blob: ac3548720478d58a1c70d8ac8cb1069a20a029c4 [file] [log] [blame]
/*----------------------------------------------------------------------------*/
/* Copyright (c) FIRST 2008. All Rights Reserved. */
/* Open Source Software - may be modified and shared by FRC teams. The code */
/* must be accompanied by the FIRST BSD license file in $(WIND_BASE)/WPILib. */
/*----------------------------------------------------------------------------*/
#include "AnalogModule.h"
#include "Synchronized.h"
#include "Timer.h"
#include "WPIErrors.h"
#include "NetworkCommunication/AICalibration.h"
const long AnalogModule::kTimebase; ///< 40 MHz clock
const long AnalogModule::kDefaultOversampleBits;
const long AnalogModule::kDefaultAverageBits;
const float AnalogModule::kDefaultSampleRate;
SEM_ID AnalogModule::m_registerWindowSemaphore = NULL;
/**
* Get an instance of an Analog Module.
*
* Singleton analog module creation where a module is allocated on the first use
* and the same module is returned on subsequent uses.
*
* @param moduleNumber The analog module to get (1 or 2).
* @return A pointer to the AnalogModule.
*/
AnalogModule* AnalogModule::GetInstance(UINT8 moduleNumber)
{
if (CheckAnalogModule(moduleNumber))
{
return (AnalogModule*)GetModule(nLoadOut::kModuleType_Analog, moduleNumber);
}
// If this wasn't caught before now, make sure we say what's wrong before we crash
char buf[64];
snprintf(buf, 64, "Analog Module %d", moduleNumber);
wpi_setGlobalWPIErrorWithContext(ModuleIndexOutOfRange, buf);
return NULL;
}
/**
* Create a new instance of an analog module.
*
* Create an instance of the analog module object. Initialize all the parameters
* to reasonable values on start.
* Setting a global value on an analog module can be done only once unless subsequent
* values are set the previously set value.
* Analog modules are a singleton, so the constructor is never called outside of this class.
*
* @param moduleNumber The analog module to create (1 or 2).
*/
AnalogModule::AnalogModule(UINT8 moduleNumber)
: Module(nLoadOut::kModuleType_Analog, moduleNumber)
, m_module (NULL)
, m_sampleRateSet (false)
, m_numChannelsToActivate (0)
{
AddToSingletonList();
tRioStatusCode localStatus = NiFpga_Status_Success;
m_module = tAI::create(m_moduleNumber - 1, &localStatus);
wpi_setError(localStatus);
SetNumChannelsToActivate(kAnalogChannels);
SetSampleRate(kDefaultSampleRate);
for (UINT32 i = 0; i < kAnalogChannels; i++)
{
m_module->writeScanList(i, i, &localStatus);
wpi_setError(localStatus);
SetAverageBits(i + 1, kDefaultAverageBits);
SetOversampleBits(i + 1, kDefaultOversampleBits);
}
if (m_registerWindowSemaphore == NULL)
{
// Needs to be global since the protected resource spans both module singletons.
m_registerWindowSemaphore = semMCreate(SEM_Q_PRIORITY | SEM_DELETE_SAFE | SEM_INVERSION_SAFE);
}
}
/**
* Destructor for AnalogModule.
*/
AnalogModule::~AnalogModule()
{
delete m_module;
}
/**
* Set the sample rate on the module.
*
* This is a global setting for the module and effects all channels.
*
* @param samplesPerSecond The number of samples per channel per second.
*/
void AnalogModule::SetSampleRate(float samplesPerSecond)
{
// TODO: This will change when variable size scan lists are implemented.
// TODO: Need float comparison with epsilon.
//wpi_assert(!sampleRateSet || GetSampleRate() == samplesPerSecond);
m_sampleRateSet = true;
// Compute the convert rate
UINT32 ticksPerSample = (UINT32)((float)kTimebase / samplesPerSecond);
UINT32 ticksPerConversion = ticksPerSample / GetNumChannelsToActivate();
// ticksPerConversion must be at least 80
if (ticksPerConversion < 80)
{
wpi_setWPIError(SampleRateTooHigh);
ticksPerConversion = 80;
}
// Atomically set the scan size and the convert rate so that the sample rate is constant
tAI::tConfig config;
config.ScanSize = GetNumChannelsToActivate();
config.ConvertRate = ticksPerConversion;
tRioStatusCode localStatus = NiFpga_Status_Success;
m_module->writeConfig(config, &localStatus);
wpi_setError(localStatus);
// Indicate that the scan size has been commited to hardware.
SetNumChannelsToActivate(0);
}
/**
* Get the current sample rate on the module.
*
* This assumes one entry in the scan list.
* This is a global setting for the module and effects all channels.
*
* @return Sample rate.
*/
float AnalogModule::GetSampleRate()
{
tRioStatusCode localStatus = NiFpga_Status_Success;
UINT32 ticksPerConversion = m_module->readLoopTiming(&localStatus);
wpi_setError(localStatus);
UINT32 ticksPerSample = ticksPerConversion * GetNumActiveChannels();
return (float)kTimebase / (float)ticksPerSample;
}
/**
* Return the number of channels on the module in use.
*
* @return Active channels.
*/
UINT32 AnalogModule::GetNumActiveChannels()
{
tRioStatusCode localStatus = NiFpga_Status_Success;
UINT32 scanSize = m_module->readConfig_ScanSize(&localStatus);
wpi_setError(localStatus);
if (scanSize == 0)
return 8;
return scanSize;
}
/**
* Get the number of active channels.
*
* This is an internal function to allow the atomic update of both the
* number of active channels and the sample rate.
*
* When the number of channels changes, use the new value. Otherwise,
* return the curent value.
*
* @return Value to write to the active channels field.
*/
UINT32 AnalogModule::GetNumChannelsToActivate()
{
if(m_numChannelsToActivate == 0) return GetNumActiveChannels();
return m_numChannelsToActivate;
}
/**
* Set the number of active channels.
*
* Store the number of active channels to set. Don't actually commit to hardware
* until SetSampleRate().
*
* @param channels Number of active channels.
*/
void AnalogModule::SetNumChannelsToActivate(UINT32 channels)
{
m_numChannelsToActivate = channels;
}
/**
* Set the number of averaging bits.
*
* This sets the number of averaging bits. The actual number of averaged samples is 2**bits.
* Use averaging to improve the stability of your measurement at the expense of sampling rate.
* The averaging is done automatically in the FPGA.
*
* @param channel Analog channel to configure.
* @param bits Number of bits to average.
*/
void AnalogModule::SetAverageBits(UINT32 channel, UINT32 bits)
{
tRioStatusCode localStatus = NiFpga_Status_Success;
m_module->writeAverageBits(channel - 1, bits, &localStatus);
wpi_setError(localStatus);
}
/**
* Get the number of averaging bits.
*
* This gets the number of averaging bits from the FPGA. The actual number of averaged samples is 2**bits.
* The averaging is done automatically in the FPGA.
*
* @param channel Channel to address.
* @return Bits to average.
*/
UINT32 AnalogModule::GetAverageBits(UINT32 channel)
{
tRioStatusCode localStatus = NiFpga_Status_Success;
UINT32 result = m_module->readAverageBits(channel - 1, &localStatus);
wpi_setError(localStatus);
return result;
}
/**
* Set the number of oversample bits.
*
* This sets the number of oversample bits. The actual number of oversampled values is 2**bits.
* Use oversampling to improve the resolution of your measurements at the expense of sampling rate.
* The oversampling is done automatically in the FPGA.
*
* @param channel Analog channel to configure.
* @param bits Number of bits to oversample.
*/
void AnalogModule::SetOversampleBits(UINT32 channel, UINT32 bits)
{
tRioStatusCode localStatus = NiFpga_Status_Success;
m_module->writeOversampleBits(channel - 1, bits, &localStatus);
wpi_setError(localStatus);
}
/**
* Get the number of oversample bits.
*
* This gets the number of oversample bits from the FPGA. The actual number of oversampled values is
* 2**bits. The oversampling is done automatically in the FPGA.
*
* @param channel Channel to address.
* @return Bits to oversample.
*/
UINT32 AnalogModule::GetOversampleBits(UINT32 channel)
{
tRioStatusCode localStatus = NiFpga_Status_Success;
UINT32 result = m_module->readOversampleBits(channel - 1, &localStatus);
wpi_setError(localStatus);
return result;
}
/**
* Get a sample straight from the channel on this module.
*
* The sample is a 12-bit value representing the -10V to 10V range of the A/D converter in the module.
* The units are in A/D converter codes. Use GetVoltage() to get the analog value in calibrated units.
*
* @return A sample straight from the channel on this module.
*/
INT16 AnalogModule::GetValue(UINT32 channel)
{
INT16 value;
CheckAnalogChannel(channel);
tAI::tReadSelect readSelect;
readSelect.Channel = channel - 1;
readSelect.Module = m_moduleNumber - 1;
readSelect.Averaged = false;
tRioStatusCode localStatus = NiFpga_Status_Success;
{
Synchronized sync(m_registerWindowSemaphore);
m_module->writeReadSelect(readSelect, &localStatus);
m_module->strobeLatchOutput(&localStatus);
value = (INT16) m_module->readOutput(&localStatus);
}
wpi_setError(localStatus);
return value;
}
/**
* Get a sample from the output of the oversample and average engine for the channel.
*
* The sample is 12-bit + the value configured in SetOversampleBits().
* The value configured in SetAverageBits() will cause this value to be averaged 2**bits number of samples.
* This is not a sliding window. The sample will not change until 2**(OversamplBits + AverageBits) samples
* have been acquired from the module on this channel.
* Use GetAverageVoltage() to get the analog value in calibrated units.
*
* @param channel Channel number to read.
* @return A sample from the oversample and average engine for the channel.
*/
INT32 AnalogModule::GetAverageValue(UINT32 channel)
{
INT32 value;
CheckAnalogChannel(channel);
tAI::tReadSelect readSelect;
readSelect.Channel = channel - 1;
readSelect.Module = m_moduleNumber - 1;
readSelect.Averaged = true;
tRioStatusCode localStatus = NiFpga_Status_Success;
{
Synchronized sync(m_registerWindowSemaphore);
m_module->writeReadSelect(readSelect, &localStatus);
m_module->strobeLatchOutput(&localStatus);
value = m_module->readOutput(&localStatus);
}
wpi_setError(localStatus);
return value;
}
/**
* Convert a voltage to a raw value for a specified channel.
*
* This process depends on the calibration of each channel, so the channel
* must be specified.
*
* @todo This assumes raw values. Oversampling not supported as is.
*
* @param channel The channel to convert for.
* @param voltage The voltage to convert.
* @return The raw value for the channel.
*/
INT32 AnalogModule::VoltsToValue(INT32 channel, float voltage)
{
if (voltage > 10.0)
{
voltage = 10.0;
wpi_setWPIError(VoltageOutOfRange);
}
if (voltage < -10.0)
{
voltage = -10.0;
wpi_setWPIError(VoltageOutOfRange);
}
UINT32 LSBWeight = GetLSBWeight(channel);
INT32 offset = GetOffset(channel);
INT32 value = (INT32) ((voltage + offset * 1.0e-9) / (LSBWeight * 1.0e-9));
return value;
}
/**
* Get a scaled sample straight from the channel on this module.
*
* The value is scaled to units of Volts using the calibrated scaling data from GetLSBWeight() and GetOffset().
*
* @param channel The channel to read.
* @return A scaled sample straight from the channel on this module.
*/
float AnalogModule::GetVoltage(UINT32 channel)
{
INT16 value = GetValue(channel);
UINT32 LSBWeight = GetLSBWeight(channel);
INT32 offset = GetOffset(channel);
float voltage = LSBWeight * 1.0e-9 * value - offset * 1.0e-9;
return voltage;
}
/**
* Get a scaled sample from the output of the oversample and average engine for the channel.
*
* The value is scaled to units of Volts using the calibrated scaling data from GetLSBWeight() and GetOffset().
* Using oversampling will cause this value to be higher resolution, but it will update more slowly.
* Using averaging will cause this value to be more stable, but it will update more slowly.
*
* @param channel The channel to read.
* @return A scaled sample from the output of the oversample and average engine for the channel.
*/
float AnalogModule::GetAverageVoltage(UINT32 channel)
{
INT32 value = GetAverageValue(channel);
UINT32 LSBWeight = GetLSBWeight(channel);
INT32 offset = GetOffset(channel);
UINT32 oversampleBits = GetOversampleBits(channel);
float voltage = ((LSBWeight * 1.0e-9 * value) / (float)(1 << oversampleBits)) - offset * 1.0e-9;
return voltage;
}
/**
* Get the factory scaling least significant bit weight constant.
* The least significant bit weight constant for the channel that was calibrated in
* manufacturing and stored in an eeprom in the module.
*
* Volts = ((LSB_Weight * 1e-9) * raw) - (Offset * 1e-9)
*
* @param channel The channel to get calibration data for.
* @return Least significant bit weight.
*/
UINT32 AnalogModule::GetLSBWeight(UINT32 channel)
{
tRioStatusCode localStatus = NiFpga_Status_Success;
UINT32 lsbWeight = FRC_NetworkCommunication_nAICalibration_getLSBWeight(m_module->getSystemIndex(), channel - 1, (INT32*)&localStatus);
wpi_setError(localStatus);
return lsbWeight;
}
/**
* Get the factory scaling offset constant.
* The offset constant for the channel that was calibrated in manufacturing and stored
* in an eeprom in the module.
*
* Volts = ((LSB_Weight * 1e-9) * raw) - (Offset * 1e-9)
*
* @param channel The channel to get calibration data for.
* @return Offset constant.
*/
INT32 AnalogModule::GetOffset(UINT32 channel)
{
tRioStatusCode localStatus = NiFpga_Status_Success;
INT32 offset = FRC_NetworkCommunication_nAICalibration_getOffset(m_module->getSystemIndex(), channel - 1, (INT32*)&localStatus);
wpi_setError(localStatus);
return offset;
}