blob: 2c44f9dcb9a9a973da6367ce291242bc90bc2950 [file] [log] [blame]
/*----------------------------------------------------------------------------*/
/* Copyright (c) FIRST 2008. All Rights Reserved. */
/* Open Source Software - may be modified and shared by FRC teams. The code */
/* must be accompanied by the FIRST BSD license file in $(WIND_BASE)/WPILib. */
/*----------------------------------------------------------------------------*/
#include "Encoder.h"
#include "DigitalInput.h"
#include "NetworkCommunication/UsageReporting.h"
#include "Resource.h"
#include "WPIErrors.h"
#include "LiveWindow/LiveWindow.h"
static Resource *quadEncoders = NULL;
/**
* Common initialization code for Encoders.
* This code allocates resources for Encoders and is common to all constructors.
* @param reverseDirection If true, counts down instead of up (this is all relative)
* @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X decoding. If 4X is
* selected, then an encoder FPGA object is used and the returned counts will be 4x the encoder
* spec'd value since all rising and falling edges are counted. If 1X or 2X are selected then
* a counter object will be used and the returned value will either exactly match the spec'd count
* or be double (2x) the spec'd count.
*/
void Encoder::InitEncoder(bool reverseDirection, EncodingType encodingType)
{
m_table = NULL;
m_encodingType = encodingType;
tRioStatusCode localStatus = NiFpga_Status_Success;
switch (encodingType)
{
case k4X:
Resource::CreateResourceObject(&quadEncoders, tEncoder::kNumSystems);
UINT32 index = quadEncoders->Allocate("4X Encoder");
if (index == ~0ul)
{
CloneError(quadEncoders);
return;
}
if (m_aSource->StatusIsFatal())
{
CloneError(m_aSource);
return;
}
if (m_bSource->StatusIsFatal())
{
CloneError(m_bSource);
return;
}
m_index = index;
m_encoder = tEncoder::create(m_index, &localStatus);
m_encoder->writeConfig_ASource_Module(m_aSource->GetModuleForRouting(), &localStatus);
m_encoder->writeConfig_ASource_Channel(m_aSource->GetChannelForRouting(), &localStatus);
m_encoder->writeConfig_ASource_AnalogTrigger(m_aSource->GetAnalogTriggerForRouting(), &localStatus);
m_encoder->writeConfig_BSource_Module(m_bSource->GetModuleForRouting(), &localStatus);
m_encoder->writeConfig_BSource_Channel(m_bSource->GetChannelForRouting(), &localStatus);
m_encoder->writeConfig_BSource_AnalogTrigger(m_bSource->GetAnalogTriggerForRouting(), &localStatus);
m_encoder->strobeReset(&localStatus);
m_encoder->writeConfig_Reverse(reverseDirection, &localStatus);
m_encoder->writeTimerConfig_AverageSize(4, &localStatus);
m_counter = NULL;
break;
case k1X:
case k2X:
m_counter = new Counter(m_encodingType, m_aSource, m_bSource, reverseDirection);
m_index = m_counter->GetIndex();
break;
}
m_distancePerPulse = 1.0;
m_pidSource = kDistance;
wpi_setError(localStatus);
nUsageReporting::report(nUsageReporting::kResourceType_Encoder, m_index, encodingType);
LiveWindow::GetInstance()->AddSensor("Encoder", m_aSource->GetModuleForRouting(), m_aSource->GetChannelForRouting(), this);
}
/**
* Encoder constructor.
* Construct a Encoder given a and b modules and channels fully specified.
* @param aModuleNumber The a channel digital input module.
* @param aChannel The a channel digital input channel.
* @param bModuleNumber The b channel digital input module.
* @param bChannel The b channel digital input channel.
* @param reverseDirection represents the orientation of the encoder and inverts the output values
* if necessary so forward represents positive values.
* @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X decoding. If 4X is
* selected, then an encoder FPGA object is used and the returned counts will be 4x the encoder
* spec'd value since all rising and falling edges are counted. If 1X or 2X are selected then
* a counter object will be used and the returned value will either exactly match the spec'd count
* or be double (2x) the spec'd count.
*/
Encoder::Encoder(UINT8 aModuleNumber, UINT32 aChannel,
UINT8 bModuleNumber, UINT32 bChannel,
bool reverseDirection, EncodingType encodingType) :
m_encoder(NULL),
m_counter(NULL)
{
m_aSource = new DigitalInput(aModuleNumber, aChannel);
m_bSource = new DigitalInput(bModuleNumber, bChannel);
InitEncoder(reverseDirection, encodingType);
m_allocatedASource = true;
m_allocatedBSource = true;
}
/**
* Encoder constructor.
* Construct a Encoder given a and b channels assuming the default module.
* @param aChannel The a channel digital input channel.
* @param bChannel The b channel digital input channel.
* @param reverseDirection represents the orientation of the encoder and inverts the output values
* if necessary so forward represents positive values.
* @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X decoding. If 4X is
* selected, then an encoder FPGA object is used and the returned counts will be 4x the encoder
* spec'd value since all rising and falling edges are counted. If 1X or 2X are selected then
* a counter object will be used and the returned value will either exactly match the spec'd count
* or be double (2x) the spec'd count.
*/
Encoder::Encoder(UINT32 aChannel, UINT32 bChannel, bool reverseDirection, EncodingType encodingType) :
m_encoder(NULL),
m_counter(NULL)
{
m_aSource = new DigitalInput(aChannel);
m_bSource = new DigitalInput(bChannel);
InitEncoder(reverseDirection, encodingType);
m_allocatedASource = true;
m_allocatedBSource = true;
}
/**
* Encoder constructor.
* Construct a Encoder given a and b channels as digital inputs. This is used in the case
* where the digital inputs are shared. The Encoder class will not allocate the digital inputs
* and assume that they already are counted.
* @param aSource The source that should be used for the a channel.
* @param bSource the source that should be used for the b channel.
* @param reverseDirection represents the orientation of the encoder and inverts the output values
* if necessary so forward represents positive values.
* @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X decoding. If 4X is
* selected, then an encoder FPGA object is used and the returned counts will be 4x the encoder
* spec'd value since all rising and falling edges are counted. If 1X or 2X are selected then
* a counter object will be used and the returned value will either exactly match the spec'd count
* or be double (2x) the spec'd count.
*/
Encoder::Encoder(DigitalSource *aSource, DigitalSource *bSource, bool reverseDirection, EncodingType encodingType) :
m_encoder(NULL),
m_counter(NULL)
{
m_aSource = aSource;
m_bSource = bSource;
m_allocatedASource = false;
m_allocatedBSource = false;
if (m_aSource == NULL || m_bSource == NULL)
wpi_setWPIError(NullParameter);
else
InitEncoder(reverseDirection, encodingType);
}
/**
* Encoder constructor.
* Construct a Encoder given a and b channels as digital inputs. This is used in the case
* where the digital inputs are shared. The Encoder class will not allocate the digital inputs
* and assume that they already are counted.
* @param aSource The source that should be used for the a channel.
* @param bSource the source that should be used for the b channel.
* @param reverseDirection represents the orientation of the encoder and inverts the output values
* if necessary so forward represents positive values.
* @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X decoding. If 4X is
* selected, then an encoder FPGA object is used and the returned counts will be 4x the encoder
* spec'd value since all rising and falling edges are counted. If 1X or 2X are selected then
* a counter object will be used and the returned value will either exactly match the spec'd count
* or be double (2x) the spec'd count.
*/
Encoder::Encoder(DigitalSource &aSource, DigitalSource &bSource, bool reverseDirection, EncodingType encodingType) :
m_encoder(NULL),
m_counter(NULL)
{
m_aSource = &aSource;
m_bSource = &bSource;
m_allocatedASource = false;
m_allocatedBSource = false;
InitEncoder(reverseDirection, encodingType);
}
/**
* Free the resources for an Encoder.
* Frees the FPGA resources associated with an Encoder.
*/
Encoder::~Encoder()
{
if (m_allocatedASource) delete m_aSource;
if (m_allocatedBSource) delete m_bSource;
if (m_counter)
{
delete m_counter;
}
else
{
quadEncoders->Free(m_index);
delete m_encoder;
}
}
/**
* Start the Encoder.
* Starts counting pulses on the Encoder device.
*/
void Encoder::Start()
{
if (StatusIsFatal()) return;
if (m_counter)
m_counter->Start();
else
{
tRioStatusCode localStatus = NiFpga_Status_Success;
m_encoder->writeConfig_Enable(1, &localStatus);
wpi_setError(localStatus);
}
}
/**
* Stops counting pulses on the Encoder device. The value is not changed.
*/
void Encoder::Stop()
{
if (StatusIsFatal()) return;
if (m_counter)
m_counter->Stop();
else
{
tRioStatusCode localStatus = NiFpga_Status_Success;
m_encoder->writeConfig_Enable(0, &localStatus);
wpi_setError(localStatus);
}
}
/**
* Gets the raw value from the encoder.
* The raw value is the actual count unscaled by the 1x, 2x, or 4x scale
* factor.
* @return Current raw count from the encoder
*/
INT32 Encoder::GetRaw()
{
if (StatusIsFatal()) return 0;
INT32 value;
if (m_counter)
value = m_counter->Get();
else
{
tRioStatusCode localStatus = NiFpga_Status_Success;
value = m_encoder->readOutput_Value(&localStatus);
wpi_setError(localStatus);
}
return value;
}
/**
* Gets the current count.
* Returns the current count on the Encoder.
* This method compensates for the decoding type.
*
* @return Current count from the Encoder adjusted for the 1x, 2x, or 4x scale factor.
*/
INT32 Encoder::Get()
{
if (StatusIsFatal()) return 0;
return (INT32) (GetRaw() * DecodingScaleFactor());
}
/**
* Reset the Encoder distance to zero.
* Resets the current count to zero on the encoder.
*/
void Encoder::Reset()
{
if (StatusIsFatal()) return;
if (m_counter)
m_counter->Reset();
else
{
tRioStatusCode localStatus = NiFpga_Status_Success;
m_encoder->strobeReset(&localStatus);
wpi_setError(localStatus);
}
}
/**
* Returns the period of the most recent pulse.
* Returns the period of the most recent Encoder pulse in seconds.
* This method compenstates for the decoding type.
*
* @deprecated Use GetRate() in favor of this method. This returns unscaled periods and GetRate() scales using value from SetDistancePerPulse().
*
* @return Period in seconds of the most recent pulse.
*/
double Encoder::GetPeriod()
{
if (StatusIsFatal()) return 0.0;
double measuredPeriod;
if (m_counter)
{
measuredPeriod = m_counter->GetPeriod();
}
else
{
tRioStatusCode localStatus = NiFpga_Status_Success;
tEncoder::tTimerOutput output = m_encoder->readTimerOutput(&localStatus);
double value;
if (output.Stalled)
{
// Return infinity
double zero = 0.0;
value = 1.0 / zero;
}
else
{
// output.Period is a fixed point number that counts by 2 (24 bits, 25 integer bits)
value = (double)(output.Period << 1) / (double)output.Count;
}
wpi_setError(localStatus);
measuredPeriod = value * 1.0e-6;
}
return measuredPeriod / DecodingScaleFactor();
}
/**
* Sets the maximum period for stopped detection.
* Sets the value that represents the maximum period of the Encoder before it will assume
* that the attached device is stopped. This timeout allows users to determine if the wheels or
* other shaft has stopped rotating.
* This method compensates for the decoding type.
*
* @deprecated Use SetMinRate() in favor of this method. This takes unscaled periods and SetMinRate() scales using value from SetDistancePerPulse().
*
* @param maxPeriod The maximum time between rising and falling edges before the FPGA will
* report the device stopped. This is expressed in seconds.
*/
void Encoder::SetMaxPeriod(double maxPeriod)
{
if (StatusIsFatal()) return;
if (m_counter)
{
m_counter->SetMaxPeriod(maxPeriod * DecodingScaleFactor());
}
else
{
tRioStatusCode localStatus = NiFpga_Status_Success;
m_encoder->writeTimerConfig_StallPeriod((UINT32)(maxPeriod * 1.0e6 * DecodingScaleFactor()), &localStatus);
wpi_setError(localStatus);
}
}
/**
* Determine if the encoder is stopped.
* Using the MaxPeriod value, a boolean is returned that is true if the encoder is considered
* stopped and false if it is still moving. A stopped encoder is one where the most recent pulse
* width exceeds the MaxPeriod.
* @return True if the encoder is considered stopped.
*/
bool Encoder::GetStopped()
{
if (StatusIsFatal()) return true;
if (m_counter)
{
return m_counter->GetStopped();
}
else
{
tRioStatusCode localStatus = NiFpga_Status_Success;
bool value = m_encoder->readTimerOutput_Stalled(&localStatus) != 0;
wpi_setError(localStatus);
return value;
}
}
/**
* The last direction the encoder value changed.
* @return The last direction the encoder value changed.
*/
bool Encoder::GetDirection()
{
if (StatusIsFatal()) return false;
if (m_counter)
{
return m_counter->GetDirection();
}
else
{
tRioStatusCode localStatus = NiFpga_Status_Success;
bool value = m_encoder->readOutput_Direction(&localStatus);
wpi_setError(localStatus);
return value;
}
}
/**
* The scale needed to convert a raw counter value into a number of encoder pulses.
*/
double Encoder::DecodingScaleFactor()
{
if (StatusIsFatal()) return 0.0;
switch (m_encodingType)
{
case k1X:
return 1.0;
case k2X:
return 0.5;
case k4X:
return 0.25;
default:
return 0.0;
}
}
/**
* Get the distance the robot has driven since the last reset.
*
* @return The distance driven since the last reset as scaled by the value from SetDistancePerPulse().
*/
double Encoder::GetDistance()
{
if (StatusIsFatal()) return 0.0;
return GetRaw() * DecodingScaleFactor() * m_distancePerPulse;
}
/**
* Get the current rate of the encoder.
* Units are distance per second as scaled by the value from SetDistancePerPulse().
*
* @return The current rate of the encoder.
*/
double Encoder::GetRate()
{
if (StatusIsFatal()) return 0.0;
return (m_distancePerPulse / GetPeriod());
}
/**
* Set the minimum rate of the device before the hardware reports it stopped.
*
* @param minRate The minimum rate. The units are in distance per second as scaled by the value from SetDistancePerPulse().
*/
void Encoder::SetMinRate(double minRate)
{
if (StatusIsFatal()) return;
SetMaxPeriod(m_distancePerPulse / minRate);
}
/**
* Set the distance per pulse for this encoder.
* This sets the multiplier used to determine the distance driven based on the count value
* from the encoder.
* Do not include the decoding type in this scale. The library already compensates for the decoding type.
* Set this value based on the encoder's rated Pulses per Revolution and
* factor in gearing reductions following the encoder shaft.
* This distance can be in any units you like, linear or angular.
*
* @param distancePerPulse The scale factor that will be used to convert pulses to useful units.
*/
void Encoder::SetDistancePerPulse(double distancePerPulse)
{
if (StatusIsFatal()) return;
m_distancePerPulse = distancePerPulse;
}
/**
* Set the direction sensing for this encoder.
* This sets the direction sensing on the encoder so that it could count in the correct
* software direction regardless of the mounting.
* @param reverseDirection true if the encoder direction should be reversed
*/
void Encoder::SetReverseDirection(bool reverseDirection)
{
if (StatusIsFatal()) return;
if (m_counter)
{
m_counter->SetReverseDirection(reverseDirection);
}
else
{
tRioStatusCode localStatus = NiFpga_Status_Success;
m_encoder->writeConfig_Reverse(reverseDirection, &localStatus);
wpi_setError(localStatus);
}
}
/**
* Set which parameter of the encoder you are using as a process control variable.
*
* @param pidSource An enum to select the parameter.
*/
void Encoder::SetPIDSourceParameter(PIDSourceParameter pidSource)
{
if (StatusIsFatal()) return;
m_pidSource = pidSource;
}
/**
* Implement the PIDSource interface.
*
* @return The current value of the selected source parameter.
*/
double Encoder::PIDGet()
{
if (StatusIsFatal()) return 0.0;
switch (m_pidSource)
{
case kDistance:
return GetDistance();
case kRate:
return GetRate();
default:
return 0.0;
}
}
void Encoder::UpdateTable() {
if (m_table != NULL) {
m_table->PutNumber("Speed", GetRate());
m_table->PutNumber("Distance", GetDistance());
m_table->PutNumber("Distance per Tick", m_distancePerPulse);
}
}
void Encoder::StartLiveWindowMode() {
}
void Encoder::StopLiveWindowMode() {
}
std::string Encoder::GetSmartDashboardType() {
if (m_encodingType == k4X)
return "Quadrature Encoder";
else
return "Encoder";
}
void Encoder::InitTable(ITable *subTable) {
m_table = subTable;
UpdateTable();
}
ITable * Encoder::GetTable() {
return m_table;
}