| #!/usr/bin/python3 |
| from __future__ import print_function |
| import os |
| import sys |
| import copy |
| from color import Color, palette |
| import random |
| import gi |
| import numpy as np |
| import scipy.spatial.distance |
| gi.require_version('Gtk', '3.0') |
| gi.require_version('Gdk', '3.0') |
| from gi.repository import Gdk, Gtk, GLib |
| import cairo |
| from libspline import Spline, DistanceSpline, Trajectory |
| import enum |
| import json |
| from basic_window import * |
| from constants import * |
| from drawing_constants import * |
| from points import Points |
| from graph import Graph |
| |
| |
| class Mode(enum.Enum): |
| kViewing = 0 |
| kPlacing = 1 |
| kEditing = 2 |
| kExporting = 3 |
| kImporting = 4 |
| |
| |
| class GTK_Widget(BaseWindow): |
| """Create a GTK+ widget on which we will draw using Cairo""" |
| def __init__(self): |
| super(GTK_Widget, self).__init__() |
| |
| self.points = Points() |
| |
| # init field drawing |
| # add default spline for testing purposes |
| # init editing / viewing modes and pointer location |
| self.mode = Mode.kPlacing |
| self.x = 0 |
| self.y = 0 |
| module_path = os.path.dirname(os.path.realpath(sys.argv[0])) |
| self.path_to_export = os.path.join(module_path, |
| 'points_for_pathedit.json') |
| |
| # update list of control points |
| self.point_selected = False |
| # self.adding_spline = False |
| self.index_of_selected = -1 |
| self.new_point = [] |
| |
| # For the editing mode |
| self.index_of_edit = -1 # Can't be zero beause array starts at 0 |
| self.held_x = 0 |
| self.spline_edit = -1 |
| |
| self.curves = [] |
| |
| self.colors = [] |
| |
| for c in palette: |
| self.colors.append(palette[c]) |
| |
| self.reinit_extents() |
| |
| self.inStart = None |
| self.inEnd = None |
| self.inValue = None |
| self.startSet = False |
| |
| self.module_path = os.path.dirname(os.path.realpath(sys.argv[0])) |
| |
| """set extents on images""" |
| |
| def reinit_extents(self): |
| self.extents_x_min = -1.0 * SCREEN_SIZE |
| self.extents_x_max = SCREEN_SIZE |
| self.extents_y_min = -1.0 * SCREEN_SIZE |
| self.extents_y_max = SCREEN_SIZE |
| |
| # this needs to be rewritten with numpy, i dont think this ought to have |
| # SciPy as a dependecy |
| def get_index_of_nearest_point(self): |
| cur_p = [[self.x, self.y]] |
| distances = scipy.spatial.distance.cdist(cur_p, self.all_controls) |
| |
| return np.argmin(distances) |
| |
| # return the closest point to the loc of the click event |
| def get_nearest_point(self): |
| return self.all_controls[self.get_index_of_nearest_point()] |
| |
| def draw_field_elements(self, cr): |
| if FIELD == 2019: |
| draw_HAB(cr) |
| draw_rockets(cr) |
| draw_cargo_ship(cr) |
| elif FIELD == 2020: |
| set_color(cr, palette["BLACK"]) |
| markers(cr) |
| draw_shield_generator(cr) |
| draw_trench_run(cr) |
| draw_init_lines(cr) |
| draw_control_panel(cr) |
| |
| def draw_robot_at_point(self, cr, i, p, spline): |
| p1 = [mToPx(spline.Point(i)[0]), mToPx(spline.Point(i)[1])] |
| p2 = [mToPx(spline.Point(i + p)[0]), mToPx(spline.Point(i + p)[1])] |
| |
| #Calculate Robot |
| distance = np.sqrt((p2[1] - p1[1])**2 + (p2[0] - p1[0])**2) |
| x_difference_o = p2[0] - p1[0] |
| y_difference_o = p2[1] - p1[1] |
| x_difference = x_difference_o * mToPx(LENGTH_OF_ROBOT / 2) / distance |
| y_difference = y_difference_o * mToPx(LENGTH_OF_ROBOT / 2) / distance |
| |
| front_middle = [] |
| front_middle.append(p1[0] + x_difference) |
| front_middle.append(p1[1] + y_difference) |
| |
| back_middle = [] |
| back_middle.append(p1[0] - x_difference) |
| back_middle.append(p1[1] - y_difference) |
| |
| slope = [-(1 / x_difference_o) / (1 / y_difference_o)] |
| angle = np.arctan(slope) |
| |
| x_difference = np.sin(angle[0]) * mToPx(WIDTH_OF_ROBOT / 2) |
| y_difference = np.cos(angle[0]) * mToPx(WIDTH_OF_ROBOT / 2) |
| |
| front_1 = [] |
| front_1.append(front_middle[0] - x_difference) |
| front_1.append(front_middle[1] - y_difference) |
| |
| front_2 = [] |
| front_2.append(front_middle[0] + x_difference) |
| front_2.append(front_middle[1] + y_difference) |
| |
| back_1 = [] |
| back_1.append(back_middle[0] - x_difference) |
| back_1.append(back_middle[1] - y_difference) |
| |
| back_2 = [] |
| back_2.append(back_middle[0] + x_difference) |
| back_2.append(back_middle[1] + y_difference) |
| |
| x_difference = x_difference_o * mToPx( |
| LENGTH_OF_ROBOT / 2 + ROBOT_SIDE_TO_BALL_CENTER) / distance |
| y_difference = y_difference_o * mToPx( |
| LENGTH_OF_ROBOT / 2 + ROBOT_SIDE_TO_BALL_CENTER) / distance |
| |
| #Calculate Ball |
| ball_center = [] |
| ball_center.append(p1[0] + x_difference) |
| ball_center.append(p1[1] + y_difference) |
| |
| x_difference = x_difference_o * mToPx( |
| LENGTH_OF_ROBOT / 2 + ROBOT_SIDE_TO_HATCH_PANEL) / distance |
| y_difference = y_difference_o * mToPx( |
| LENGTH_OF_ROBOT / 2 + ROBOT_SIDE_TO_HATCH_PANEL) / distance |
| |
| #Calculate Panel |
| panel_center = [] |
| panel_center.append(p1[0] + x_difference) |
| panel_center.append(p1[1] + y_difference) |
| |
| x_difference = np.sin(angle[0]) * mToPx(HATCH_PANEL_WIDTH / 2) |
| y_difference = np.cos(angle[0]) * mToPx(HATCH_PANEL_WIDTH / 2) |
| |
| panel_1 = [] |
| panel_1.append(panel_center[0] + x_difference) |
| panel_1.append(panel_center[1] + y_difference) |
| |
| panel_2 = [] |
| panel_2.append(panel_center[0] - x_difference) |
| panel_2.append(panel_center[1] - y_difference) |
| |
| #Draw Robot |
| cr.move_to(front_1[0], front_1[1]) |
| cr.line_to(back_1[0], back_1[1]) |
| cr.line_to(back_2[0], back_2[1]) |
| cr.line_to(front_2[0], front_2[1]) |
| cr.line_to(front_1[0], front_1[1]) |
| |
| cr.stroke() |
| |
| #Draw Ball |
| set_color(cr, palette["ORANGE"], 0.5) |
| cr.move_to(back_middle[0], back_middle[1]) |
| cr.line_to(ball_center[0], ball_center[1]) |
| cr.arc(ball_center[0], ball_center[1], mToPx(BALL_RADIUS), 0, |
| 2 * np.pi) |
| cr.stroke() |
| |
| #Draw Panel |
| set_color(cr, palette["YELLOW"], 0.5) |
| cr.move_to(panel_1[0], panel_1[1]) |
| cr.line_to(panel_2[0], panel_2[1]) |
| |
| cr.stroke() |
| cr.set_source_rgba(0, 0, 0, 1) |
| |
| def handle_draw(self, cr): # main |
| # Fill the background color of the window with grey |
| set_color(cr, palette["WHITE"]) |
| cr.paint() |
| |
| # Draw a extents rectangle |
| set_color(cr, palette["WHITE"]) |
| cr.rectangle(self.extents_x_min, self.extents_y_min, |
| (self.extents_x_max - self.extents_x_min), |
| self.extents_y_max - self.extents_y_min) |
| cr.fill() |
| |
| cr.move_to(0, 50) |
| cr.show_text('Press "e" to export') |
| cr.show_text('Press "i" to import') |
| |
| set_color(cr, palette["BLACK"]) |
| if FIELD == 2020: |
| cr.rectangle(0, mToPx(-7.991475), SCREEN_SIZE, SCREEN_SIZE/2) |
| else: |
| cr.rectangle(0, mToPx(-7.991475), SCREEN_SIZE, SCREEN_SIZE) |
| print(mToPx(-7.991475)) |
| cr.set_line_join(cairo.LINE_JOIN_ROUND) |
| cr.stroke() |
| self.draw_field_elements(cr) |
| y = 0 |
| |
| # update everything |
| |
| if self.mode == Mode.kPlacing or self.mode == Mode.kViewing: |
| set_color(cr, palette["BLACK"]) |
| cr.move_to(-SCREEN_SIZE, 170) |
| plotPoints = self.points.getPoints() |
| if plotPoints: |
| for i, point in enumerate(plotPoints): |
| draw_px_x(cr, mToPx(point[0]), mToPx(point[1]), 10) |
| cr.move_to(mToPx(point[0]), mToPx(point[1]) - 15) |
| display_text(cr, str(i), 0.5, 0.5, 2, 2) |
| set_color(cr, palette["WHITE"]) |
| |
| elif self.mode == Mode.kEditing: |
| set_color(cr, palette["BLACK"]) |
| cr.move_to(-SCREEN_SIZE, 170) |
| display_text(cr, "EDITING", 1, 1, 1, 1) |
| if self.points.getSplines(): |
| self.draw_splines(cr) |
| for i, points in enumerate(self.points.getSplines()): |
| |
| p0 = np.array([mToPx(points[0][0]), mToPx(points[0][1])]) |
| p1 = np.array([mToPx(points[1][0]), mToPx(points[1][1])]) |
| p2 = np.array([mToPx(points[2][0]), mToPx(points[2][1])]) |
| p3 = np.array([mToPx(points[3][0]), mToPx(points[3][1])]) |
| p4 = np.array([mToPx(points[4][0]), mToPx(points[4][1])]) |
| p5 = np.array([mToPx(points[5][0]), mToPx(points[5][1])]) |
| |
| draw_control_points(cr, [p0, p1, p2, p3, p4, p5]) |
| first_tangent = p0 + 2.0 * (p1 - p0) |
| second_tangent = p5 + 2.0 * (p4 - p5) |
| cr.set_source_rgb(0, 0.5, 0) |
| cr.move_to(p0[0], p0[1]) |
| cr.set_line_width(1.0) |
| cr.line_to(first_tangent[0], first_tangent[1]) |
| cr.move_to(first_tangent[0], first_tangent[1]) |
| cr.line_to(p2[0], p2[1]) |
| |
| cr.move_to(p5[0], p5[1]) |
| cr.line_to(second_tangent[0], second_tangent[1]) |
| |
| cr.move_to(second_tangent[0], second_tangent[1]) |
| cr.line_to(p3[0], p3[1]) |
| |
| cr.stroke() |
| cr.set_line_width(2.0) |
| self.points.update_lib_spline() |
| set_color(cr, palette["WHITE"]) |
| |
| cr.paint_with_alpha(0.2) |
| |
| mygraph = Graph(cr, self.points) |
| draw_px_cross(cr, self.x, self.y, 10) |
| |
| def draw_splines(self, cr): |
| holder_spline = [] |
| for i, points in enumerate(self.points.getSplines()): |
| array = np.zeros(shape=(6, 2), dtype=float) |
| for j, point in enumerate(points): |
| array[j, 0] = point[0] |
| array[j, 1] = point[1] |
| spline = Spline(np.ascontiguousarray(np.transpose(array))) |
| for k in np.linspace(0.01, 1, 100): |
| cr.move_to(mToPx(spline.Point(k - 0.01)[0]), |
| mToPx(spline.Point(k - 0.01)[1])) |
| cr.line_to(mToPx(spline.Point(k)[0]), |
| mToPx(spline.Point(k)[1])) |
| cr.stroke() |
| holding = [ |
| spline.Point(k - 0.01)[0], |
| spline.Point(k - 0.01)[1] |
| ] |
| holder_spline.append(holding) |
| if i == 0: |
| self.draw_robot_at_point(cr, 0.00, 0.01, spline) |
| self.draw_robot_at_point(cr, 1, 0.01, spline) |
| self.curves.append(holder_spline) |
| |
| def mouse_move(self, event): |
| old_x = self.x |
| old_y = self.y |
| self.x = event.x |
| self.y = event.y |
| dif_x = event.x - old_x |
| dif_y = event.y - old_y |
| difs = np.array([pxToM(dif_x), pxToM(dif_y)]) |
| |
| if self.mode == Mode.kEditing: |
| self.spline_edit = self.points.updates_for_mouse_move( |
| self.index_of_edit, self.spline_edit, self.x, self.y, difs) |
| |
| def export_json(self, file_name): |
| self.path_to_export = os.path.join(self.module_path, |
| "spline_jsons/" + file_name) |
| if file_name[-5:] != ".json": |
| print("Error: Filename doesn't end in .json") |
| else: |
| # Will export to json file |
| self.mode = Mode.kEditing |
| exportList = [l.tolist() for l in self.points.getSplines()] |
| with open(self.path_to_export, mode='w') as points_file: |
| json.dump(exportList, points_file) |
| |
| def import_json(self, file_name): |
| self.path_to_export = os.path.join(self.module_path, |
| "spline_jsons/" + file_name) |
| if file_name[-5:] != ".json": |
| print("Error: Filename doesn't end in .json") |
| else: |
| # import from json file |
| self.mode = Mode.kEditing |
| self.points.resetPoints() |
| self.points.resetSplines() |
| print("LOADING LOAD FROM " + file_name) # Load takes a few seconds |
| with open(self.path_to_export) as points_file: |
| self.points.setUpSplines(json.load(points_file)) |
| |
| self.points.update_lib_spline() |
| print("SPLINES LOADED") |
| |
| def do_key_press(self, event, file_name): |
| keyval = Gdk.keyval_to_lower(event.keyval) |
| if keyval == Gdk.KEY_q: |
| print("Found q key and exiting.") |
| quit_main_loop() |
| if keyval == Gdk.KEY_e: |
| export_json(file_name) |
| |
| if keyval == Gdk.KEY_i: |
| import_json(file_name) |
| |
| if keyval == Gdk.KEY_p: |
| self.mode = Mode.kPlacing |
| # F0 = A1 |
| # B1 = 2F0 - E0 |
| # C1= d0 + 4F0 - 4E0 |
| spline_index = len(self.points.getSplines()) - 1 |
| self.points.resetPoints() |
| self.points.extrapolate( |
| self.points.getSplines()[len(self.points.getSplines()) - 1][5], |
| self.points.getSplines()[len(self.points.getSplines()) - 1][4], |
| self.points.getSplines()[len(self.points.getSplines()) - 1][3]) |
| |
| def button_press_action(self): |
| if self.mode == Mode.kPlacing: |
| if self.points.add_point(self.x, self.y): |
| self.mode = Mode.kEditing |
| elif self.mode == Mode.kEditing: |
| # Now after index_of_edit is not -1, the point is selected, so |
| # user can click for new point |
| if self.index_of_edit > -1 and self.held_x != self.x: |
| self.points.setSplines(self.spline_edit, self.index_of_edit, |
| pxToM(self.x), pxToM(self.y)) |
| |
| self.spline_edit = self.points.splineExtrapolate( |
| self.spline_edit) |
| |
| self.index_of_edit = -1 |
| self.spline_edit = -1 |
| else: |
| # Get clicked point |
| # Find nearest |
| # Move nearest to clicked |
| cur_p = [pxToM(self.x), pxToM(self.y)] |
| # Get the distance between each for x and y |
| # Save the index of the point closest |
| nearest = 1 # Max distance away a the selected point can be in meters |
| index_of_closest = 0 |
| for index_splines, points in enumerate(self.points.getSplines()): |
| for index_points, val in enumerate(points): |
| distance = np.sqrt((cur_p[0] - val[0])**2 + |
| (cur_p[1] - val[1])**2) |
| if distance < nearest: |
| nearest = distance |
| index_of_closest = index_points |
| print("Nearest: " + str(nearest)) |
| print("Index: " + str(index_of_closest)) |
| self.index_of_edit = index_of_closest |
| self.spline_edit = index_splines |
| self.held_x = self.x |
| |
| def do_button_press(self, event): |
| # Be consistent with the scaling in the drawing_area |
| self.x = event.x * 2 |
| self.y = event.y * 2 |
| self.button_press_action() |