blob: ca0b8ceced69070cb0b4f79b1b217fc0e81fab2b [file] [log] [blame]
/*----------------------------------------------------------------------------*/
/* Copyright (c) FIRST 2008. All Rights Reserved. */
/* Open Source Software - may be modified and shared by FRC teams. The code */
/* must be accompanied by the FIRST BSD license file in $(WIND_BASE)/WPILib. */
/*----------------------------------------------------------------------------*/
#include "I2C.h"
#include "DigitalModule.h"
#include "NetworkCommunication/UsageReporting.h"
#include "Synchronized.h"
#include "WPIErrors.h"
#include <taskLib.h>
SEM_ID I2C::m_semaphore = NULL;
UINT32 I2C::m_objCount = 0;
/**
* Constructor.
*
* @param module The Digital Module to which the device is conneted.
* @param deviceAddress The address of the device on the I2C bus.
*/
I2C::I2C(DigitalModule *module, UINT8 deviceAddress)
: m_module (module)
, m_deviceAddress (deviceAddress)
, m_compatibilityMode (false)
{
if (m_semaphore == NULL)
{
m_semaphore = semMCreate(SEM_Q_PRIORITY | SEM_DELETE_SAFE | SEM_INVERSION_SAFE);
}
m_objCount++;
nUsageReporting::report(nUsageReporting::kResourceType_I2C, deviceAddress, module->GetNumber() - 1);
}
/**
* Destructor.
*/
I2C::~I2C()
{
m_objCount--;
if (m_objCount <= 0)
{
semDelete(m_semaphore);
m_semaphore = NULL;
}
}
/**
* Generic transaction.
*
* This is a lower-level interface to the I2C hardware giving you more control over each transaction.
*
* @param dataToSend Buffer of data to send as part of the transaction.
* @param sendSize Number of bytes to send as part of the transaction. [0..6]
* @param dataReceived Buffer to read data into.
* @param receiveSize Number of byted to read from the device. [0..7]
* @return Transfer Aborted... false for success, true for aborted.
*/
bool I2C::Transaction(UINT8 *dataToSend, UINT8 sendSize, UINT8 *dataReceived, UINT8 receiveSize)
{
if (sendSize > 6)
{
wpi_setWPIErrorWithContext(ParameterOutOfRange, "sendSize");
return true;
}
if (receiveSize > 7)
{
wpi_setWPIErrorWithContext(ParameterOutOfRange, "receiveSize");
return true;
}
UINT32 data=0;
UINT32 dataHigh=0;
UINT32 i;
for(i=0; i<sendSize && i<sizeof(data); i++)
{
data |= (UINT32)dataToSend[i] << (8*i);
}
for(; i<sendSize; i++)
{
dataHigh |= (UINT32)dataToSend[i] << (8*(i-sizeof(data)));
}
bool aborted = true;
tRioStatusCode localStatus = NiFpga_Status_Success;
{
Synchronized sync(m_semaphore);
m_module->m_fpgaDIO->writeI2CConfig_Address(m_deviceAddress, &localStatus);
m_module->m_fpgaDIO->writeI2CConfig_BytesToWrite(sendSize, &localStatus);
m_module->m_fpgaDIO->writeI2CConfig_BytesToRead(receiveSize, &localStatus);
if (sendSize > 0) m_module->m_fpgaDIO->writeI2CDataToSend(data, &localStatus);
if (sendSize > sizeof(data)) m_module->m_fpgaDIO->writeI2CConfig_DataToSendHigh(dataHigh, &localStatus);
m_module->m_fpgaDIO->writeI2CConfig_BitwiseHandshake(m_compatibilityMode, &localStatus);
UINT8 transaction = m_module->m_fpgaDIO->readI2CStatus_Transaction(&localStatus);
m_module->m_fpgaDIO->strobeI2CStart(&localStatus);
while(transaction == m_module->m_fpgaDIO->readI2CStatus_Transaction(&localStatus)) taskDelay(1);
while(!m_module->m_fpgaDIO->readI2CStatus_Done(&localStatus)) taskDelay(1);
aborted = m_module->m_fpgaDIO->readI2CStatus_Aborted(&localStatus);
if (receiveSize > 0) data = m_module->m_fpgaDIO->readI2CDataReceived(&localStatus);
if (receiveSize > sizeof(data)) dataHigh = m_module->m_fpgaDIO->readI2CStatus_DataReceivedHigh(&localStatus);
}
wpi_setError(localStatus);
for(i=0; i<receiveSize && i<sizeof(data); i++)
{
dataReceived[i] = (data >> (8*i)) & 0xFF;
}
for(; i<receiveSize; i++)
{
dataReceived[i] = (dataHigh >> (8*(i-sizeof(data)))) & 0xFF;
}
return aborted;
}
/**
* Attempt to address a device on the I2C bus.
*
* This allows you to figure out if there is a device on the I2C bus that
* responds to the address specified in the constructor.
*
* @return Transfer Aborted... false for success, true for aborted.
*/
bool I2C::AddressOnly()
{
return Transaction(NULL, 0, NULL, 0);
}
/**
* Execute a write transaction with the device.
*
* Write a single byte to a register on a device and wait until the
* transaction is complete.
*
* @param registerAddress The address of the register on the device to be written.
* @param data The byte to write to the register on the device.
* @return Transfer Aborted... false for success, true for aborted.
*/
bool I2C::Write(UINT8 registerAddress, UINT8 data)
{
UINT8 buffer[2];
buffer[0] = registerAddress;
buffer[1] = data;
return Transaction(buffer, sizeof(buffer), NULL, 0);
}
/**
* Execute a read transaction with the device.
*
* Read 1 to 7 bytes from a device.
* Most I2C devices will auto-increment the register pointer internally
* allowing you to read up to 7 consecutive registers on a device in a
* single transaction.
*
* @param registerAddress The register to read first in the transaction.
* @param count The number of bytes to read in the transaction. [1..7]
* @param buffer A pointer to the array of bytes to store the data read from the device.
* @return Transfer Aborted... false for success, true for aborted.
*/
bool I2C::Read(UINT8 registerAddress, UINT8 count, UINT8 *buffer)
{
if (count < 1 || count > 7)
{
wpi_setWPIErrorWithContext(ParameterOutOfRange, "count");
return true;
}
if (buffer == NULL)
{
wpi_setWPIErrorWithContext(NullParameter, "buffer");
return true;
}
return Transaction(&registerAddress, sizeof(registerAddress), buffer, count);
}
/**
* Send a broadcast write to all devices on the I2C bus.
*
* This is not currently implemented!
*
* @param registerAddress The register to write on all devices on the bus.
* @param data The value to write to the devices.
*/
void I2C::Broadcast(UINT8 registerAddress, UINT8 data)
{
}
/**
* SetCompatibilityMode
*
* Enables bitwise clock skewing detection. This will reduce the I2C interface speed,
* but will allow you to communicate with devices that skew the clock at abnormal times.
*
* @param enable Enable compatibility mode for this sensor or not.
*/
void I2C::SetCompatibilityMode(bool enable)
{
m_compatibilityMode = enable;
const char *cm = NULL;
if (m_compatibilityMode) cm = "C";
nUsageReporting::report(nUsageReporting::kResourceType_I2C, m_deviceAddress, m_module->GetNumber() - 1, cm);
}
/**
* Verify that a device's registers contain expected values.
*
* Most devices will have a set of registers that contain a known value that
* can be used to identify them. This allows an I2C device driver to easily
* verify that the device contains the expected value.
*
* @pre The device must support and be configured to use register auto-increment.
*
* @param registerAddress The base register to start reading from the device.
* @param count The size of the field to be verified.
* @param expected A buffer containing the values expected from the device.
*/
bool I2C::VerifySensor(UINT8 registerAddress, UINT8 count, const UINT8 *expected)
{
// TODO: Make use of all 7 read bytes
UINT8 deviceData[4];
for (UINT8 i=0, curRegisterAddress = registerAddress; i < count; i+=4, curRegisterAddress+=4)
{
UINT8 toRead = count - i < 4 ? count - i : 4;
// Read the chunk of data. Return false if the sensor does not respond.
if (Read(curRegisterAddress, toRead, deviceData)) return false;
for (UINT8 j=0; j<toRead; j++)
{
if(deviceData[j] != expected[i + j]) return false;
}
}
return true;
}