blob: 8901b74f61add85fecfd862c7a21b0bc65ed471c [file] [log] [blame]
/*----------------------------------------------------------------------------*/
/* Copyright (c) FIRST 2008. All Rights Reserved. */
/* Open Source Software - may be modified and shared by FRC teams. The code */
/* must be accompanied by the FIRST BSD license file in $(WIND_BASE)/WPILib. */
/*----------------------------------------------------------------------------*/
#include "PWM.h"
#include "DigitalModule.h"
#include "NetworkCommunication/UsageReporting.h"
#include "Resource.h"
#include "Utility.h"
#include "WPIErrors.h"
const UINT32 PWM::kDefaultPwmPeriod;
const UINT32 PWM::kDefaultMinPwmHigh;
const INT32 PWM::kPwmDisabled;
static Resource *allocated = NULL;
/**
* Initialize PWMs given an module and channel.
*
* This method is private and is the common path for all the constructors for creating PWM
* instances. Checks module and channel value ranges and allocates the appropriate channel.
* The allocation is only done to help users ensure that they don't double assign channels.
*/
void PWM::InitPWM(UINT8 moduleNumber, UINT32 channel)
{
m_table = NULL;
char buf[64];
Resource::CreateResourceObject(&allocated, tDIO::kNumSystems * kPwmChannels);
if (!CheckPWMModule(moduleNumber))
{
snprintf(buf, 64, "Digital Module %d", moduleNumber);
wpi_setWPIErrorWithContext(ModuleIndexOutOfRange, buf);
return;
}
if (!CheckPWMChannel(channel))
{
snprintf(buf, 64, "PWM Channel %d", channel);
wpi_setWPIErrorWithContext(ChannelIndexOutOfRange, buf);
return;
}
snprintf(buf, 64, "PWM %d (Module: %d)", channel, moduleNumber);
if (allocated->Allocate((moduleNumber - 1) * kPwmChannels + channel - 1, buf) == ~0ul)
{
CloneError(allocated);
return;
}
m_channel = channel;
m_module = DigitalModule::GetInstance(moduleNumber);
m_module->SetPWM(m_channel, kPwmDisabled);
m_eliminateDeadband = false;
nUsageReporting::report(nUsageReporting::kResourceType_PWM, channel, moduleNumber - 1);
}
/**
* Allocate a PWM given a module and channel.
* Allocate a PWM using a module and channel number.
*
* @param moduleNumber The digital module (1 or 2).
* @param channel The PWM channel on the digital module (1..10).
*/
PWM::PWM(UINT8 moduleNumber, UINT32 channel)
: m_module(NULL)
{
InitPWM(moduleNumber, channel);
}
/**
* Allocate a PWM in the default module given a channel.
*
* Using a default module allocate a PWM given the channel number. The default module is the first
* slot numerically in the cRIO chassis.
*
* @param channel The PWM channel on the digital module.
*/
PWM::PWM(UINT32 channel)
: m_module(NULL)
{
InitPWM(GetDefaultDigitalModule(), channel);
}
/**
* Free the PWM channel.
*
* Free the resource associated with the PWM channel and set the value to 0.
*/
PWM::~PWM()
{
if (m_module)
{
m_module->SetPWM(m_channel, kPwmDisabled);
allocated->Free((m_module->GetNumber() - 1) * kPwmChannels + m_channel - 1);
}
}
/**
* Optionally eliminate the deadband from a speed controller.
* @param eliminateDeadband If true, set the motor curve on the Jaguar to eliminate
* the deadband in the middle of the range. Otherwise, keep the full range without
* modifying any values.
*/
void PWM::EnableDeadbandElimination(bool eliminateDeadband)
{
if (StatusIsFatal()) return;
m_eliminateDeadband = eliminateDeadband;
}
/**
* Set the bounds on the PWM values.
* This sets the bounds on the PWM values for a particular each type of controller. The values
* determine the upper and lower speeds as well as the deadband bracket.
* @param max The Minimum pwm value
* @param deadbandMax The high end of the deadband range
* @param center The center speed (off)
* @param deadbandMin The low end of the deadband range
* @param min The minimum pwm value
*/
void PWM::SetBounds(INT32 max, INT32 deadbandMax, INT32 center, INT32 deadbandMin, INT32 min)
{
if (StatusIsFatal()) return;
m_maxPwm = max;
m_deadbandMaxPwm = deadbandMax;
m_centerPwm = center;
m_deadbandMinPwm = deadbandMin;
m_minPwm = min;
}
UINT32 PWM::GetModuleNumber()
{
return m_module->GetNumber();
}
/**
* Set the PWM value based on a position.
*
* This is intended to be used by servos.
*
* @pre SetMaxPositivePwm() called.
* @pre SetMinNegativePwm() called.
*
* @param pos The position to set the servo between 0.0 and 1.0.
*/
void PWM::SetPosition(float pos)
{
if (StatusIsFatal()) return;
if (pos < 0.0)
{
pos = 0.0;
}
else if (pos > 1.0)
{
pos = 1.0;
}
INT32 rawValue;
// note, need to perform the multiplication below as floating point before converting to int
rawValue = (INT32)( (pos * (float) GetFullRangeScaleFactor()) + GetMinNegativePwm());
wpi_assert((rawValue >= GetMinNegativePwm()) && (rawValue <= GetMaxPositivePwm()));
wpi_assert(rawValue != kPwmDisabled);
// send the computed pwm value to the FPGA
SetRaw((UINT8)rawValue);
}
/**
* Get the PWM value in terms of a position.
*
* This is intended to be used by servos.
*
* @pre SetMaxPositivePwm() called.
* @pre SetMinNegativePwm() called.
*
* @return The position the servo is set to between 0.0 and 1.0.
*/
float PWM::GetPosition()
{
if (StatusIsFatal()) return 0.0;
INT32 value = GetRaw();
if (value < GetMinNegativePwm())
{
return 0.0;
}
else if (value > GetMaxPositivePwm())
{
return 1.0;
}
else
{
return (float)(value - GetMinNegativePwm()) / (float)GetFullRangeScaleFactor();
}
}
/**
* Set the PWM value based on a speed.
*
* This is intended to be used by speed controllers.
*
* @pre SetMaxPositivePwm() called.
* @pre SetMinPositivePwm() called.
* @pre SetCenterPwm() called.
* @pre SetMaxNegativePwm() called.
* @pre SetMinNegativePwm() called.
*
* @param speed The speed to set the speed controller between -1.0 and 1.0.
*/
void PWM::SetSpeed(float speed)
{
if (StatusIsFatal()) return;
// clamp speed to be in the range 1.0 >= speed >= -1.0
if (speed < -1.0)
{
speed = -1.0;
}
else if (speed > 1.0)
{
speed = 1.0;
}
// calculate the desired output pwm value by scaling the speed appropriately
INT32 rawValue;
if (speed == 0.0)
{
rawValue = GetCenterPwm();
}
else if (speed > 0.0)
{
rawValue = (INT32)(speed * ((float)GetPositiveScaleFactor()) +
((float) GetMinPositivePwm()) + 0.5);
}
else
{
rawValue = (INT32)(speed * ((float)GetNegativeScaleFactor()) +
((float) GetMaxNegativePwm()) + 0.5);
}
// the above should result in a pwm_value in the valid range
wpi_assert((rawValue >= GetMinNegativePwm()) && (rawValue <= GetMaxPositivePwm()));
wpi_assert(rawValue != kPwmDisabled);
// send the computed pwm value to the FPGA
SetRaw((UINT8)rawValue);
}
/**
* Get the PWM value in terms of speed.
*
* This is intended to be used by speed controllers.
*
* @pre SetMaxPositivePwm() called.
* @pre SetMinPositivePwm() called.
* @pre SetMaxNegativePwm() called.
* @pre SetMinNegativePwm() called.
*
* @return The most recently set speed between -1.0 and 1.0.
*/
float PWM::GetSpeed()
{
if (StatusIsFatal()) return 0.0;
INT32 value = GetRaw();
if (value > GetMaxPositivePwm())
{
return 1.0;
}
else if (value < GetMinNegativePwm())
{
return -1.0;
}
else if (value > GetMinPositivePwm())
{
return (float)(value - GetMinPositivePwm()) / (float)GetPositiveScaleFactor();
}
else if (value < GetMaxNegativePwm())
{
return (float)(value - GetMaxNegativePwm()) / (float)GetNegativeScaleFactor();
}
else
{
return 0.0;
}
}
/**
* Set the PWM value directly to the hardware.
*
* Write a raw value to a PWM channel.
*
* @param value Raw PWM value. Range 0 - 255.
*/
void PWM::SetRaw(UINT8 value)
{
if (StatusIsFatal()) return;
m_module->SetPWM(m_channel, value);
}
/**
* Get the PWM value directly from the hardware.
*
* Read a raw value from a PWM channel.
*
* @return Raw PWM control value. Range: 0 - 255.
*/
UINT8 PWM::GetRaw()
{
if (StatusIsFatal()) return 0;
return m_module->GetPWM(m_channel);
}
/**
* Slow down the PWM signal for old devices.
*
* @param mult The period multiplier to apply to this channel
*/
void PWM::SetPeriodMultiplier(PeriodMultiplier mult)
{
if (StatusIsFatal()) return;
switch(mult)
{
case kPeriodMultiplier_4X:
m_module->SetPWMPeriodScale(m_channel, 3); // Squelch 3 out of 4 outputs
break;
case kPeriodMultiplier_2X:
m_module->SetPWMPeriodScale(m_channel, 1); // Squelch 1 out of 2 outputs
break;
case kPeriodMultiplier_1X:
m_module->SetPWMPeriodScale(m_channel, 0); // Don't squelch any outputs
break;
default:
wpi_assert(false);
}
}
void PWM::ValueChanged(ITable* source, const std::string& key, EntryValue value, bool isNew) {
SetSpeed(value.f);
}
void PWM::UpdateTable() {
if (m_table != NULL) {
m_table->PutNumber("Value", GetSpeed());
}
}
void PWM::StartLiveWindowMode() {
if (m_table != NULL) {
m_table->AddTableListener("Value", this, true);
}
}
void PWM::StopLiveWindowMode() {
SetSpeed(0);
if (m_table != NULL) {
m_table->RemoveTableListener(this);
}
}
std::string PWM::GetSmartDashboardType() {
return "Speed Controller";
}
void PWM::InitTable(ITable *subTable) {
m_table = subTable;
UpdateTable();
}
ITable * PWM::GetTable() {
return m_table;
}