/*----------------------------------------------------------------------------*/ | |
/* Copyright (c) FIRST 2008. All Rights Reserved. */ | |
/* Open Source Software - may be modified and shared by FRC teams. The code */ | |
/* must be accompanied by the FIRST BSD license file in $(WIND_BASE)/WPILib. */ | |
/*----------------------------------------------------------------------------*/ | |
#include "RobotDrive.h" | |
#include "CANJaguar.h" | |
#include "GenericHID.h" | |
#include "Joystick.h" | |
#include "Jaguar.h" | |
#include "NetworkCommunication/UsageReporting.h" | |
#include "Utility.h" | |
#include "WPIErrors.h" | |
#include <math.h> | |
#define max(x, y) (((x) > (y)) ? (x) : (y)) | |
const INT32 RobotDrive::kMaxNumberOfMotors; | |
/* | |
* Driving functions | |
* These functions provide an interface to multiple motors that is used for C programming | |
* The Drive(speed, direction) function is the main part of the set that makes it easy | |
* to set speeds and direction independently in one call. | |
*/ | |
/** | |
* Common function to initialize all the robot drive constructors. | |
* Create a motor safety object (the real reason for the common code) and | |
* initialize all the motor assignments. The default timeout is set for the robot drive. | |
*/ | |
void RobotDrive::InitRobotDrive() { | |
m_frontLeftMotor = NULL; | |
m_frontRightMotor = NULL; | |
m_rearRightMotor = NULL; | |
m_rearLeftMotor = NULL; | |
m_sensitivity = 0.5; | |
m_maxOutput = 1.0; | |
m_safetyHelper = new MotorSafetyHelper(this); | |
m_safetyHelper->SetSafetyEnabled(true); | |
} | |
/** Constructor for RobotDrive with 2 motors specified with channel numbers. | |
* Set up parameters for a two wheel drive system where the | |
* left and right motor pwm channels are specified in the call. | |
* This call assumes Jaguars for controlling the motors. | |
* @param leftMotorChannel The PWM channel number on the default digital module that drives the left motor. | |
* @param rightMotorChannel The PWM channel number on the default digital module that drives the right motor. | |
*/ | |
RobotDrive::RobotDrive(UINT32 leftMotorChannel, UINT32 rightMotorChannel) | |
{ | |
InitRobotDrive(); | |
m_rearLeftMotor = new Jaguar(leftMotorChannel); | |
m_rearRightMotor = new Jaguar(rightMotorChannel); | |
for (INT32 i=0; i < kMaxNumberOfMotors; i++) | |
{ | |
m_invertedMotors[i] = 1; | |
} | |
SetLeftRightMotorOutputs(0.0, 0.0); | |
m_deleteSpeedControllers = true; | |
} | |
/** | |
* Constructor for RobotDrive with 4 motors specified with channel numbers. | |
* Set up parameters for a four wheel drive system where all four motor | |
* pwm channels are specified in the call. | |
* This call assumes Jaguars for controlling the motors. | |
* @param frontLeftMotor Front left motor channel number on the default digital module | |
* @param rearLeftMotor Rear Left motor channel number on the default digital module | |
* @param frontRightMotor Front right motor channel number on the default digital module | |
* @param rearRightMotor Rear Right motor channel number on the default digital module | |
*/ | |
RobotDrive::RobotDrive(UINT32 frontLeftMotor, UINT32 rearLeftMotor, | |
UINT32 frontRightMotor, UINT32 rearRightMotor) | |
{ | |
InitRobotDrive(); | |
m_rearLeftMotor = new Jaguar(rearLeftMotor); | |
m_rearRightMotor = new Jaguar(rearRightMotor); | |
m_frontLeftMotor = new Jaguar(frontLeftMotor); | |
m_frontRightMotor = new Jaguar(frontRightMotor); | |
for (INT32 i=0; i < kMaxNumberOfMotors; i++) | |
{ | |
m_invertedMotors[i] = 1; | |
} | |
SetLeftRightMotorOutputs(0.0, 0.0); | |
m_deleteSpeedControllers = true; | |
} | |
/** | |
* Constructor for RobotDrive with 2 motors specified as SpeedController objects. | |
* The SpeedController version of the constructor enables programs to use the RobotDrive classes with | |
* subclasses of the SpeedController objects, for example, versions with ramping or reshaping of | |
* the curve to suit motor bias or deadband elimination. | |
* @param leftMotor The left SpeedController object used to drive the robot. | |
* @param rightMotor the right SpeedController object used to drive the robot. | |
*/ | |
RobotDrive::RobotDrive(SpeedController *leftMotor, SpeedController *rightMotor) | |
{ | |
InitRobotDrive(); | |
if (leftMotor == NULL || rightMotor == NULL) | |
{ | |
wpi_setWPIError(NullParameter); | |
m_rearLeftMotor = m_rearRightMotor = NULL; | |
return; | |
} | |
m_rearLeftMotor = leftMotor; | |
m_rearRightMotor = rightMotor; | |
for (INT32 i=0; i < kMaxNumberOfMotors; i++) | |
{ | |
m_invertedMotors[i] = 1; | |
} | |
m_deleteSpeedControllers = false; | |
} | |
RobotDrive::RobotDrive(SpeedController &leftMotor, SpeedController &rightMotor) | |
{ | |
InitRobotDrive(); | |
m_rearLeftMotor = &leftMotor; | |
m_rearRightMotor = &rightMotor; | |
for (INT32 i=0; i < kMaxNumberOfMotors; i++) | |
{ | |
m_invertedMotors[i] = 1; | |
} | |
m_deleteSpeedControllers = false; | |
} | |
/** | |
* Constructor for RobotDrive with 4 motors specified as SpeedController objects. | |
* Speed controller input version of RobotDrive (see previous comments). | |
* @param rearLeftMotor The back left SpeedController object used to drive the robot. | |
* @param frontLeftMotor The front left SpeedController object used to drive the robot | |
* @param rearRightMotor The back right SpeedController object used to drive the robot. | |
* @param frontRightMotor The front right SpeedController object used to drive the robot. | |
*/ | |
RobotDrive::RobotDrive(SpeedController *frontLeftMotor, SpeedController *rearLeftMotor, | |
SpeedController *frontRightMotor, SpeedController *rearRightMotor) | |
{ | |
InitRobotDrive(); | |
if (frontLeftMotor == NULL || rearLeftMotor == NULL || frontRightMotor == NULL || rearRightMotor == NULL) | |
{ | |
wpi_setWPIError(NullParameter); | |
return; | |
} | |
m_frontLeftMotor = frontLeftMotor; | |
m_rearLeftMotor = rearLeftMotor; | |
m_frontRightMotor = frontRightMotor; | |
m_rearRightMotor = rearRightMotor; | |
for (INT32 i=0; i < kMaxNumberOfMotors; i++) | |
{ | |
m_invertedMotors[i] = 1; | |
} | |
m_deleteSpeedControllers = false; | |
} | |
RobotDrive::RobotDrive(SpeedController &frontLeftMotor, SpeedController &rearLeftMotor, | |
SpeedController &frontRightMotor, SpeedController &rearRightMotor) | |
{ | |
InitRobotDrive(); | |
m_frontLeftMotor = &frontLeftMotor; | |
m_rearLeftMotor = &rearLeftMotor; | |
m_frontRightMotor = &frontRightMotor; | |
m_rearRightMotor = &rearRightMotor; | |
for (INT32 i=0; i < kMaxNumberOfMotors; i++) | |
{ | |
m_invertedMotors[i] = 1; | |
} | |
m_deleteSpeedControllers = false; | |
} | |
/** | |
* RobotDrive destructor. | |
* Deletes motor objects that were not passed in and created internally only. | |
**/ | |
RobotDrive::~RobotDrive() | |
{ | |
if (m_deleteSpeedControllers) | |
{ | |
delete m_frontLeftMotor; | |
delete m_rearLeftMotor; | |
delete m_frontRightMotor; | |
delete m_rearRightMotor; | |
} | |
delete m_safetyHelper; | |
} | |
/** | |
* Drive the motors at "speed" and "curve". | |
* | |
* The speed and curve are -1.0 to +1.0 values where 0.0 represents stopped and | |
* not turning. The algorithm for adding in the direction attempts to provide a constant | |
* turn radius for differing speeds. | |
* | |
* This function will most likely be used in an autonomous routine. | |
* | |
* @param outputMagnitude The forward component of the output magnitude to send to the motors. | |
* @param curve The rate of turn, constant for different forward speeds. | |
*/ | |
void RobotDrive::Drive(float outputMagnitude, float curve) | |
{ | |
float leftOutput, rightOutput; | |
static bool reported = false; | |
if (!reported) | |
{ | |
nUsageReporting::report(nUsageReporting::kResourceType_RobotDrive, GetNumMotors(), nUsageReporting::kRobotDrive_ArcadeRatioCurve); | |
reported = true; | |
} | |
if (curve < 0) | |
{ | |
float value = log(-curve); | |
float ratio = (value - m_sensitivity)/(value + m_sensitivity); | |
if (ratio == 0) ratio =.0000000001; | |
leftOutput = outputMagnitude / ratio; | |
rightOutput = outputMagnitude; | |
} | |
else if (curve > 0) | |
{ | |
float value = log(curve); | |
float ratio = (value - m_sensitivity)/(value + m_sensitivity); | |
if (ratio == 0) ratio =.0000000001; | |
leftOutput = outputMagnitude; | |
rightOutput = outputMagnitude / ratio; | |
} | |
else | |
{ | |
leftOutput = outputMagnitude; | |
rightOutput = outputMagnitude; | |
} | |
SetLeftRightMotorOutputs(leftOutput, rightOutput); | |
} | |
/** | |
* Provide tank steering using the stored robot configuration. | |
* Drive the robot using two joystick inputs. The Y-axis will be selected from | |
* each Joystick object. | |
* @param leftStick The joystick to control the left side of the robot. | |
* @param rightStick The joystick to control the right side of the robot. | |
*/ | |
void RobotDrive::TankDrive(GenericHID *leftStick, GenericHID *rightStick, bool squaredInputs) | |
{ | |
if (leftStick == NULL || rightStick == NULL) | |
{ | |
wpi_setWPIError(NullParameter); | |
return; | |
} | |
TankDrive(leftStick->GetY(), rightStick->GetY(), squaredInputs); | |
} | |
void RobotDrive::TankDrive(GenericHID &leftStick, GenericHID &rightStick, bool squaredInputs) | |
{ | |
TankDrive(leftStick.GetY(), rightStick.GetY(), squaredInputs); | |
} | |
/** | |
* Provide tank steering using the stored robot configuration. | |
* This function lets you pick the axis to be used on each Joystick object for the left | |
* and right sides of the robot. | |
* @param leftStick The Joystick object to use for the left side of the robot. | |
* @param leftAxis The axis to select on the left side Joystick object. | |
* @param rightStick The Joystick object to use for the right side of the robot. | |
* @param rightAxis The axis to select on the right side Joystick object. | |
*/ | |
void RobotDrive::TankDrive(GenericHID *leftStick, UINT32 leftAxis, | |
GenericHID *rightStick, UINT32 rightAxis, bool squaredInputs) | |
{ | |
if (leftStick == NULL || rightStick == NULL) | |
{ | |
wpi_setWPIError(NullParameter); | |
return; | |
} | |
TankDrive(leftStick->GetRawAxis(leftAxis), rightStick->GetRawAxis(rightAxis), squaredInputs); | |
} | |
void RobotDrive::TankDrive(GenericHID &leftStick, UINT32 leftAxis, | |
GenericHID &rightStick, UINT32 rightAxis, bool squaredInputs) | |
{ | |
TankDrive(leftStick.GetRawAxis(leftAxis), rightStick.GetRawAxis(rightAxis), squaredInputs); | |
} | |
/** | |
* Provide tank steering using the stored robot configuration. | |
* This function lets you directly provide joystick values from any source. | |
* @param leftValue The value of the left stick. | |
* @param rightValue The value of the right stick. | |
*/ | |
void RobotDrive::TankDrive(float leftValue, float rightValue, bool squaredInputs) | |
{ | |
static bool reported = false; | |
if (!reported) | |
{ | |
nUsageReporting::report(nUsageReporting::kResourceType_RobotDrive, GetNumMotors(), nUsageReporting::kRobotDrive_Tank); | |
reported = true; | |
} | |
// square the inputs (while preserving the sign) to increase fine control while permitting full power | |
leftValue = Limit(leftValue); | |
rightValue = Limit(rightValue); | |
if(squaredInputs) | |
{ | |
if (leftValue >= 0.0) | |
{ | |
leftValue = (leftValue * leftValue); | |
} | |
else | |
{ | |
leftValue = -(leftValue * leftValue); | |
} | |
if (rightValue >= 0.0) | |
{ | |
rightValue = (rightValue * rightValue); | |
} | |
else | |
{ | |
rightValue = -(rightValue * rightValue); | |
} | |
} | |
SetLeftRightMotorOutputs(leftValue, rightValue); | |
} | |
/** | |
* Arcade drive implements single stick driving. | |
* Given a single Joystick, the class assumes the Y axis for the move value and the X axis | |
* for the rotate value. | |
* (Should add more information here regarding the way that arcade drive works.) | |
* @param stick The joystick to use for Arcade single-stick driving. The Y-axis will be selected | |
* for forwards/backwards and the X-axis will be selected for rotation rate. | |
* @param squaredInputs If true, the sensitivity will be increased for small values | |
*/ | |
void RobotDrive::ArcadeDrive(GenericHID *stick, bool squaredInputs) | |
{ | |
// simply call the full-featured ArcadeDrive with the appropriate values | |
ArcadeDrive(stick->GetY(), stick->GetX(), squaredInputs); | |
} | |
/** | |
* Arcade drive implements single stick driving. | |
* Given a single Joystick, the class assumes the Y axis for the move value and the X axis | |
* for the rotate value. | |
* (Should add more information here regarding the way that arcade drive works.) | |
* @param stick The joystick to use for Arcade single-stick driving. The Y-axis will be selected | |
* for forwards/backwards and the X-axis will be selected for rotation rate. | |
* @param squaredInputs If true, the sensitivity will be increased for small values | |
*/ | |
void RobotDrive::ArcadeDrive(GenericHID &stick, bool squaredInputs) | |
{ | |
// simply call the full-featured ArcadeDrive with the appropriate values | |
ArcadeDrive(stick.GetY(), stick.GetX(), squaredInputs); | |
} | |
/** | |
* Arcade drive implements single stick driving. | |
* Given two joystick instances and two axis, compute the values to send to either two | |
* or four motors. | |
* @param moveStick The Joystick object that represents the forward/backward direction | |
* @param moveAxis The axis on the moveStick object to use for fowards/backwards (typically Y_AXIS) | |
* @param rotateStick The Joystick object that represents the rotation value | |
* @param rotateAxis The axis on the rotation object to use for the rotate right/left (typically X_AXIS) | |
* @param squaredInputs Setting this parameter to true increases the sensitivity at lower speeds | |
*/ | |
void RobotDrive::ArcadeDrive(GenericHID* moveStick, UINT32 moveAxis, | |
GenericHID* rotateStick, UINT32 rotateAxis, | |
bool squaredInputs) | |
{ | |
float moveValue = moveStick->GetRawAxis(moveAxis); | |
float rotateValue = rotateStick->GetRawAxis(rotateAxis); | |
ArcadeDrive(moveValue, rotateValue, squaredInputs); | |
} | |
/** | |
* Arcade drive implements single stick driving. | |
* Given two joystick instances and two axis, compute the values to send to either two | |
* or four motors. | |
* @param moveStick The Joystick object that represents the forward/backward direction | |
* @param moveAxis The axis on the moveStick object to use for fowards/backwards (typically Y_AXIS) | |
* @param rotateStick The Joystick object that represents the rotation value | |
* @param rotateAxis The axis on the rotation object to use for the rotate right/left (typically X_AXIS) | |
* @param squaredInputs Setting this parameter to true increases the sensitivity at lower speeds | |
*/ | |
void RobotDrive::ArcadeDrive(GenericHID &moveStick, UINT32 moveAxis, | |
GenericHID &rotateStick, UINT32 rotateAxis, | |
bool squaredInputs) | |
{ | |
float moveValue = moveStick.GetRawAxis(moveAxis); | |
float rotateValue = rotateStick.GetRawAxis(rotateAxis); | |
ArcadeDrive(moveValue, rotateValue, squaredInputs); | |
} | |
/** | |
* Arcade drive implements single stick driving. | |
* This function lets you directly provide joystick values from any source. | |
* @param moveValue The value to use for fowards/backwards | |
* @param rotateValue The value to use for the rotate right/left | |
* @param squaredInputs If set, increases the sensitivity at low speeds | |
*/ | |
void RobotDrive::ArcadeDrive(float moveValue, float rotateValue, bool squaredInputs) | |
{ | |
static bool reported = false; | |
if (!reported) | |
{ | |
nUsageReporting::report(nUsageReporting::kResourceType_RobotDrive, GetNumMotors(), nUsageReporting::kRobotDrive_ArcadeStandard); | |
reported = true; | |
} | |
// local variables to hold the computed PWM values for the motors | |
float leftMotorOutput; | |
float rightMotorOutput; | |
moveValue = Limit(moveValue); | |
rotateValue = Limit(rotateValue); | |
if (squaredInputs) | |
{ | |
// square the inputs (while preserving the sign) to increase fine control while permitting full power | |
if (moveValue >= 0.0) | |
{ | |
moveValue = (moveValue * moveValue); | |
} | |
else | |
{ | |
moveValue = -(moveValue * moveValue); | |
} | |
if (rotateValue >= 0.0) | |
{ | |
rotateValue = (rotateValue * rotateValue); | |
} | |
else | |
{ | |
rotateValue = -(rotateValue * rotateValue); | |
} | |
} | |
if (moveValue > 0.0) | |
{ | |
if (rotateValue > 0.0) | |
{ | |
leftMotorOutput = moveValue - rotateValue; | |
rightMotorOutput = max(moveValue, rotateValue); | |
} | |
else | |
{ | |
leftMotorOutput = max(moveValue, -rotateValue); | |
rightMotorOutput = moveValue + rotateValue; | |
} | |
} | |
else | |
{ | |
if (rotateValue > 0.0) | |
{ | |
leftMotorOutput = - max(-moveValue, rotateValue); | |
rightMotorOutput = moveValue + rotateValue; | |
} | |
else | |
{ | |
leftMotorOutput = moveValue - rotateValue; | |
rightMotorOutput = - max(-moveValue, -rotateValue); | |
} | |
} | |
SetLeftRightMotorOutputs(leftMotorOutput, rightMotorOutput); | |
} | |
/** | |
* Drive method for Mecanum wheeled robots. | |
* | |
* A method for driving with Mecanum wheeled robots. There are 4 wheels | |
* on the robot, arranged so that the front and back wheels are toed in 45 degrees. | |
* When looking at the wheels from the top, the roller axles should form an X across the robot. | |
* | |
* This is designed to be directly driven by joystick axes. | |
* | |
* @param x The speed that the robot should drive in the X direction. [-1.0..1.0] | |
* @param y The speed that the robot should drive in the Y direction. | |
* This input is inverted to match the forward == -1.0 that joysticks produce. [-1.0..1.0] | |
* @param rotation The rate of rotation for the robot that is completely independent of | |
* the translation. [-1.0..1.0] | |
* @param gyroAngle The current angle reading from the gyro. Use this to implement field-oriented controls. | |
*/ | |
void RobotDrive::MecanumDrive_Cartesian(float x, float y, float rotation, float gyroAngle) | |
{ | |
static bool reported = false; | |
if (!reported) | |
{ | |
nUsageReporting::report(nUsageReporting::kResourceType_RobotDrive, GetNumMotors(), nUsageReporting::kRobotDrive_MecanumCartesian); | |
reported = true; | |
} | |
double xIn = x; | |
double yIn = y; | |
// Negate y for the joystick. | |
yIn = -yIn; | |
// Compenstate for gyro angle. | |
RotateVector(xIn, yIn, gyroAngle); | |
double wheelSpeeds[kMaxNumberOfMotors]; | |
wheelSpeeds[kFrontLeftMotor] = xIn + yIn + rotation; | |
wheelSpeeds[kFrontRightMotor] = -xIn + yIn - rotation; | |
wheelSpeeds[kRearLeftMotor] = -xIn + yIn + rotation; | |
wheelSpeeds[kRearRightMotor] = xIn + yIn - rotation; | |
Normalize(wheelSpeeds); | |
UINT8 syncGroup = 0x80; | |
m_frontLeftMotor->Set(wheelSpeeds[kFrontLeftMotor] * m_invertedMotors[kFrontLeftMotor] * m_maxOutput, syncGroup); | |
m_frontRightMotor->Set(wheelSpeeds[kFrontRightMotor] * m_invertedMotors[kFrontRightMotor] * m_maxOutput, syncGroup); | |
m_rearLeftMotor->Set(wheelSpeeds[kRearLeftMotor] * m_invertedMotors[kRearLeftMotor] * m_maxOutput, syncGroup); | |
m_rearRightMotor->Set(wheelSpeeds[kRearRightMotor] * m_invertedMotors[kRearRightMotor] * m_maxOutput, syncGroup); | |
CANJaguar::UpdateSyncGroup(syncGroup); | |
m_safetyHelper->Feed(); | |
} | |
/** | |
* Drive method for Mecanum wheeled robots. | |
* | |
* A method for driving with Mecanum wheeled robots. There are 4 wheels | |
* on the robot, arranged so that the front and back wheels are toed in 45 degrees. | |
* When looking at the wheels from the top, the roller axles should form an X across the robot. | |
* | |
* @param magnitude The speed that the robot should drive in a given direction. [-1.0..1.0] | |
* @param direction The direction the robot should drive in degrees. The direction and maginitute are | |
* independent of the rotation rate. | |
* @param rotation The rate of rotation for the robot that is completely independent of | |
* the magnitute or direction. [-1.0..1.0] | |
*/ | |
void RobotDrive::MecanumDrive_Polar(float magnitude, float direction, float rotation) | |
{ | |
static bool reported = false; | |
if (!reported) | |
{ | |
nUsageReporting::report(nUsageReporting::kResourceType_RobotDrive, GetNumMotors(), nUsageReporting::kRobotDrive_MecanumPolar); | |
reported = true; | |
} | |
// Normalized for full power along the Cartesian axes. | |
magnitude = Limit(magnitude) * sqrt(2.0); | |
// The rollers are at 45 degree angles. | |
double dirInRad = (direction + 45.0) * 3.14159 / 180.0; | |
double cosD = cos(dirInRad); | |
double sinD = sin(dirInRad); | |
double wheelSpeeds[kMaxNumberOfMotors]; | |
wheelSpeeds[kFrontLeftMotor] = sinD * magnitude + rotation; | |
wheelSpeeds[kFrontRightMotor] = cosD * magnitude - rotation; | |
wheelSpeeds[kRearLeftMotor] = cosD * magnitude + rotation; | |
wheelSpeeds[kRearRightMotor] = sinD * magnitude - rotation; | |
Normalize(wheelSpeeds); | |
UINT8 syncGroup = 0x80; | |
m_frontLeftMotor->Set(wheelSpeeds[kFrontLeftMotor] * m_invertedMotors[kFrontLeftMotor] * m_maxOutput, syncGroup); | |
m_frontRightMotor->Set(wheelSpeeds[kFrontRightMotor] * m_invertedMotors[kFrontRightMotor] * m_maxOutput, syncGroup); | |
m_rearLeftMotor->Set(wheelSpeeds[kRearLeftMotor] * m_invertedMotors[kRearLeftMotor] * m_maxOutput, syncGroup); | |
m_rearRightMotor->Set(wheelSpeeds[kRearRightMotor] * m_invertedMotors[kRearRightMotor] * m_maxOutput, syncGroup); | |
CANJaguar::UpdateSyncGroup(syncGroup); | |
m_safetyHelper->Feed(); | |
} | |
/** | |
* Holonomic Drive method for Mecanum wheeled robots. | |
* | |
* This is an alias to MecanumDrive_Polar() for backward compatability | |
* | |
* @param magnitude The speed that the robot should drive in a given direction. [-1.0..1.0] | |
* @param direction The direction the robot should drive. The direction and maginitute are | |
* independent of the rotation rate. | |
* @param rotation The rate of rotation for the robot that is completely independent of | |
* the magnitute or direction. [-1.0..1.0] | |
*/ | |
void RobotDrive::HolonomicDrive(float magnitude, float direction, float rotation) | |
{ | |
MecanumDrive_Polar(magnitude, direction, rotation); | |
} | |
/** Set the speed of the right and left motors. | |
* This is used once an appropriate drive setup function is called such as | |
* TwoWheelDrive(). The motors are set to "leftOutput" and "rightOutput" | |
* and includes flipping the direction of one side for opposing motors. | |
* @param leftOutput The speed to send to the left side of the robot. | |
* @param rightOutput The speed to send to the right side of the robot. | |
*/ | |
void RobotDrive::SetLeftRightMotorOutputs(float leftOutput, float rightOutput) | |
{ | |
wpi_assert(m_rearLeftMotor != NULL && m_rearRightMotor != NULL); | |
UINT8 syncGroup = 0x80; | |
if (m_frontLeftMotor != NULL) | |
m_frontLeftMotor->Set(Limit(leftOutput) * m_invertedMotors[kFrontLeftMotor] * m_maxOutput, syncGroup); | |
m_rearLeftMotor->Set(Limit(leftOutput) * m_invertedMotors[kRearLeftMotor] * m_maxOutput, syncGroup); | |
if (m_frontRightMotor != NULL) | |
m_frontRightMotor->Set(-Limit(rightOutput) * m_invertedMotors[kFrontRightMotor] * m_maxOutput, syncGroup); | |
m_rearRightMotor->Set(-Limit(rightOutput) * m_invertedMotors[kRearRightMotor] * m_maxOutput, syncGroup); | |
CANJaguar::UpdateSyncGroup(syncGroup); | |
m_safetyHelper->Feed(); | |
} | |
/** | |
* Limit motor values to the -1.0 to +1.0 range. | |
*/ | |
float RobotDrive::Limit(float num) | |
{ | |
if (num > 1.0) | |
{ | |
return 1.0; | |
} | |
if (num < -1.0) | |
{ | |
return -1.0; | |
} | |
return num; | |
} | |
/** | |
* Normalize all wheel speeds if the magnitude of any wheel is greater than 1.0. | |
*/ | |
void RobotDrive::Normalize(double *wheelSpeeds) | |
{ | |
double maxMagnitude = fabs(wheelSpeeds[0]); | |
INT32 i; | |
for (i=1; i<kMaxNumberOfMotors; i++) | |
{ | |
double temp = fabs(wheelSpeeds[i]); | |
if (maxMagnitude < temp) maxMagnitude = temp; | |
} | |
if (maxMagnitude > 1.0) | |
{ | |
for (i=0; i<kMaxNumberOfMotors; i++) | |
{ | |
wheelSpeeds[i] = wheelSpeeds[i] / maxMagnitude; | |
} | |
} | |
} | |
/** | |
* Rotate a vector in Cartesian space. | |
*/ | |
void RobotDrive::RotateVector(double &x, double &y, double angle) | |
{ | |
double cosA = cos(angle * (3.14159 / 180.0)); | |
double sinA = sin(angle * (3.14159 / 180.0)); | |
double xOut = x * cosA - y * sinA; | |
double yOut = x * sinA + y * cosA; | |
x = xOut; | |
y = yOut; | |
} | |
/* | |
* Invert a motor direction. | |
* This is used when a motor should run in the opposite direction as the drive | |
* code would normally run it. Motors that are direct drive would be inverted, the | |
* Drive code assumes that the motors are geared with one reversal. | |
* @param motor The motor index to invert. | |
* @param isInverted True if the motor should be inverted when operated. | |
*/ | |
void RobotDrive::SetInvertedMotor(MotorType motor, bool isInverted) | |
{ | |
if (motor < 0 || motor > 3) | |
{ | |
wpi_setWPIError(InvalidMotorIndex); | |
return; | |
} | |
m_invertedMotors[motor] = isInverted ? -1 : 1; | |
} | |
/** | |
* Set the turning sensitivity. | |
* | |
* This only impacts the Drive() entry-point. | |
* @param sensitivity Effectively sets the turning sensitivity (or turn radius for a given value) | |
*/ | |
void RobotDrive::SetSensitivity(float sensitivity) | |
{ | |
m_sensitivity = sensitivity; | |
} | |
/** | |
* Configure the scaling factor for using RobotDrive with motor controllers in a mode other than PercentVbus. | |
* @param maxOutput Multiplied with the output percentage computed by the drive functions. | |
*/ | |
void RobotDrive::SetMaxOutput(double maxOutput) | |
{ | |
m_maxOutput = maxOutput; | |
} | |
void RobotDrive::SetExpiration(float timeout) | |
{ | |
m_safetyHelper->SetExpiration(timeout); | |
} | |
float RobotDrive::GetExpiration() | |
{ | |
return m_safetyHelper->GetExpiration(); | |
} | |
bool RobotDrive::IsAlive() | |
{ | |
return m_safetyHelper->IsAlive(); | |
} | |
bool RobotDrive::IsSafetyEnabled() | |
{ | |
return m_safetyHelper->IsSafetyEnabled(); | |
} | |
void RobotDrive::SetSafetyEnabled(bool enabled) | |
{ | |
m_safetyHelper->SetSafetyEnabled(enabled); | |
} | |
void RobotDrive::GetDescription(char *desc) | |
{ | |
sprintf(desc, "RobotDrive"); | |
} | |
void RobotDrive::StopMotor() | |
{ | |
if (m_frontLeftMotor != NULL) m_frontLeftMotor->Disable(); | |
if (m_frontRightMotor != NULL) m_frontRightMotor->Disable(); | |
if (m_rearLeftMotor != NULL) m_rearLeftMotor->Disable(); | |
if (m_rearRightMotor != NULL) m_rearRightMotor->Disable(); | |
} |