* TwoWheelDrive(). The motors are set to "leftOutput" and "rightOutput"
* and includes flipping the direction of one side for opposing motors.
* @param leftOutput The speed to send to the left side of the robot.
* @param rightOutput The speed to send to the right side of the robot.
*/
void RobotDrive::SetLeftRightMotorOutputs(float leftOutput, float rightOutput)
{
wpi_assert(m_rearLeftMotor != NULL && m_rearRightMotor != NULL);
UINT8 syncGroup = 0x80;
if (m_frontLeftMotor != NULL)
m_frontLeftMotor->Set(Limit(leftOutput) * m_invertedMotors[kFrontLeftMotor] * m_maxOutput, syncGroup);
m_rearLeftMotor->Set(Limit(leftOutput) * m_invertedMotors[kRearLeftMotor] * m_maxOutput, syncGroup);
if (m_frontRightMotor != NULL)
m_frontRightMotor->Set(-Limit(rightOutput) * m_invertedMotors[kFrontRightMotor] * m_maxOutput, syncGroup);
m_rearRightMotor->Set(-Limit(rightOutput) * m_invertedMotors[kRearRightMotor] * m_maxOutput, syncGroup);
CANJaguar::UpdateSyncGroup(syncGroup);
m_safetyHelper->Feed();
}
/**
* Limit motor values to the -1.0 to +1.0 range.
*/
float RobotDrive::Limit(float num)
{
if (num > 1.0)
{
return 1.0;
}
if (num < -1.0)
{
return -1.0;
}
return num;
}
/**
* Normalize all wheel speeds if the magnitude of any wheel is greater than 1.0.
*/
void RobotDrive::Normalize(double *wheelSpeeds)
{
double maxMagnitude = fabs(wheelSpeeds[0]);
INT32 i;
for (i=1; i<kMaxNumberOfMotors; i++)
{
double temp = fabs(wheelSpeeds[i]);
if (maxMagnitude < temp) maxMagnitude = temp;
}
if (maxMagnitude > 1.0)
{
for (i=0; i<kMaxNumberOfMotors; i++)
{
wheelSpeeds[i] = wheelSpeeds[i] / maxMagnitude;
}
}
}
/**
* Rotate a vector in Cartesian space.
*/
void RobotDrive::RotateVector(double &x, double &y, double angle)
{
double cosA = cos(angle * (3.14159 / 180.0));
double sinA = sin(angle * (3.14159 / 180.0));
double xOut = x * cosA - y * sinA;
double yOut = x * sinA + y * cosA;
x = xOut;
y = yOut;
}
/*
* Invert a motor direction.
* This is used when a motor should run in the opposite direction as the drive
* code would normally run it. Motors that are direct drive would be inverted, the
* Drive code assumes that the motors are geared with one reversal.
* @param motor The motor index to invert.
* @param isInverted True if the motor should be inverted when operated.
*/
void RobotDrive::SetInvertedMotor(MotorType motor, bool isInverted)
{
if (motor < 0 || motor > 3)
{
wpi_setWPIError(InvalidMotorIndex);
return;
}
m_invertedMotors[motor] = isInverted ? -1 : 1;
}
/**
* Set the turning sensitivity.
*
* This only impacts the Drive() entry-point.
* @param sensitivity Effectively sets the turning sensitivity (or turn radius for a given value)
*/
void RobotDrive::SetSensitivity(float sensitivity)
{
m_sensitivity = sensitivity;
}
/**
* Configure the scaling factor for using RobotDrive with motor controllers in a mode other than PercentVbus.
* @param maxOutput Multiplied with the output percentage computed by the drive functions.
*/
void RobotDrive::SetMaxOutput(double maxOutput)
{
m_maxOutput = maxOutput;
}
void RobotDrive::SetExpiration(float timeout)
{
m_safetyHelper->SetExpiration(timeout);
}
float RobotDrive::GetExpiration()
{
return m_safetyHelper->GetExpiration();
}
bool RobotDrive::IsAlive()
{
return m_safetyHelper->IsAlive();
}
bool RobotDrive::IsSafetyEnabled()
{
return m_safetyHelper->IsSafetyEnabled();
}
void RobotDrive::SetSafetyEnabled(bool enabled)
{
m_safetyHelper->SetSafetyEnabled(enabled);
}
void RobotDrive::GetDescription(char *desc)
{
sprintf(desc, "RobotDrive");
}
void RobotDrive::StopMotor()
{
if (m_frontLeftMotor != NULL) m_frontLeftMotor->Disable();
if (m_frontRightMotor != NULL) m_frontRightMotor->Disable();
if (m_rearLeftMotor != NULL) m_rearLeftMotor->Disable();
if (m_rearRightMotor != NULL) m_rearRightMotor->Disable();
}