blob: c186711bcd1f84a5233b77ca996b0d6200479d26 [file] [log] [blame]
#!/usr/bin/python3
from __future__ import print_function
import os
import sys
import copy
from color import Color, palette
import random
import gi
import numpy as np
import scipy.spatial.distance
gi.require_version('Gtk', '3.0')
gi.require_version('Gdk', '3.0')
from gi.repository import Gdk, Gtk, GLib
import cairo
from libspline import Spline, DistanceSpline, Trajectory
import enum
import json
from basic_window import *
from constants import *
from drawing_constants import *
from points import Points
from graph import Graph
class Mode(enum.Enum):
kViewing = 0
kPlacing = 1
kEditing = 2
kExporting = 3
kImporting = 4
class GTK_Widget(BaseWindow):
"""Create a GTK+ widget on which we will draw using Cairo"""
def __init__(self):
super(GTK_Widget, self).__init__()
self.points = Points()
# init field drawing
# add default spline for testing purposes
# init editing / viewing modes and pointer location
self.mode = Mode.kPlacing
self.x = 0
self.y = 0
module_path = os.path.dirname(os.path.realpath(sys.argv[0]))
self.path_to_export = os.path.join(module_path,
'points_for_pathedit.json')
# update list of control points
self.point_selected = False
# self.adding_spline = False
self.index_of_selected = -1
self.new_point = []
# For the editing mode
self.index_of_edit = -1 # Can't be zero beause array starts at 0
self.held_x = 0
self.spline_edit = -1
self.curves = []
self.colors = []
for c in palette:
self.colors.append(palette[c])
self.reinit_extents()
self.inStart = None
self.inEnd = None
self.inValue = None
self.startSet = False
self.module_path = os.path.dirname(os.path.realpath(sys.argv[0]))
"""set extents on images"""
def reinit_extents(self):
self.extents_x_min = -1.0 * SCREEN_SIZE
self.extents_x_max = SCREEN_SIZE
self.extents_y_min = -1.0 * SCREEN_SIZE
self.extents_y_max = SCREEN_SIZE
# this needs to be rewritten with numpy, i dont think this ought to have
# SciPy as a dependecy
def get_index_of_nearest_point(self):
cur_p = [[self.x, self.y]]
distances = scipy.spatial.distance.cdist(cur_p, self.all_controls)
return np.argmin(distances)
# return the closest point to the loc of the click event
def get_nearest_point(self):
return self.all_controls[self.get_index_of_nearest_point()]
def draw_field_elements(self, cr):
if FIELD == 2019:
draw_HAB(cr)
draw_rockets(cr)
draw_cargo_ship(cr)
elif FIELD == 2020:
set_color(cr, palette["BLACK"])
markers(cr)
draw_shield_generator(cr)
draw_trench_run(cr)
draw_init_lines(cr)
draw_control_panel(cr)
def draw_robot_at_point(self, cr, i, p, spline):
p1 = [mToPx(spline.Point(i)[0]), mToPx(spline.Point(i)[1])]
p2 = [mToPx(spline.Point(i + p)[0]), mToPx(spline.Point(i + p)[1])]
#Calculate Robot
distance = np.sqrt((p2[1] - p1[1])**2 + (p2[0] - p1[0])**2)
x_difference_o = p2[0] - p1[0]
y_difference_o = p2[1] - p1[1]
x_difference = x_difference_o * mToPx(LENGTH_OF_ROBOT / 2) / distance
y_difference = y_difference_o * mToPx(LENGTH_OF_ROBOT / 2) / distance
front_middle = []
front_middle.append(p1[0] + x_difference)
front_middle.append(p1[1] + y_difference)
back_middle = []
back_middle.append(p1[0] - x_difference)
back_middle.append(p1[1] - y_difference)
slope = [-(1 / x_difference_o) / (1 / y_difference_o)]
angle = np.arctan(slope)
x_difference = np.sin(angle[0]) * mToPx(WIDTH_OF_ROBOT / 2)
y_difference = np.cos(angle[0]) * mToPx(WIDTH_OF_ROBOT / 2)
front_1 = []
front_1.append(front_middle[0] - x_difference)
front_1.append(front_middle[1] - y_difference)
front_2 = []
front_2.append(front_middle[0] + x_difference)
front_2.append(front_middle[1] + y_difference)
back_1 = []
back_1.append(back_middle[0] - x_difference)
back_1.append(back_middle[1] - y_difference)
back_2 = []
back_2.append(back_middle[0] + x_difference)
back_2.append(back_middle[1] + y_difference)
x_difference = x_difference_o * mToPx(
LENGTH_OF_ROBOT / 2 + ROBOT_SIDE_TO_BALL_CENTER) / distance
y_difference = y_difference_o * mToPx(
LENGTH_OF_ROBOT / 2 + ROBOT_SIDE_TO_BALL_CENTER) / distance
#Calculate Ball
ball_center = []
ball_center.append(p1[0] + x_difference)
ball_center.append(p1[1] + y_difference)
x_difference = x_difference_o * mToPx(
LENGTH_OF_ROBOT / 2 + ROBOT_SIDE_TO_HATCH_PANEL) / distance
y_difference = y_difference_o * mToPx(
LENGTH_OF_ROBOT / 2 + ROBOT_SIDE_TO_HATCH_PANEL) / distance
#Calculate Panel
panel_center = []
panel_center.append(p1[0] + x_difference)
panel_center.append(p1[1] + y_difference)
x_difference = np.sin(angle[0]) * mToPx(HATCH_PANEL_WIDTH / 2)
y_difference = np.cos(angle[0]) * mToPx(HATCH_PANEL_WIDTH / 2)
panel_1 = []
panel_1.append(panel_center[0] + x_difference)
panel_1.append(panel_center[1] + y_difference)
panel_2 = []
panel_2.append(panel_center[0] - x_difference)
panel_2.append(panel_center[1] - y_difference)
#Draw Robot
cr.move_to(front_1[0], front_1[1])
cr.line_to(back_1[0], back_1[1])
cr.line_to(back_2[0], back_2[1])
cr.line_to(front_2[0], front_2[1])
cr.line_to(front_1[0], front_1[1])
cr.stroke()
#Draw Ball
set_color(cr, palette["ORANGE"], 0.5)
cr.move_to(back_middle[0], back_middle[1])
cr.line_to(ball_center[0], ball_center[1])
cr.arc(ball_center[0], ball_center[1], mToPx(BALL_RADIUS), 0,
2 * np.pi)
cr.stroke()
#Draw Panel
set_color(cr, palette["YELLOW"], 0.5)
cr.move_to(panel_1[0], panel_1[1])
cr.line_to(panel_2[0], panel_2[1])
cr.stroke()
cr.set_source_rgba(0, 0, 0, 1)
def handle_draw(self, cr): # main
# Fill the background color of the window with grey
set_color(cr, palette["WHITE"])
cr.paint()
# Draw a extents rectangle
set_color(cr, palette["WHITE"])
cr.rectangle(self.extents_x_min, self.extents_y_min,
(self.extents_x_max - self.extents_x_min),
self.extents_y_max - self.extents_y_min)
cr.fill()
cr.move_to(0, 50)
cr.show_text('Press "e" to export')
cr.show_text('Press "i" to import')
set_color(cr, palette["BLACK"])
if FIELD == 2020:
cr.rectangle(0, mToPx(-7.991475), SCREEN_SIZE, SCREEN_SIZE/2)
else:
cr.rectangle(0, mToPx(-7.991475), SCREEN_SIZE, SCREEN_SIZE)
print(mToPx(-7.991475))
cr.set_line_join(cairo.LINE_JOIN_ROUND)
cr.stroke()
self.draw_field_elements(cr)
y = 0
# update everything
if self.mode == Mode.kPlacing or self.mode == Mode.kViewing:
set_color(cr, palette["BLACK"])
cr.move_to(-SCREEN_SIZE, 170)
plotPoints = self.points.getPoints()
if plotPoints:
for i, point in enumerate(plotPoints):
draw_px_x(cr, mToPx(point[0]), mToPx(point[1]), 10)
cr.move_to(mToPx(point[0]), mToPx(point[1]) - 15)
display_text(cr, str(i), 0.5, 0.5, 2, 2)
set_color(cr, palette["WHITE"])
elif self.mode == Mode.kEditing:
set_color(cr, palette["BLACK"])
cr.move_to(-SCREEN_SIZE, 170)
display_text(cr, "EDITING", 1, 1, 1, 1)
if self.points.getSplines():
self.draw_splines(cr)
for i, points in enumerate(self.points.getSplines()):
p0 = np.array([mToPx(points[0][0]), mToPx(points[0][1])])
p1 = np.array([mToPx(points[1][0]), mToPx(points[1][1])])
p2 = np.array([mToPx(points[2][0]), mToPx(points[2][1])])
p3 = np.array([mToPx(points[3][0]), mToPx(points[3][1])])
p4 = np.array([mToPx(points[4][0]), mToPx(points[4][1])])
p5 = np.array([mToPx(points[5][0]), mToPx(points[5][1])])
draw_control_points(cr, [p0, p1, p2, p3, p4, p5])
first_tangent = p0 + 2.0 * (p1 - p0)
second_tangent = p5 + 2.0 * (p4 - p5)
cr.set_source_rgb(0, 0.5, 0)
cr.move_to(p0[0], p0[1])
cr.set_line_width(1.0)
cr.line_to(first_tangent[0], first_tangent[1])
cr.move_to(first_tangent[0], first_tangent[1])
cr.line_to(p2[0], p2[1])
cr.move_to(p5[0], p5[1])
cr.line_to(second_tangent[0], second_tangent[1])
cr.move_to(second_tangent[0], second_tangent[1])
cr.line_to(p3[0], p3[1])
cr.stroke()
cr.set_line_width(2.0)
self.points.update_lib_spline()
set_color(cr, palette["WHITE"])
cr.paint_with_alpha(0.2)
mygraph = Graph(cr, self.points)
draw_px_cross(cr, self.x, self.y, 10)
def draw_splines(self, cr):
holder_spline = []
for i, points in enumerate(self.points.getSplines()):
array = np.zeros(shape=(6, 2), dtype=float)
for j, point in enumerate(points):
array[j, 0] = point[0]
array[j, 1] = point[1]
spline = Spline(np.ascontiguousarray(np.transpose(array)))
for k in np.linspace(0.01, 1, 100):
cr.move_to(mToPx(spline.Point(k - 0.01)[0]),
mToPx(spline.Point(k - 0.01)[1]))
cr.line_to(mToPx(spline.Point(k)[0]),
mToPx(spline.Point(k)[1]))
cr.stroke()
holding = [
spline.Point(k - 0.01)[0],
spline.Point(k - 0.01)[1]
]
holder_spline.append(holding)
if i == 0:
self.draw_robot_at_point(cr, 0.00, 0.01, spline)
self.draw_robot_at_point(cr, 1, 0.01, spline)
self.curves.append(holder_spline)
def mouse_move(self, event):
old_x = self.x
old_y = self.y
self.x = event.x
self.y = event.y
dif_x = event.x - old_x
dif_y = event.y - old_y
difs = np.array([pxToM(dif_x), pxToM(dif_y)])
if self.mode == Mode.kEditing:
self.spline_edit = self.points.updates_for_mouse_move(
self.index_of_edit, self.spline_edit, self.x, self.y, difs)
def export_json(self, file_name):
self.path_to_export = os.path.join(self.module_path,
"spline_jsons/" + file_name)
if file_name[-5:] != ".json":
print("Error: Filename doesn't end in .json")
else:
# Will export to json file
self.mode = Mode.kEditing
exportList = [l.tolist() for l in self.points.getSplines()]
with open(self.path_to_export, mode='w') as points_file:
json.dump(exportList, points_file)
def import_json(self, file_name):
self.path_to_export = os.path.join(self.module_path,
"spline_jsons/" + file_name)
if file_name[-5:] != ".json":
print("Error: Filename doesn't end in .json")
else:
# import from json file
self.mode = Mode.kEditing
self.points.resetPoints()
self.points.resetSplines()
print("LOADING LOAD FROM " + file_name) # Load takes a few seconds
with open(self.path_to_export) as points_file:
self.points.setUpSplines(json.load(points_file))
self.points.update_lib_spline()
print("SPLINES LOADED")
def do_key_press(self, event, file_name):
keyval = Gdk.keyval_to_lower(event.keyval)
if keyval == Gdk.KEY_q:
print("Found q key and exiting.")
quit_main_loop()
if keyval == Gdk.KEY_e:
export_json(file_name)
if keyval == Gdk.KEY_i:
import_json(file_name)
if keyval == Gdk.KEY_p:
self.mode = Mode.kPlacing
# F0 = A1
# B1 = 2F0 - E0
# C1= d0 + 4F0 - 4E0
spline_index = len(self.points.getSplines()) - 1
self.points.resetPoints()
self.points.extrapolate(
self.points.getSplines()[len(self.points.getSplines()) - 1][5],
self.points.getSplines()[len(self.points.getSplines()) - 1][4],
self.points.getSplines()[len(self.points.getSplines()) - 1][3])
def button_press_action(self):
if self.mode == Mode.kPlacing:
if self.points.add_point(self.x, self.y):
self.mode = Mode.kEditing
elif self.mode == Mode.kEditing:
# Now after index_of_edit is not -1, the point is selected, so
# user can click for new point
if self.index_of_edit > -1 and self.held_x != self.x:
self.points.setSplines(self.spline_edit, self.index_of_edit,
pxToM(self.x), pxToM(self.y))
self.spline_edit = self.points.splineExtrapolate(
self.spline_edit)
self.index_of_edit = -1
self.spline_edit = -1
else:
# Get clicked point
# Find nearest
# Move nearest to clicked
cur_p = [pxToM(self.x), pxToM(self.y)]
# Get the distance between each for x and y
# Save the index of the point closest
nearest = 1 # Max distance away a the selected point can be in meters
index_of_closest = 0
for index_splines, points in enumerate(self.points.getSplines()):
for index_points, val in enumerate(points):
distance = np.sqrt((cur_p[0] - val[0])**2 +
(cur_p[1] - val[1])**2)
if distance < nearest:
nearest = distance
index_of_closest = index_points
print("Nearest: " + str(nearest))
print("Index: " + str(index_of_closest))
self.index_of_edit = index_of_closest
self.spline_edit = index_splines
self.held_x = self.x
def do_button_press(self, event):
# Be consistent with the scaling in the drawing_area
self.x = event.x * 2
self.y = event.y * 2
self.button_press_action()