/*----------------------------------------------------------------------------*/ | |
/* Copyright (c) FIRST 2008. All Rights Reserved. */ | |
/* Open Source Software - may be modified and shared by FRC teams. The code */ | |
/* must be accompanied by the FIRST BSD license file in $(WIND_BASE)/WPILib. */ | |
/*----------------------------------------------------------------------------*/ | |
#include "Encoder.h" | |
#include "DigitalInput.h" | |
#include "NetworkCommunication/UsageReporting.h" | |
#include "Resource.h" | |
#include "WPIErrors.h" | |
#include "LiveWindow/LiveWindow.h" | |
static Resource *quadEncoders = NULL; | |
/** | |
* Common initialization code for Encoders. | |
* This code allocates resources for Encoders and is common to all constructors. | |
* @param reverseDirection If true, counts down instead of up (this is all relative) | |
* @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X decoding. If 4X is | |
* selected, then an encoder FPGA object is used and the returned counts will be 4x the encoder | |
* spec'd value since all rising and falling edges are counted. If 1X or 2X are selected then | |
* a counter object will be used and the returned value will either exactly match the spec'd count | |
* or be double (2x) the spec'd count. | |
*/ | |
void Encoder::InitEncoder(bool reverseDirection, EncodingType encodingType) | |
{ | |
m_table = NULL; | |
m_encodingType = encodingType; | |
tRioStatusCode localStatus = NiFpga_Status_Success; | |
switch (encodingType) | |
{ | |
case k4X: | |
Resource::CreateResourceObject(&quadEncoders, tEncoder::kNumSystems); | |
UINT32 index = quadEncoders->Allocate("4X Encoder"); | |
if (index == ~0ul) | |
{ | |
CloneError(quadEncoders); | |
return; | |
} | |
if (m_aSource->StatusIsFatal()) | |
{ | |
CloneError(m_aSource); | |
return; | |
} | |
if (m_bSource->StatusIsFatal()) | |
{ | |
CloneError(m_bSource); | |
return; | |
} | |
m_index = index; | |
m_encoder = tEncoder::create(m_index, &localStatus); | |
m_encoder->writeConfig_ASource_Module(m_aSource->GetModuleForRouting(), &localStatus); | |
m_encoder->writeConfig_ASource_Channel(m_aSource->GetChannelForRouting(), &localStatus); | |
m_encoder->writeConfig_ASource_AnalogTrigger(m_aSource->GetAnalogTriggerForRouting(), &localStatus); | |
m_encoder->writeConfig_BSource_Module(m_bSource->GetModuleForRouting(), &localStatus); | |
m_encoder->writeConfig_BSource_Channel(m_bSource->GetChannelForRouting(), &localStatus); | |
m_encoder->writeConfig_BSource_AnalogTrigger(m_bSource->GetAnalogTriggerForRouting(), &localStatus); | |
m_encoder->strobeReset(&localStatus); | |
m_encoder->writeConfig_Reverse(reverseDirection, &localStatus); | |
m_encoder->writeTimerConfig_AverageSize(4, &localStatus); | |
m_counter = NULL; | |
break; | |
case k1X: | |
case k2X: | |
m_counter = new Counter(m_encodingType, m_aSource, m_bSource, reverseDirection); | |
m_index = m_counter->GetIndex(); | |
break; | |
} | |
m_distancePerPulse = 1.0; | |
m_pidSource = kDistance; | |
wpi_setError(localStatus); | |
nUsageReporting::report(nUsageReporting::kResourceType_Encoder, m_index, encodingType); | |
LiveWindow::GetInstance()->AddSensor("Encoder", m_aSource->GetModuleForRouting(), m_aSource->GetChannelForRouting(), this); | |
} | |
/** | |
* Encoder constructor. | |
* Construct a Encoder given a and b modules and channels fully specified. | |
* @param aModuleNumber The a channel digital input module. | |
* @param aChannel The a channel digital input channel. | |
* @param bModuleNumber The b channel digital input module. | |
* @param bChannel The b channel digital input channel. | |
* @param reverseDirection represents the orientation of the encoder and inverts the output values | |
* if necessary so forward represents positive values. | |
* @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X decoding. If 4X is | |
* selected, then an encoder FPGA object is used and the returned counts will be 4x the encoder | |
* spec'd value since all rising and falling edges are counted. If 1X or 2X are selected then | |
* a counter object will be used and the returned value will either exactly match the spec'd count | |
* or be double (2x) the spec'd count. | |
*/ | |
Encoder::Encoder(UINT8 aModuleNumber, UINT32 aChannel, | |
UINT8 bModuleNumber, UINT32 bChannel, | |
bool reverseDirection, EncodingType encodingType) : | |
m_encoder(NULL), | |
m_counter(NULL) | |
{ | |
m_aSource = new DigitalInput(aModuleNumber, aChannel); | |
m_bSource = new DigitalInput(bModuleNumber, bChannel); | |
InitEncoder(reverseDirection, encodingType); | |
m_allocatedASource = true; | |
m_allocatedBSource = true; | |
} | |
/** | |
* Encoder constructor. | |
* Construct a Encoder given a and b channels assuming the default module. | |
* @param aChannel The a channel digital input channel. | |
* @param bChannel The b channel digital input channel. | |
* @param reverseDirection represents the orientation of the encoder and inverts the output values | |
* if necessary so forward represents positive values. | |
* @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X decoding. If 4X is | |
* selected, then an encoder FPGA object is used and the returned counts will be 4x the encoder | |
* spec'd value since all rising and falling edges are counted. If 1X or 2X are selected then | |
* a counter object will be used and the returned value will either exactly match the spec'd count | |
* or be double (2x) the spec'd count. | |
*/ | |
Encoder::Encoder(UINT32 aChannel, UINT32 bChannel, bool reverseDirection, EncodingType encodingType) : | |
m_encoder(NULL), | |
m_counter(NULL) | |
{ | |
m_aSource = new DigitalInput(aChannel); | |
m_bSource = new DigitalInput(bChannel); | |
InitEncoder(reverseDirection, encodingType); | |
m_allocatedASource = true; | |
m_allocatedBSource = true; | |
} | |
/** | |
* Encoder constructor. | |
* Construct a Encoder given a and b channels as digital inputs. This is used in the case | |
* where the digital inputs are shared. The Encoder class will not allocate the digital inputs | |
* and assume that they already are counted. | |
* @param aSource The source that should be used for the a channel. | |
* @param bSource the source that should be used for the b channel. | |
* @param reverseDirection represents the orientation of the encoder and inverts the output values | |
* if necessary so forward represents positive values. | |
* @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X decoding. If 4X is | |
* selected, then an encoder FPGA object is used and the returned counts will be 4x the encoder | |
* spec'd value since all rising and falling edges are counted. If 1X or 2X are selected then | |
* a counter object will be used and the returned value will either exactly match the spec'd count | |
* or be double (2x) the spec'd count. | |
*/ | |
Encoder::Encoder(DigitalSource *aSource, DigitalSource *bSource, bool reverseDirection, EncodingType encodingType) : | |
m_encoder(NULL), | |
m_counter(NULL) | |
{ | |
m_aSource = aSource; | |
m_bSource = bSource; | |
m_allocatedASource = false; | |
m_allocatedBSource = false; | |
if (m_aSource == NULL || m_bSource == NULL) | |
wpi_setWPIError(NullParameter); | |
else | |
InitEncoder(reverseDirection, encodingType); | |
} | |
/** | |
* Encoder constructor. | |
* Construct a Encoder given a and b channels as digital inputs. This is used in the case | |
* where the digital inputs are shared. The Encoder class will not allocate the digital inputs | |
* and assume that they already are counted. | |
* @param aSource The source that should be used for the a channel. | |
* @param bSource the source that should be used for the b channel. | |
* @param reverseDirection represents the orientation of the encoder and inverts the output values | |
* if necessary so forward represents positive values. | |
* @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X decoding. If 4X is | |
* selected, then an encoder FPGA object is used and the returned counts will be 4x the encoder | |
* spec'd value since all rising and falling edges are counted. If 1X or 2X are selected then | |
* a counter object will be used and the returned value will either exactly match the spec'd count | |
* or be double (2x) the spec'd count. | |
*/ | |
Encoder::Encoder(DigitalSource &aSource, DigitalSource &bSource, bool reverseDirection, EncodingType encodingType) : | |
m_encoder(NULL), | |
m_counter(NULL) | |
{ | |
m_aSource = &aSource; | |
m_bSource = &bSource; | |
m_allocatedASource = false; | |
m_allocatedBSource = false; | |
InitEncoder(reverseDirection, encodingType); | |
} | |
/** | |
* Free the resources for an Encoder. | |
* Frees the FPGA resources associated with an Encoder. | |
*/ | |
Encoder::~Encoder() | |
{ | |
if (m_allocatedASource) delete m_aSource; | |
if (m_allocatedBSource) delete m_bSource; | |
if (m_counter) | |
{ | |
delete m_counter; | |
} | |
else | |
{ | |
quadEncoders->Free(m_index); | |
delete m_encoder; | |
} | |
} | |
/** | |
* Start the Encoder. | |
* Starts counting pulses on the Encoder device. | |
*/ | |
void Encoder::Start() | |
{ | |
if (StatusIsFatal()) return; | |
if (m_counter) | |
m_counter->Start(); | |
else | |
{ | |
tRioStatusCode localStatus = NiFpga_Status_Success; | |
m_encoder->writeConfig_Enable(1, &localStatus); | |
wpi_setError(localStatus); | |
} | |
} | |
/** | |
* Stops counting pulses on the Encoder device. The value is not changed. | |
*/ | |
void Encoder::Stop() | |
{ | |
if (StatusIsFatal()) return; | |
if (m_counter) | |
m_counter->Stop(); | |
else | |
{ | |
tRioStatusCode localStatus = NiFpga_Status_Success; | |
m_encoder->writeConfig_Enable(0, &localStatus); | |
wpi_setError(localStatus); | |
} | |
} | |
/** | |
* Gets the raw value from the encoder. | |
* The raw value is the actual count unscaled by the 1x, 2x, or 4x scale | |
* factor. | |
* @return Current raw count from the encoder | |
*/ | |
INT32 Encoder::GetRaw() | |
{ | |
if (StatusIsFatal()) return 0; | |
INT32 value; | |
if (m_counter) | |
value = m_counter->Get(); | |
else | |
{ | |
tRioStatusCode localStatus = NiFpga_Status_Success; | |
value = m_encoder->readOutput_Value(&localStatus); | |
wpi_setError(localStatus); | |
} | |
return value; | |
} | |
/** | |
* Gets the current count. | |
* Returns the current count on the Encoder. | |
* This method compensates for the decoding type. | |
* | |
* @return Current count from the Encoder adjusted for the 1x, 2x, or 4x scale factor. | |
*/ | |
INT32 Encoder::Get() | |
{ | |
if (StatusIsFatal()) return 0; | |
return (INT32) (GetRaw() * DecodingScaleFactor()); | |
} | |
/** | |
* Reset the Encoder distance to zero. | |
* Resets the current count to zero on the encoder. | |
*/ | |
void Encoder::Reset() | |
{ | |
if (StatusIsFatal()) return; | |
if (m_counter) | |
m_counter->Reset(); | |
else | |
{ | |
tRioStatusCode localStatus = NiFpga_Status_Success; | |
m_encoder->strobeReset(&localStatus); | |
wpi_setError(localStatus); | |
} | |
} | |
/** | |
* Returns the period of the most recent pulse. | |
* Returns the period of the most recent Encoder pulse in seconds. | |
* This method compenstates for the decoding type. | |
* | |
* @deprecated Use GetRate() in favor of this method. This returns unscaled periods and GetRate() scales using value from SetDistancePerPulse(). | |
* | |
* @return Period in seconds of the most recent pulse. | |
*/ | |
double Encoder::GetPeriod() | |
{ | |
if (StatusIsFatal()) return 0.0; | |
double measuredPeriod; | |
if (m_counter) | |
{ | |
measuredPeriod = m_counter->GetPeriod(); | |
} | |
else | |
{ | |
tRioStatusCode localStatus = NiFpga_Status_Success; | |
tEncoder::tTimerOutput output = m_encoder->readTimerOutput(&localStatus); | |
double value; | |
if (output.Stalled) | |
{ | |
// Return infinity | |
double zero = 0.0; | |
value = 1.0 / zero; | |
} | |
else | |
{ | |
// output.Period is a fixed point number that counts by 2 (24 bits, 25 integer bits) | |
value = (double)(output.Period << 1) / (double)output.Count; | |
} | |
wpi_setError(localStatus); | |
measuredPeriod = value * 1.0e-6; | |
} | |
return measuredPeriod / DecodingScaleFactor(); | |
} | |
/** | |
* Sets the maximum period for stopped detection. | |
* Sets the value that represents the maximum period of the Encoder before it will assume | |
* that the attached device is stopped. This timeout allows users to determine if the wheels or | |
* other shaft has stopped rotating. | |
* This method compensates for the decoding type. | |
* | |
* @deprecated Use SetMinRate() in favor of this method. This takes unscaled periods and SetMinRate() scales using value from SetDistancePerPulse(). | |
* | |
* @param maxPeriod The maximum time between rising and falling edges before the FPGA will | |
* report the device stopped. This is expressed in seconds. | |
*/ | |
void Encoder::SetMaxPeriod(double maxPeriod) | |
{ | |
if (StatusIsFatal()) return; | |
if (m_counter) | |
{ | |
m_counter->SetMaxPeriod(maxPeriod * DecodingScaleFactor()); | |
} | |
else | |
{ | |
tRioStatusCode localStatus = NiFpga_Status_Success; | |
m_encoder->writeTimerConfig_StallPeriod((UINT32)(maxPeriod * 1.0e6 * DecodingScaleFactor()), &localStatus); | |
wpi_setError(localStatus); | |
} | |
} | |
/** | |
* Determine if the encoder is stopped. | |
* Using the MaxPeriod value, a boolean is returned that is true if the encoder is considered | |
* stopped and false if it is still moving. A stopped encoder is one where the most recent pulse | |
* width exceeds the MaxPeriod. | |
* @return True if the encoder is considered stopped. | |
*/ | |
bool Encoder::GetStopped() | |
{ | |
if (StatusIsFatal()) return true; | |
if (m_counter) | |
{ | |
return m_counter->GetStopped(); | |
} | |
else | |
{ | |
tRioStatusCode localStatus = NiFpga_Status_Success; | |
bool value = m_encoder->readTimerOutput_Stalled(&localStatus) != 0; | |
wpi_setError(localStatus); | |
return value; | |
} | |
} | |
/** | |
* The last direction the encoder value changed. | |
* @return The last direction the encoder value changed. | |
*/ | |
bool Encoder::GetDirection() | |
{ | |
if (StatusIsFatal()) return false; | |
if (m_counter) | |
{ | |
return m_counter->GetDirection(); | |
} | |
else | |
{ | |
tRioStatusCode localStatus = NiFpga_Status_Success; | |
bool value = m_encoder->readOutput_Direction(&localStatus); | |
wpi_setError(localStatus); | |
return value; | |
} | |
} | |
/** | |
* The scale needed to convert a raw counter value into a number of encoder pulses. | |
*/ | |
double Encoder::DecodingScaleFactor() | |
{ | |
if (StatusIsFatal()) return 0.0; | |
switch (m_encodingType) | |
{ | |
case k1X: | |
return 1.0; | |
case k2X: | |
return 0.5; | |
case k4X: | |
return 0.25; | |
default: | |
return 0.0; | |
} | |
} | |
/** | |
* Get the distance the robot has driven since the last reset. | |
* | |
* @return The distance driven since the last reset as scaled by the value from SetDistancePerPulse(). | |
*/ | |
double Encoder::GetDistance() | |
{ | |
if (StatusIsFatal()) return 0.0; | |
return GetRaw() * DecodingScaleFactor() * m_distancePerPulse; | |
} | |
/** | |
* Get the current rate of the encoder. | |
* Units are distance per second as scaled by the value from SetDistancePerPulse(). | |
* | |
* @return The current rate of the encoder. | |
*/ | |
double Encoder::GetRate() | |
{ | |
if (StatusIsFatal()) return 0.0; | |
return (m_distancePerPulse / GetPeriod()); | |
} | |
/** | |
* Set the minimum rate of the device before the hardware reports it stopped. | |
* | |
* @param minRate The minimum rate. The units are in distance per second as scaled by the value from SetDistancePerPulse(). | |
*/ | |
void Encoder::SetMinRate(double minRate) | |
{ | |
if (StatusIsFatal()) return; | |
SetMaxPeriod(m_distancePerPulse / minRate); | |
} | |
/** | |
* Set the distance per pulse for this encoder. | |
* This sets the multiplier used to determine the distance driven based on the count value | |
* from the encoder. | |
* Do not include the decoding type in this scale. The library already compensates for the decoding type. | |
* Set this value based on the encoder's rated Pulses per Revolution and | |
* factor in gearing reductions following the encoder shaft. | |
* This distance can be in any units you like, linear or angular. | |
* | |
* @param distancePerPulse The scale factor that will be used to convert pulses to useful units. | |
*/ | |
void Encoder::SetDistancePerPulse(double distancePerPulse) | |
{ | |
if (StatusIsFatal()) return; | |
m_distancePerPulse = distancePerPulse; | |
} | |
/** | |
* Set the direction sensing for this encoder. | |
* This sets the direction sensing on the encoder so that it could count in the correct | |
* software direction regardless of the mounting. | |
* @param reverseDirection true if the encoder direction should be reversed | |
*/ | |
void Encoder::SetReverseDirection(bool reverseDirection) | |
{ | |
if (StatusIsFatal()) return; | |
if (m_counter) | |
{ | |
m_counter->SetReverseDirection(reverseDirection); | |
} | |
else | |
{ | |
tRioStatusCode localStatus = NiFpga_Status_Success; | |
m_encoder->writeConfig_Reverse(reverseDirection, &localStatus); | |
wpi_setError(localStatus); | |
} | |
} | |
/** | |
* Set which parameter of the encoder you are using as a process control variable. | |
* | |
* @param pidSource An enum to select the parameter. | |
*/ | |
void Encoder::SetPIDSourceParameter(PIDSourceParameter pidSource) | |
{ | |
if (StatusIsFatal()) return; | |
m_pidSource = pidSource; | |
} | |
/** | |
* Implement the PIDSource interface. | |
* | |
* @return The current value of the selected source parameter. | |
*/ | |
double Encoder::PIDGet() | |
{ | |
if (StatusIsFatal()) return 0.0; | |
switch (m_pidSource) | |
{ | |
case kDistance: | |
return GetDistance(); | |
case kRate: | |
return GetRate(); | |
default: | |
return 0.0; | |
} | |
} | |
void Encoder::UpdateTable() { | |
if (m_table != NULL) { | |
m_table->PutNumber("Speed", GetRate()); | |
m_table->PutNumber("Distance", GetDistance()); | |
m_table->PutNumber("Distance per Tick", m_distancePerPulse); | |
} | |
} | |
void Encoder::StartLiveWindowMode() { | |
} | |
void Encoder::StopLiveWindowMode() { | |
} | |
std::string Encoder::GetSmartDashboardType() { | |
if (m_encodingType == k4X) | |
return "Quadrature Encoder"; | |
else | |
return "Encoder"; | |
} | |
void Encoder::InitTable(ITable *subTable) { | |
m_table = subTable; | |
UpdateTable(); | |
} | |
ITable * Encoder::GetTable() { | |
return m_table; | |
} | |