blob: d8c1321f53e28b6700a41e50ba8a199cc42216d9 [file] [log] [blame]
#include <symengine/add.h>
#include <symengine/matrix.h>
#include <symengine/number.h>
#include <symengine/printers.h>
#include <symengine/real_double.h>
#include <symengine/simplify.h>
#include <symengine/solve.h>
#include <symengine/symbol.h>
#include <array>
#include <cmath>
#include <numbers>
#include <utility>
#include "absl/strings/str_format.h"
#include "absl/strings/str_join.h"
#include "absl/strings/str_replace.h"
#include "absl/strings/substitute.h"
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "aos/init.h"
#include "aos/util/file.h"
#include "frc971/control_loops/swerve/motors.h"
DEFINE_string(output_base, "",
"Path to strip off the front of the output paths.");
DEFINE_string(cc_output_path, "", "Path to write generated header code to");
DEFINE_string(h_output_path, "", "Path to write generated cc code to");
DEFINE_string(py_output_path, "", "Path to write generated py code to");
DEFINE_bool(symbolic, false, "If true, write everything out symbolically.");
using SymEngine::abs;
using SymEngine::add;
using SymEngine::atan2;
using SymEngine::Basic;
using SymEngine::ccode;
using SymEngine::cos;
using SymEngine::DenseMatrix;
using SymEngine::div;
using SymEngine::Inf;
using SymEngine::integer;
using SymEngine::map_basic_basic;
using SymEngine::minus_one;
using SymEngine::neg;
using SymEngine::NegInf;
using SymEngine::pow;
using SymEngine::RCP;
using SymEngine::real_double;
using SymEngine::RealDouble;
using SymEngine::Set;
using SymEngine::simplify;
using SymEngine::sin;
using SymEngine::solve;
using SymEngine::symbol;
using SymEngine::Symbol;
namespace frc971::control_loops::swerve {
// State per module.
struct Module {
RCP<const Symbol> Is;
RCP<const Symbol> Id;
RCP<const Symbol> thetas;
RCP<const Symbol> omegas;
RCP<const Symbol> alphas;
RCP<const Basic> alphas_eqn;
RCP<const Symbol> thetad;
RCP<const Symbol> omegad;
RCP<const Symbol> alphad;
RCP<const Basic> alphad_eqn;
// Acceleration contribution from this module.
DenseMatrix accel;
RCP<const Basic> angular_accel;
};
class SwerveSimulation {
public:
SwerveSimulation() : drive_motor_(KrakenFOC()), steer_motor_(KrakenFOC()) {
auto fx = symbol("fx");
auto fy = symbol("fy");
auto moment = symbol("moment");
if (FLAGS_symbolic) {
Cx_ = symbol("Cx");
Cy_ = symbol("Cy");
r_w_ = symbol("r_w_");
m_ = symbol("m");
J_ = symbol("J");
Gd1_ = symbol("Gd1");
rs_ = symbol("rs");
rp_ = symbol("rp");
Gd2_ = symbol("Gd2");
rb1_ = symbol("rb1");
rb2_ = symbol("rb2");
Gd2_ = symbol("Gd3");
Gd_ = symbol("Gd");
Js_ = symbol("Js");
Gs_ = symbol("Gs");
wb_ = symbol("wb");
Jdm_ = symbol("Jdm");
Jsm_ = symbol("Jsm");
Kts_ = symbol("Kts");
Ktd_ = symbol("Ktd");
robot_width_ = symbol("robot_width");
caster_ = symbol("caster");
contact_patch_length_ = symbol("Lcp");
} else {
Cx_ = real_double(5 * 9.8 / 0.05 / 4.0);
Cy_ = real_double(5 * 9.8 / 0.05 / 4.0);
r_w_ = real_double(2 * 0.0254);
m_ = real_double(25.0); // base is 20 kg without battery
J_ = real_double(6.0);
Gd1_ = real_double(12.0 / 42.0);
rs_ = real_double(28.0 / 20.0 / 2.0);
rp_ = real_double(18.0 / 20.0 / 2.0);
Gd2_ = div(rs_, rp_);
// 15 / 45 bevel ratio, calculated using python script ported over to
// GetBevelPitchRadius(double
// TODO(Justin): Use the function instead of computed constantss
rb1_ = real_double(0.3805473);
rb2_ = real_double(1.14164);
Gd3_ = div(rb1_, rb2_);
Gd_ = mul(mul(Gd1_, Gd2_), Gd3_);
Js_ = real_double(0.1);
Gs_ = real_double(35.0 / 468.0);
wb_ = real_double(0.725);
Jdm_ = real_double(drive_motor_.motor_inertia);
Jsm_ = real_double(steer_motor_.motor_inertia);
Kts_ = real_double(steer_motor_.Kt);
Ktd_ = real_double(drive_motor_.Kt);
robot_width_ = real_double(24.75 * 0.0254);
caster_ = real_double(0.01);
contact_patch_length_ = real_double(0.02);
}
x_ = symbol("x");
y_ = symbol("y");
theta_ = symbol("theta");
vx_ = symbol("vx");
vy_ = symbol("vy");
omega_ = symbol("omega");
ax_ = symbol("ax");
ay_ = symbol("ay");
atheta_ = symbol("atheta");
// Now, compute the accelerations due to the disturbance forces.
angular_accel_ = div(moment, J_);
DenseMatrix external_accel = DenseMatrix(2, 1, {div(fx, m_), div(fy, m_)});
// And compute the physics contributions from each module.
modules_[0] = ModulePhysics(
0, DenseMatrix(
2, 1,
{div(robot_width_, integer(2)), div(robot_width_, integer(2))}));
modules_[1] =
ModulePhysics(1, DenseMatrix(2, 1,
{div(robot_width_, integer(-2)),
div(robot_width_, integer(2))}));
modules_[2] =
ModulePhysics(2, DenseMatrix(2, 1,
{div(robot_width_, integer(-2)),
div(robot_width_, integer(-2))}));
modules_[3] =
ModulePhysics(3, DenseMatrix(2, 1,
{div(robot_width_, integer(2)),
div(robot_width_, integer(-2))}));
// And convert them into the overall robot contribution.
DenseMatrix temp0 = DenseMatrix(2, 1);
DenseMatrix temp1 = DenseMatrix(2, 1);
DenseMatrix temp2 = DenseMatrix(2, 1);
accel_ = DenseMatrix(2, 1);
add_dense_dense(modules_[0].accel, external_accel, temp0);
add_dense_dense(temp0, modules_[1].accel, temp1);
add_dense_dense(temp1, modules_[2].accel, temp2);
add_dense_dense(temp2, modules_[3].accel, accel_);
angular_accel_ = add(angular_accel_, modules_[0].angular_accel);
angular_accel_ = add(angular_accel_, modules_[1].angular_accel);
angular_accel_ = add(angular_accel_, modules_[2].angular_accel);
angular_accel_ = simplify(add(angular_accel_, modules_[3].angular_accel));
VLOG(1) << "accel(0, 0) = " << ccode(*accel_.get(0, 0));
VLOG(1) << "accel(1, 0) = " << ccode(*accel_.get(1, 0));
VLOG(1) << "angular_accel = " << ccode(*angular_accel_);
}
// Writes the physics out to the provided .py path.
void WritePy(std::string_view py_path) {
std::vector<std::string> result_py;
result_py.emplace_back("#!/usr/bin/python3");
result_py.emplace_back("");
result_py.emplace_back("import numpy");
result_py.emplace_back("import math");
result_py.emplace_back("from math import sin, cos, fabs");
result_py.emplace_back("");
result_py.emplace_back("def atan2(y, x):");
result_py.emplace_back(" if x < 0:");
result_py.emplace_back(" return -math.atan2(y, x)");
result_py.emplace_back(" else:");
result_py.emplace_back(" return math.atan2(y, x)");
result_py.emplace_back("def swerve_physics(t, X, U_func):");
// result_py.emplace_back(" print(X)");
result_py.emplace_back(" result = numpy.empty([25, 1])");
result_py.emplace_back(" X = X.reshape(25, 1)");
result_py.emplace_back(" U = U_func(X)");
result_py.emplace_back("");
// Start by writing out variables matching each of the symbol names we use
// so we don't have to modify the computed equations too much.
for (size_t m = 0; m < kNumModules; ++m) {
result_py.emplace_back(
absl::Substitute(" thetas$0 = X[$1, 0]", m, m * 4));
result_py.emplace_back(
absl::Substitute(" omegas$0 = X[$1, 0]", m, m * 4 + 2));
result_py.emplace_back(
absl::Substitute(" omegad$0 = X[$1, 0]", m, m * 4 + 3));
}
result_py.emplace_back(
absl::Substitute(" theta = X[$0, 0]", kNumModules * 4 + 2));
result_py.emplace_back(
absl::Substitute(" vx = X[$0, 0]", kNumModules * 4 + 3));
result_py.emplace_back(
absl::Substitute(" vy = X[$0, 0]", kNumModules * 4 + 4));
result_py.emplace_back(
absl::Substitute(" omega = X[$0, 0]", kNumModules * 4 + 5));
result_py.emplace_back(
absl::Substitute(" fx = X[$0, 0]", kNumModules * 4 + 6));
result_py.emplace_back(
absl::Substitute(" fy = X[$0, 0]", kNumModules * 4 + 7));
result_py.emplace_back(
absl::Substitute(" moment = X[$0, 0]", kNumModules * 4 + 8));
// Now do the same for the inputs.
for (size_t m = 0; m < kNumModules; ++m) {
result_py.emplace_back(absl::Substitute(" Is$0 = U[$1, 0]", m, m * 2));
result_py.emplace_back(
absl::Substitute(" Id$0 = U[$1, 0]", m, m * 2 + 1));
}
result_py.emplace_back("");
// And then write out the derivative of each state.
for (size_t m = 0; m < kNumModules; ++m) {
result_py.emplace_back(
absl::Substitute(" result[$0, 0] = omegas$1", m * 4, m));
result_py.emplace_back(
absl::Substitute(" result[$0, 0] = omegad$1", m * 4 + 1, m));
result_py.emplace_back(absl::Substitute(
" result[$0, 0] = $1", m * 4 + 2, ccode(*modules_[m].alphas_eqn)));
result_py.emplace_back(absl::Substitute(
" result[$0, 0] = $1", m * 4 + 3, ccode(*modules_[m].alphad_eqn)));
}
result_py.emplace_back(
absl::Substitute(" result[$0, 0] = vx", kNumModules * 4));
result_py.emplace_back(
absl::Substitute(" result[$0, 0] = vy", kNumModules * 4 + 1));
result_py.emplace_back(
absl::Substitute(" result[$0, 0] = omega", kNumModules * 4 + 2));
result_py.emplace_back(absl::Substitute(" result[$0, 0] = $1",
kNumModules * 4 + 3,
ccode(*accel_.get(0, 0))));
result_py.emplace_back(absl::Substitute(" result[$0, 0] = $1",
kNumModules * 4 + 4,
ccode(*accel_.get(1, 0))));
result_py.emplace_back(absl::Substitute(
" result[$0, 0] = $1", kNumModules * 4 + 5, ccode(*angular_accel_)));
result_py.emplace_back(
absl::Substitute(" result[$0, 0] = 0.0", kNumModules * 4 + 6));
result_py.emplace_back(
absl::Substitute(" result[$0, 0] = 0.0", kNumModules * 4 + 7));
result_py.emplace_back(
absl::Substitute(" result[$0, 0] = 0.0", kNumModules * 4 + 8));
result_py.emplace_back("");
result_py.emplace_back(" return result.reshape(25,)\n");
aos::util::WriteStringToFileOrDie(py_path, absl::StrJoin(result_py, "\n"));
}
// Writes the physics out to the provided .cc and .h path.
void Write(std::string_view cc_path, std::string_view h_path) {
std::vector<std::string> result_cc;
std::vector<std::string> result_h;
std::string_view include_guard_stripped = FLAGS_h_output_path;
CHECK(absl::ConsumePrefix(&include_guard_stripped, FLAGS_output_base));
std::string include_guard =
absl::StrReplaceAll(absl::AsciiStrToUpper(include_guard_stripped),
{{"/", "_"}, {".", "_"}});
// Write out the header.
result_h.emplace_back(absl::Substitute("#ifndef $0_", include_guard));
result_h.emplace_back(absl::Substitute("#define $0_", include_guard));
result_h.emplace_back("");
result_h.emplace_back("#include <Eigen/Dense>");
result_h.emplace_back("");
result_h.emplace_back("namespace frc971::control_loops::swerve {");
result_h.emplace_back("");
result_h.emplace_back("// Returns the derivative of our state vector");
result_h.emplace_back("// [thetas0, thetad0, omegas0, omegad0,");
result_h.emplace_back("// thetas1, thetad1, omegas1, omegad1,");
result_h.emplace_back("// thetas2, thetad2, omegas2, omegad2,");
result_h.emplace_back("// thetas3, thetad3, omegas3, omegad3,");
result_h.emplace_back("// x, y, theta, vx, vy, omega,");
result_h.emplace_back("// Fx, Fy, Moment]");
result_h.emplace_back("Eigen::Matrix<double, 25, 1> SwervePhysics(");
result_h.emplace_back(
" Eigen::Map<const Eigen::Matrix<double, 25, 1>> X,");
result_h.emplace_back(
" Eigen::Map<const Eigen::Matrix<double, 8, 1>> U);");
result_h.emplace_back("");
result_h.emplace_back("} // namespace frc971::control_loops::swerve");
result_h.emplace_back("");
result_h.emplace_back(absl::Substitute("#endif // $0_", include_guard));
// Write out the .cc
result_cc.emplace_back(
absl::Substitute("#include \"$0\"", include_guard_stripped));
result_cc.emplace_back("");
result_cc.emplace_back("#include <cmath>");
result_cc.emplace_back("");
result_cc.emplace_back("namespace frc971::control_loops::swerve {");
result_cc.emplace_back("");
result_cc.emplace_back("Eigen::Matrix<double, 25, 1> SwervePhysics(");
result_cc.emplace_back(
" Eigen::Map<const Eigen::Matrix<double, 25, 1>> X,");
result_cc.emplace_back(
" Eigen::Map<const Eigen::Matrix<double, 8, 1>> U) {");
result_cc.emplace_back(" Eigen::Matrix<double, 25, 1> result;");
// Start by writing out variables matching each of the symbol names we use
// so we don't have to modify the computed equations too much.
for (size_t m = 0; m < kNumModules; ++m) {
result_cc.emplace_back(
absl::Substitute(" const double thetas$0 = X($1, 0);", m, m * 4));
result_cc.emplace_back(absl::Substitute(
" const double omegas$0 = X($1, 0);", m, m * 4 + 2));
result_cc.emplace_back(absl::Substitute(
" const double omegad$0 = X($1, 0);", m, m * 4 + 3));
}
result_cc.emplace_back(absl::Substitute(" const double theta = X($0, 0);",
kNumModules * 4 + 2));
result_cc.emplace_back(
absl::Substitute(" const double vx = X($0, 0);", kNumModules * 4 + 3));
result_cc.emplace_back(
absl::Substitute(" const double vy = X($0, 0);", kNumModules * 4 + 4));
result_cc.emplace_back(absl::Substitute(" const double omega = X($0, 0);",
kNumModules * 4 + 5));
result_cc.emplace_back(
absl::Substitute(" const double fx = X($0, 0);", kNumModules * 4 + 6));
result_cc.emplace_back(
absl::Substitute(" const double fy = X($0, 0);", kNumModules * 4 + 7));
result_cc.emplace_back(absl::Substitute(" const double moment = X($0, 0);",
kNumModules * 4 + 8));
// Now do the same for the inputs.
for (size_t m = 0; m < kNumModules; ++m) {
result_cc.emplace_back(
absl::Substitute(" const double Is$0 = U($1, 0);", m, m * 2));
result_cc.emplace_back(
absl::Substitute(" const double Id$0 = U($1, 0);", m, m * 2 + 1));
}
result_cc.emplace_back("");
// And then write out the derivative of each state.
for (size_t m = 0; m < kNumModules; ++m) {
result_cc.emplace_back(
absl::Substitute(" result($0, 0) = omegas$1;", m * 4, m));
result_cc.emplace_back(
absl::Substitute(" result($0, 0) = omegad$1;", m * 4 + 1, m));
result_cc.emplace_back(absl::Substitute(
" result($0, 0) = $1;", m * 4 + 2, ccode(*modules_[m].alphas_eqn)));
result_cc.emplace_back(absl::Substitute(
" result($0, 0) = $1;", m * 4 + 3, ccode(*modules_[m].alphad_eqn)));
}
result_cc.emplace_back(
absl::Substitute(" result($0, 0) = omega;", kNumModules * 4));
result_cc.emplace_back(
absl::Substitute(" result($0, 0) = vx;", kNumModules * 4 + 1));
result_cc.emplace_back(
absl::Substitute(" result($0, 0) = vy;", kNumModules * 4 + 2));
result_cc.emplace_back(absl::Substitute(
" result($0, 0) = $1;", kNumModules * 4 + 3, ccode(*angular_accel_)));
result_cc.emplace_back(absl::Substitute(" result($0, 0) = $1;",
kNumModules * 4 + 4,
ccode(*accel_.get(0, 0))));
result_cc.emplace_back(absl::Substitute(" result($0, 0) = $1;",
kNumModules * 4 + 5,
ccode(*accel_.get(1, 0))));
result_cc.emplace_back(
absl::Substitute(" result($0, 0) = 0.0;", kNumModules * 4 + 6));
result_cc.emplace_back(
absl::Substitute(" result($0, 0) = 0.0;", kNumModules * 4 + 7));
result_cc.emplace_back(
absl::Substitute(" result($0, 0) = 0.0;", kNumModules * 4 + 8));
result_cc.emplace_back("");
result_cc.emplace_back(" return result;");
result_cc.emplace_back("}");
result_cc.emplace_back("");
result_cc.emplace_back("} // namespace frc971::control_loops::swerve");
aos::util::WriteStringToFileOrDie(cc_path, absl::StrJoin(result_cc, "\n"));
aos::util::WriteStringToFileOrDie(h_path, absl::StrJoin(result_h, "\n"));
}
private:
static constexpr uint8_t kNumModules = 4;
Module ModulePhysics(const int m, DenseMatrix mounting_location) {
VLOG(1) << "Solving module " << m;
Module result;
result.Is = symbol(absl::StrFormat("Is%u", m));
result.Id = symbol(absl::StrFormat("Id%u", m));
RCP<const Symbol> thetamd = symbol(absl::StrFormat("theta_md%u", m));
RCP<const Symbol> omegamd = symbol(absl::StrFormat("omega_md%u", m));
RCP<const Symbol> alphamd = symbol(absl::StrFormat("alpha_md%u", m));
result.thetas = symbol(absl::StrFormat("thetas%u", m));
result.omegas = symbol(absl::StrFormat("omegas%u", m));
result.alphas = symbol(absl::StrFormat("alphas%u", m));
result.thetad = symbol(absl::StrFormat("thetad%u", m));
result.omegad = symbol(absl::StrFormat("omegad%u", m));
result.alphad = symbol(absl::StrFormat("alphad%u", m));
// Velocity of the module in field coordinates
DenseMatrix robot_velocity = DenseMatrix(2, 1);
mul_dense_dense(R(theta_), DenseMatrix(2, 1, {vx_, vy_}), robot_velocity);
VLOG(1) << "robot velocity: " << robot_velocity.__str__();
// Velocity of the contact patch in field coordinates
DenseMatrix temp_matrix = DenseMatrix(2, 1);
DenseMatrix temp_matrix2 = DenseMatrix(2, 1);
DenseMatrix contact_patch_velocity = DenseMatrix(2, 1);
mul_dense_dense(R(theta_), mounting_location, temp_matrix);
add_dense_dense(angle_cross(temp_matrix, omega_), robot_velocity,
temp_matrix2);
mul_dense_dense(R(add(theta_, result.thetas)),
DenseMatrix(2, 1, {caster_, integer(0)}), temp_matrix);
add_dense_dense(temp_matrix2,
angle_cross(temp_matrix, add(omega_, result.omegas)),
contact_patch_velocity);
VLOG(1);
VLOG(1) << "contact patch velocity: " << contact_patch_velocity.__str__();
// Relative velocity of the surface of the wheel to the ground.
DenseMatrix wheel_ground_velocity = DenseMatrix(2, 1);
mul_dense_dense(R(neg(add(result.thetas, theta_))), contact_patch_velocity,
wheel_ground_velocity);
VLOG(1);
VLOG(1) << "wheel ground velocity: " << wheel_ground_velocity.__str__();
RCP<const Basic> slip_angle = neg(atan2(wheel_ground_velocity.get(1, 0),
wheel_ground_velocity.get(0, 0)));
VLOG(1);
VLOG(1) << "slip angle: " << slip_angle->__str__();
RCP<const Basic> slip_ratio =
div(sub(mul(r_w_, result.omegad), wheel_ground_velocity.get(0, 0)),
abs(wheel_ground_velocity.get(0, 0)));
VLOG(1);
VLOG(1) << "Slip ratio " << slip_ratio->__str__();
RCP<const Basic> Fwx = simplify(mul(Cx_, slip_ratio));
RCP<const Basic> Fwy = simplify(mul(Cy_, slip_angle));
RCP<const Basic> Ms =
mul(Fwy, add(div(contact_patch_length_, integer(3)), caster_));
VLOG(1);
VLOG(1) << "Ms " << Ms->__str__();
VLOG(1);
VLOG(1) << "Fwx " << Fwx->__str__();
VLOG(1);
VLOG(1) << "Fwy " << Fwy->__str__();
// alphas = ...
RCP<const Basic> lhms =
mul(add(neg(wb_), mul(add(rs_, rp_), sub(integer(1), div(rb1_, rp_)))),
mul(div(r_w_, rb2_), neg(Fwx)));
RCP<const Basic> lhs = add(add(Ms, div(mul(Jsm_, result.Is), Gs_)), lhms);
RCP<const Basic> rhs = add(Jsm_, div(div(Js_, Gs_), Gs_));
RCP<const Basic> accel_steer_eqn = simplify(div(lhs, rhs));
VLOG(1);
VLOG(1) << result.alphas->__str__() << " = " << accel_steer_eqn->__str__();
lhs = sub(mul(sub(div(add(rp_, rs_), rp_), integer(1)), result.omegas),
mul(Gd1_, mul(Gd2_, omegamd)));
RCP<const Basic> dplanitary_eqn = sub(mul(Gd3_, lhs), result.omegad);
lhs = sub(mul(sub(div(add(rp_, rs_), rp_), integer(1)), result.alphas),
mul(Gd1_, mul(Gd2_, alphamd)));
RCP<const Basic> ddplanitary_eqn = sub(mul(Gd3_, lhs), result.alphad);
RCP<const Basic> drive_eqn = sub(
add(mul(neg(Jdm_), div(alphamd, Gd_)), mul(Ktd_, div(result.Id, Gd_))),
mul(neg(Fwx), r_w_));
VLOG(1) << "drive_eqn: " << drive_eqn->__str__();
// Substitute in ddplanitary_eqn so we get rid of alphamd
map_basic_basic map;
RCP<const Set> reals = interval(NegInf, Inf, true, true);
RCP<const Set> solve_solution = solve(ddplanitary_eqn, alphamd, reals);
map[alphamd] = solve_solution->get_args()[1]->get_args()[0];
VLOG(1) << "temp: " << solve_solution->__str__();
RCP<const Basic> drive_eqn_subs = drive_eqn->subs(map);
map.clear();
map[result.alphas] = accel_steer_eqn;
RCP<const Basic> drive_eqn_subs2 = drive_eqn_subs->subs(map);
RCP<const Basic> drive_eqn_subs3 = simplify(drive_eqn_subs2);
VLOG(1) << "drive_eqn simplified: " << drive_eqn_subs3->__str__();
solve_solution = solve(drive_eqn_subs3, result.alphad, reals);
RCP<const Basic> drive_accel =
simplify(solve_solution->get_args()[1]->get_args()[0]);
VLOG(1) << "drive_accel: " << drive_accel->__str__();
DenseMatrix mat_output = DenseMatrix(2, 1);
mul_dense_dense(R(add(theta_, result.thetas)),
DenseMatrix(2, 1, {Fwx, Fwy}), mat_output);
// Comput the resulting force from the module.
DenseMatrix F = mat_output;
RCP<const Basic> torque = simplify(force_cross(mounting_location, F));
result.accel = DenseMatrix(2, 1);
mul_dense_scalar(F, pow(m_, minus_one), result.accel);
result.angular_accel = div(torque, J_);
VLOG(1);
VLOG(1) << "angular_accel = " << result.angular_accel->__str__();
VLOG(1);
VLOG(1) << "accel(0, 0) = " << result.accel.get(0, 0)->__str__();
VLOG(1);
VLOG(1) << "accel(1, 0) = " << result.accel.get(1, 0)->__str__();
result.alphad_eqn = drive_accel;
result.alphas_eqn = accel_steer_eqn;
return result;
}
DenseMatrix R(const RCP<const Basic> theta) {
return DenseMatrix(2, 2,
{cos(theta), neg(sin(theta)), sin(theta), cos(theta)});
}
DenseMatrix angle_cross(DenseMatrix a, RCP<const Basic> b) {
return DenseMatrix(2, 1, {mul(a.get(1, 0), b), mul(neg(a.get(0, 0)), b)});
}
RCP<const Basic> force_cross(DenseMatrix r, DenseMatrix f) {
return sub(mul(r.get(0, 0), f.get(1, 0)), mul(r.get(1, 0), f.get(0, 0)));
}
// z represents the number of teeth per gear, theta is the angle between
// shafts(in degrees), D_02 is the pitch diameter of gear 2 and b_2 is the
// length of the tooth of gear 2
// returns std::pair(r_01, r_02)
std::pair<double, double> GetBevelPitchRadius(double z1, double z2,
double theta, double D_02,
double b_2) {
double gamma_1 = std::atan2(z1, z2);
double gamma_2 = theta / 180.0 * std::numbers::pi - gamma_1;
double R_m = D_02 / 2 / std::sin(gamma_2) - b_2 / 2;
return std::pair(R_m * std::cos(gamma_2), R_m * std::sin(gamma_2));
}
Motor drive_motor_;
Motor steer_motor_;
RCP<const Basic> Cx_;
RCP<const Basic> Cy_;
RCP<const Basic> r_w_;
RCP<const Basic> m_;
RCP<const Basic> J_;
RCP<const Basic> Gd1_;
RCP<const Basic> rs_;
RCP<const Basic> rp_;
RCP<const Basic> Gd2_;
RCP<const Basic> rb1_;
RCP<const Basic> rb2_;
RCP<const Basic> Gd3_;
RCP<const Basic> Gd_;
RCP<const Basic> Js_;
RCP<const Basic> Gs_;
RCP<const Basic> wb_;
RCP<const Basic> Jdm_;
RCP<const Basic> Jsm_;
RCP<const Basic> Kts_;
RCP<const Basic> Ktd_;
RCP<const Basic> robot_width_;
RCP<const Basic> caster_;
RCP<const Basic> contact_patch_length_;
RCP<const Basic> x_;
RCP<const Basic> y_;
RCP<const Basic> theta_;
RCP<const Basic> vx_;
RCP<const Basic> vy_;
RCP<const Basic> omega_;
RCP<const Basic> ax_;
RCP<const Basic> ay_;
RCP<const Basic> atheta_;
std::array<Module, kNumModules> modules_;
DenseMatrix accel_;
RCP<const Basic> angular_accel_;
};
} // namespace frc971::control_loops::swerve
int main(int argc, char **argv) {
aos::InitGoogle(&argc, &argv);
frc971::control_loops::swerve::SwerveSimulation sim;
if (!FLAGS_cc_output_path.empty() && !FLAGS_h_output_path.empty() &&
!FLAGS_py_output_path.empty()) {
sim.Write(FLAGS_cc_output_path, FLAGS_h_output_path);
sim.WritePy(FLAGS_py_output_path);
}
return 0;
}