blob: 6fba1fe5a86cfc3b46d19df973a231f0f37da74a [file] [log] [blame]
#include <inttypes.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <array>
#include <chrono>
#include <cmath>
#include <functional>
#include <mutex>
#include <thread>
#include "AnalogInput.h"
#include "Counter.h"
#include "DigitalGlitchFilter.h"
#include "DriverStation.h"
#include "Encoder.h"
#include "Relay.h"
#include "Servo.h"
#include "VictorSP.h"
#include "ctre/phoenix/CANifier.h"
#undef ERROR
#include "aos/common/commonmath.h"
#include "aos/common/logging/logging.h"
#include "aos/common/logging/queue_logging.h"
#include "aos/common/messages/robot_state.q.h"
#include "aos/common/stl_mutex.h"
#include "aos/common/time.h"
#include "aos/common/util/compiler_memory_barrier.h"
#include "aos/common/util/log_interval.h"
#include "aos/common/util/phased_loop.h"
#include "aos/common/util/wrapping_counter.h"
#include "aos/linux_code/init.h"
#include "frc971/autonomous/auto.q.h"
#include "frc971/control_loops/control_loops.q.h"
#include "frc971/control_loops/drivetrain/drivetrain.q.h"
#include "frc971/wpilib/ADIS16448.h"
#include "frc971/wpilib/buffered_pcm.h"
#include "frc971/wpilib/buffered_solenoid.h"
#include "frc971/wpilib/dma.h"
#include "frc971/wpilib/dma_edge_counting.h"
#include "frc971/wpilib/encoder_and_potentiometer.h"
#include "frc971/wpilib/interrupt_edge_counting.h"
#include "frc971/wpilib/joystick_sender.h"
#include "frc971/wpilib/logging.q.h"
#include "frc971/wpilib/loop_output_handler.h"
#include "frc971/wpilib/pdp_fetcher.h"
#include "frc971/wpilib/wpilib_interface.h"
#include "frc971/wpilib/wpilib_robot_base.h"
#include "y2018/constants.h"
#include "y2018/control_loops/superstructure/superstructure.q.h"
#include "y2018/status_light.q.h"
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
using ::frc971::control_loops::drivetrain_queue;
using ::y2018::control_loops::superstructure_queue;
using ::y2018::constants::Values;
using ::aos::monotonic_clock;
namespace chrono = ::std::chrono;
namespace y2018 {
namespace wpilib {
namespace {
constexpr double kMaxBringupPower = 12.0;
// TODO(Brian): Fix the interpretation of the result of GetRaw here and in the
// DMA stuff and then removing the * 2.0 in *_translate.
// The low bit is direction.
// TODO(brian): Replace this with ::std::make_unique once all our toolchains
// have support.
template <class T, class... U>
std::unique_ptr<T> make_unique(U &&... u) {
return std::unique_ptr<T>(new T(std::forward<U>(u)...));
}
// TODO(brian): Use ::std::max instead once we have C++14 so that can be
// constexpr.
template <typename T>
constexpr T max(T a, T b) {
return (a > b) ? a : b;
}
template <typename T, typename... Rest>
constexpr T max(T a, T b, T c, Rest... rest) {
return max(max(a, b), c, rest...);
}
double drivetrain_translate(int32_t in) {
return ((static_cast<double>(in) /
Values::kDrivetrainEncoderCountsPerRevolution()) *
(2.0 * M_PI)) *
Values::kDrivetrainEncoderRatio() *
control_loops::drivetrain::kWheelRadius;
}
double drivetrain_velocity_translate(double in) {
return (((1.0 / in) / Values::kDrivetrainCyclesPerRevolution()) *
(2.0 * M_PI)) *
Values::kDrivetrainEncoderRatio() *
control_loops::drivetrain::kWheelRadius;
}
double proximal_pot_translate(double voltage) {
return -voltage * Values::kProximalPotRatio() *
(3.0 /*turns*/ / 5.0 /*volts*/) * (2 * M_PI /*radians*/);
}
double distal_pot_translate(double voltage) {
return voltage * Values::kDistalPotRatio() *
(10.0 /*turns*/ / 5.0 /*volts*/) * (2 * M_PI /*radians*/);
}
double intake_pot_translate(double voltage) {
return voltage * Values::kIntakeMotorPotRatio() *
(10.0 /*turns*/ / 5.0 /*volts*/) * (2 * M_PI /*radians*/);
}
double intake_spring_translate(double voltage) {
return voltage * Values::kIntakeSpringRatio() * (2 * M_PI /*radians*/) /
(5.0 /*volts*/);
}
// TODO() figure out differnce between max and min voltages on shifter pots.
// Returns value from 0.0 to 1.0, with 0.0 being close to low gear so it can be
// passed drectly into the drivetrain position queue.
double drivetrain_shifter_pot_translate(double voltage) {
return (voltage - Values::kDrivetrainShifterPotMinVoltage()) /
(Values::kDrivetrainShifterPotMaxVoltage() -
Values::kDrivetrainShifterPotMinVoltage());
}
constexpr double kMaxFastEncoderPulsesPerSecond =
max(Values::kMaxDrivetrainEncoderPulsesPerSecond(),
Values::kMaxIntakeMotorEncoderPulsesPerSecond());
static_assert(kMaxFastEncoderPulsesPerSecond <= 1300000,
"fast encoders are too fast");
constexpr double kMaxMediumEncoderPulsesPerSecond =
max(Values::kMaxProximalEncoderPulsesPerSecond(),
Values::kMaxDistalEncoderPulsesPerSecond());
static_assert(kMaxMediumEncoderPulsesPerSecond <= 400000,
"medium encoders are too fast");
// Class to send position messages with sensor readings to our loops.
class SensorReader {
public:
SensorReader() {
// Set to filter out anything shorter than 1/4 of the minimum pulse width
// we should ever see.
fast_encoder_filter_.SetPeriodNanoSeconds(
static_cast<int>(1 / 4.0 /* built-in tolerance */ /
kMaxFastEncoderPulsesPerSecond * 1e9 +
0.5));
medium_encoder_filter_.SetPeriodNanoSeconds(
static_cast<int>(1 / 4.0 /* built-in tolerance */ /
kMaxMediumEncoderPulsesPerSecond * 1e9 +
0.5));
hall_filter_.SetPeriodNanoSeconds(100000);
}
// Left drivetrain side.
void set_drivetrain_left_encoder(::std::unique_ptr<Encoder> encoder) {
fast_encoder_filter_.Add(encoder.get());
drivetrain_left_encoder_ = ::std::move(encoder);
}
void set_left_drivetrain_shifter_potentiometer(
::std::unique_ptr<AnalogInput> potentiometer) {
left_drivetrain_shifter_ = ::std::move(potentiometer);
}
// Right drivetrain side.
void set_drivetrain_right_encoder(::std::unique_ptr<Encoder> encoder) {
fast_encoder_filter_.Add(encoder.get());
drivetrain_right_encoder_ = ::std::move(encoder);
}
void set_right_drivetrain_shifter_potentiometer(
::std::unique_ptr<AnalogInput> potentiometer) {
right_drivetrain_shifter_ = ::std::move(potentiometer);
}
// Proximal joint.
void set_proximal_encoder(::std::unique_ptr<Encoder> encoder) {
medium_encoder_filter_.Add(encoder.get());
proximal_encoder_.set_encoder(::std::move(encoder));
}
void set_proximal_absolute_pwm(::std::unique_ptr<DigitalInput> absolute_pwm) {
proximal_encoder_.set_absolute_pwm(::std::move(absolute_pwm));
}
void set_proximal_potentiometer(
::std::unique_ptr<AnalogInput> potentiometer) {
proximal_encoder_.set_potentiometer(::std::move(potentiometer));
}
// Distal joint.
void set_distal_encoder(::std::unique_ptr<Encoder> encoder) {
medium_encoder_filter_.Add(encoder.get());
distal_encoder_.set_encoder(::std::move(encoder));
}
void set_distal_absolute_pwm(::std::unique_ptr<DigitalInput> absolute_pwm) {
fast_encoder_filter_.Add(absolute_pwm.get());
distal_encoder_.set_absolute_pwm(::std::move(absolute_pwm));
}
void set_distal_potentiometer(::std::unique_ptr<AnalogInput> potentiometer) {
distal_encoder_.set_potentiometer(::std::move(potentiometer));
}
// Left intake side.
void set_left_intake_encoder(::std::unique_ptr<Encoder> encoder) {
fast_encoder_filter_.Add(encoder.get());
left_intake_encoder_.set_encoder(::std::move(encoder));
}
void set_left_intake_absolute_pwm(
::std::unique_ptr<DigitalInput> absolute_pwm) {
fast_encoder_filter_.Add(absolute_pwm.get());
left_intake_encoder_.set_absolute_pwm(::std::move(absolute_pwm));
}
void set_left_intake_potentiometer(
::std::unique_ptr<AnalogInput> potentiometer) {
left_intake_encoder_.set_potentiometer(::std::move(potentiometer));
}
void set_left_intake_spring_angle(::std::unique_ptr<AnalogInput> encoder) {
left_intake_spring_angle_ = ::std::move(encoder);
}
void set_left_intake_cube_detector(::std::unique_ptr<DigitalInput> input) {
left_intake_cube_detector_ = ::std::move(input);
}
// Right intake side.
void set_right_intake_encoder(::std::unique_ptr<Encoder> encoder) {
fast_encoder_filter_.Add(encoder.get());
right_intake_encoder_.set_encoder(::std::move(encoder));
}
void set_right_intake_absolute_pwm(
::std::unique_ptr<DigitalInput> absolute_pwm) {
fast_encoder_filter_.Add(absolute_pwm.get());
right_intake_encoder_.set_absolute_pwm(::std::move(absolute_pwm));
}
void set_right_intake_potentiometer(
::std::unique_ptr<AnalogInput> potentiometer) {
right_intake_encoder_.set_potentiometer(::std::move(potentiometer));
}
void set_right_intake_spring_angle(::std::unique_ptr<AnalogInput> encoder) {
right_intake_spring_angle_ = ::std::move(encoder);
}
void set_right_intake_cube_detector(::std::unique_ptr<DigitalInput> input) {
right_intake_cube_detector_ = ::std::move(input);
}
void set_claw_beambreak(::std::unique_ptr<DigitalInput> input) {
claw_beambreak_ = ::std::move(input);
}
void set_box_back_beambreak(::std::unique_ptr<DigitalInput> input) {
box_back_beambreak_ = ::std::move(input);
}
// Auto mode switches.
void set_autonomous_mode(int i, ::std::unique_ptr<DigitalInput> sensor) {
autonomous_modes_.at(i) = ::std::move(sensor);
}
void set_pwm_trigger(::std::unique_ptr<DigitalInput> pwm_trigger) {
medium_encoder_filter_.Add(pwm_trigger.get());
pwm_trigger_ = ::std::move(pwm_trigger);
}
void set_lidar_lite_input(::std::unique_ptr<DigitalInput> lidar_lite_input) {
lidar_lite_input_ = ::std::move(lidar_lite_input);
lidar_lite_.set_input(lidar_lite_input_.get());
}
// All of the DMA-related set_* calls must be made before this, and it
// doesn't hurt to do all of them.
void set_dma(::std::unique_ptr<DMA> dma) {
dma_synchronizer_.reset(
new ::frc971::wpilib::DMASynchronizer(::std::move(dma)));
dma_synchronizer_->Add(&lidar_lite_);
}
void RunPWMDetecter() {
::aos::SetCurrentThreadRealtimePriority(41);
pwm_trigger_->RequestInterrupts();
// Rising edge only.
pwm_trigger_->SetUpSourceEdge(true, false);
monotonic_clock::time_point last_posedge_monotonic =
monotonic_clock::min_time;
while (run_) {
auto ret = pwm_trigger_->WaitForInterrupt(1.0, true);
if (ret == InterruptableSensorBase::WaitResult::kRisingEdge) {
// Grab all the clocks.
const double pwm_fpga_time = pwm_trigger_->ReadRisingTimestamp();
aos_compiler_memory_barrier();
const double fpga_time_before = GetFPGATime() * 1e-6;
aos_compiler_memory_barrier();
const monotonic_clock::time_point monotonic_now =
monotonic_clock::now();
aos_compiler_memory_barrier();
const double fpga_time_after = GetFPGATime() * 1e-6;
aos_compiler_memory_barrier();
const double fpga_offset =
(fpga_time_after + fpga_time_before) / 2.0 - pwm_fpga_time;
// Compute when the edge was.
const monotonic_clock::time_point monotonic_edge =
monotonic_now - chrono::duration_cast<chrono::nanoseconds>(
chrono::duration<double>(fpga_offset));
LOG(DEBUG, "Got PWM pulse %f spread, %f offset, %lld trigger\n",
fpga_time_after - fpga_time_before, fpga_offset,
monotonic_edge.time_since_epoch().count());
// Compute bounds on the timestep and sampling times.
const double fpga_sample_length = fpga_time_after - fpga_time_before;
const chrono::nanoseconds elapsed_time =
monotonic_edge - last_posedge_monotonic;
last_posedge_monotonic = monotonic_edge;
// Verify that the values are sane.
if (fpga_sample_length > 2e-5 || fpga_sample_length < 0) {
continue;
}
if (fpga_offset < 0 || fpga_offset > 0.00015) {
continue;
}
if (elapsed_time >
chrono::microseconds(5050) + chrono::microseconds(4) ||
elapsed_time <
chrono::microseconds(5050) - chrono::microseconds(4)) {
continue;
}
// Good edge!
{
::std::unique_lock<::aos::stl_mutex> locker(tick_time_mutex_);
last_tick_time_monotonic_timepoint_ = last_posedge_monotonic;
last_period_ = elapsed_time;
}
} else {
LOG(INFO, "PWM triggered %d\n", ret);
}
}
pwm_trigger_->CancelInterrupts();
}
void operator()() {
::aos::SetCurrentThreadName("SensorReader");
my_pid_ = getpid();
dma_synchronizer_->Start();
::aos::time::PhasedLoop phased_loop(last_period_,
::std::chrono::milliseconds(3));
chrono::nanoseconds filtered_period = last_period_;
::std::thread pwm_detecter_thread(
::std::bind(&SensorReader::RunPWMDetecter, this));
::aos::SetCurrentThreadRealtimePriority(40);
while (run_) {
{
const int iterations = phased_loop.SleepUntilNext();
if (iterations != 1) {
LOG(WARNING, "SensorReader skipped %d iterations\n", iterations - 1);
}
}
RunIteration();
monotonic_clock::time_point last_tick_timepoint;
chrono::nanoseconds period;
{
::std::unique_lock<::aos::stl_mutex> locker(tick_time_mutex_);
last_tick_timepoint = last_tick_time_monotonic_timepoint_;
period = last_period_;
}
if (last_tick_timepoint == monotonic_clock::min_time) {
continue;
}
chrono::nanoseconds new_offset = phased_loop.OffsetFromIntervalAndTime(
period, last_tick_timepoint + chrono::microseconds(2050));
// TODO(austin): If this is the first edge in a while, skip to it (plus
// an offset). Otherwise, slowly drift time to line up.
phased_loop.set_interval_and_offset(period, new_offset);
}
pwm_detecter_thread.join();
}
void RunIteration() {
::frc971::wpilib::SendRobotState(my_pid_);
const auto values = constants::GetValues();
{
auto drivetrain_message = drivetrain_queue.position.MakeMessage();
drivetrain_message->left_encoder =
drivetrain_translate(drivetrain_left_encoder_->GetRaw());
drivetrain_message->left_speed =
drivetrain_velocity_translate(drivetrain_left_encoder_->GetPeriod());
drivetrain_message->left_shifter_position =
drivetrain_shifter_pot_translate(
left_drivetrain_shifter_->GetVoltage());
drivetrain_message->right_encoder =
-drivetrain_translate(drivetrain_right_encoder_->GetRaw());
drivetrain_message->right_speed =
-drivetrain_velocity_translate(drivetrain_right_encoder_->GetPeriod());
drivetrain_message->right_shifter_position =
drivetrain_shifter_pot_translate(
right_drivetrain_shifter_->GetVoltage());
drivetrain_message.Send();
}
dma_synchronizer_->RunIteration();
{
auto superstructure_message = superstructure_queue.position.MakeMessage();
CopyPosition(proximal_encoder_, &superstructure_message->arm.proximal,
Values::kProximalEncoderCountsPerRevolution(),
Values::kProximalEncoderRatio(), proximal_pot_translate,
true, values.arm_proximal.potentiometer_offset);
CopyPosition(distal_encoder_, &superstructure_message->arm.distal,
Values::kDistalEncoderCountsPerRevolution(),
Values::kDistalEncoderRatio(), distal_pot_translate, true,
values.arm_distal.potentiometer_offset);
CopyPosition(left_intake_encoder_,
&superstructure_message->left_intake.motor_position,
Values::kIntakeMotorEncoderCountsPerRevolution(),
Values::kIntakeMotorEncoderRatio(), intake_pot_translate,
false, values.left_intake.potentiometer_offset);
CopyPosition(right_intake_encoder_,
&superstructure_message->right_intake.motor_position,
Values::kIntakeMotorEncoderCountsPerRevolution(),
Values::kIntakeMotorEncoderRatio(), intake_pot_translate,
true, values.right_intake.potentiometer_offset);
superstructure_message->left_intake.spring_angle =
intake_spring_translate(left_intake_spring_angle_->GetVoltage()) +
values.left_intake.spring_offset;
superstructure_message->left_intake.beam_break =
left_intake_cube_detector_->Get();
superstructure_message->right_intake.spring_angle =
-intake_spring_translate(right_intake_spring_angle_->GetVoltage()) +
values.right_intake.spring_offset;
superstructure_message->right_intake.beam_break =
right_intake_cube_detector_->Get();
superstructure_message->claw_beambreak_triggered = !claw_beambreak_->Get();
superstructure_message->box_back_beambreak_triggered =
!box_back_beambreak_->Get();
superstructure_message->box_distance =
lidar_lite_.last_width() / 0.00001 / 100.0 / 2;
superstructure_message.Send();
}
{
auto auto_mode_message = ::frc971::autonomous::auto_mode.MakeMessage();
auto_mode_message->mode = 0;
for (size_t i = 0; i < autonomous_modes_.size(); ++i) {
if (autonomous_modes_[i] && autonomous_modes_[i]->Get()) {
auto_mode_message->mode |= 1 << i;
}
}
LOG_STRUCT(DEBUG, "auto mode", *auto_mode_message);
auto_mode_message.Send();
}
}
void Quit() { run_ = false; }
private:
double encoder_translate(int32_t value, double counts_per_revolution,
double ratio) {
return static_cast<double>(value) / counts_per_revolution * ratio *
(2.0 * M_PI);
}
void CopyPosition(
const ::frc971::wpilib::AbsoluteEncoderAndPotentiometer &encoder,
::frc971::PotAndAbsolutePosition *position,
double encoder_counts_per_revolution, double encoder_ratio,
::std::function<double(double)> potentiometer_translate, bool reverse,
double pot_offset) {
const double multiplier = reverse ? -1.0 : 1.0;
position->pot = multiplier * potentiometer_translate(
encoder.ReadPotentiometerVoltage()) +
pot_offset;
position->encoder =
multiplier * encoder_translate(encoder.ReadRelativeEncoder(),
encoder_counts_per_revolution,
encoder_ratio);
position->absolute_encoder =
(reverse ? (1.0 - encoder.ReadAbsoluteEncoder())
: encoder.ReadAbsoluteEncoder()) *
encoder_ratio * (2.0 * M_PI);
}
int32_t my_pid_;
// Mutex to manage access to the period and tick time variables.
::aos::stl_mutex tick_time_mutex_;
monotonic_clock::time_point last_tick_time_monotonic_timepoint_ =
monotonic_clock::min_time;
chrono::nanoseconds last_period_ = chrono::microseconds(5050);
::std::unique_ptr<::frc971::wpilib::DMASynchronizer> dma_synchronizer_;
DigitalGlitchFilter fast_encoder_filter_, medium_encoder_filter_,
hall_filter_;
::std::unique_ptr<Encoder> drivetrain_left_encoder_,
drivetrain_right_encoder_;
::std::unique_ptr<AnalogInput> left_drivetrain_shifter_,
right_drivetrain_shifter_;
::frc971::wpilib::AbsoluteEncoderAndPotentiometer proximal_encoder_,
distal_encoder_;
::frc971::wpilib::AbsoluteEncoderAndPotentiometer left_intake_encoder_,
right_intake_encoder_;
::std::unique_ptr<AnalogInput> left_intake_spring_angle_,
right_intake_spring_angle_;
::std::unique_ptr<DigitalInput> left_intake_cube_detector_,
right_intake_cube_detector_;
::std::unique_ptr<DigitalInput> claw_beambreak_;
::std::unique_ptr<DigitalInput> box_back_beambreak_;
::std::unique_ptr<DigitalInput> pwm_trigger_;
::std::array<::std::unique_ptr<DigitalInput>, 4> autonomous_modes_;
::std::unique_ptr<DigitalInput> lidar_lite_input_;
::frc971::wpilib::DMAPulseWidthReader lidar_lite_;
::std::atomic<bool> run_{true};
};
class SolenoidWriter {
public:
SolenoidWriter(::frc971::wpilib::BufferedPcm *pcm)
: pcm_(pcm),
drivetrain_(".frc971.control_loops.drivetrain_queue.output"),
superstructure_(".y2018.control_loops.superstructure_queue.output") {}
// left drive
// right drive
//
// claw
// arm brakes
// hook release
// fork release
void set_left_drivetrain_shifter(
::std::unique_ptr<::frc971::wpilib::BufferedSolenoid> s) {
left_drivetrain_shifter_ = ::std::move(s);
}
void set_right_drivetrain_shifter(
::std::unique_ptr<::frc971::wpilib::BufferedSolenoid> s) {
right_drivetrain_shifter_ = ::std::move(s);
}
void set_claw(::std::unique_ptr<::frc971::wpilib::BufferedSolenoid> s) {
claw_ = ::std::move(s);
}
void set_arm_brakes(::std::unique_ptr<::frc971::wpilib::BufferedSolenoid> s) {
arm_brakes_ = ::std::move(s);
}
void set_hook(::std::unique_ptr<::frc971::wpilib::BufferedSolenoid> s) {
hook_ = ::std::move(s);
}
void set_forks(::std::unique_ptr<::frc971::wpilib::BufferedSolenoid> s) {
forks_ = ::std::move(s);
}
void operator()() {
::aos::SetCurrentThreadName("Solenoids");
::aos::SetCurrentThreadRealtimePriority(27);
::aos::time::PhasedLoop phased_loop(::std::chrono::milliseconds(20),
::std::chrono::milliseconds(1));
while (run_) {
{
const int iterations = phased_loop.SleepUntilNext();
if (iterations != 1) {
LOG(DEBUG, "Solenoids skipped %d iterations\n", iterations - 1);
}
}
{
drivetrain_.FetchLatest();
if (drivetrain_.get()) {
LOG_STRUCT(DEBUG, "solenoids", *drivetrain_);
left_drivetrain_shifter_->Set(!drivetrain_->left_high);
right_drivetrain_shifter_->Set(!drivetrain_->right_high);
}
}
{
superstructure_.FetchLatest();
if (superstructure_.get()) {
LOG_STRUCT(DEBUG, "solenoids", *superstructure_);
claw_->Set(!superstructure_->claw_grabbed);
arm_brakes_->Set(superstructure_->release_arm_brake);
hook_->Set(superstructure_->hook_release);
forks_->Set(superstructure_->forks_release);
}
}
{
::frc971::wpilib::PneumaticsToLog to_log;
pcm_->Flush();
to_log.read_solenoids = pcm_->GetAll();
LOG_STRUCT(DEBUG, "pneumatics info", to_log);
}
status_light.FetchLatest();
if (status_light.get()) {
LOG_STRUCT(DEBUG, "writing", *status_light);
// Not sure which of these is red vs green. We're not ready to use
// either,
// so just turn them off.
canifier_.SetLEDOutput(1.0, ::ctre::phoenix::CANifier::LEDChannelA);
canifier_.SetLEDOutput(1.0, ::ctre::phoenix::CANifier::LEDChannelB);
// Red
canifier_.SetLEDOutput(1 - status_light->red,
::ctre::phoenix::CANifier::LEDChannelC);
}
}
}
void Quit() { run_ = false; }
private:
::frc971::wpilib::BufferedPcm *pcm_;
::std::unique_ptr<::frc971::wpilib::BufferedSolenoid>
left_drivetrain_shifter_, right_drivetrain_shifter_, claw_, arm_brakes_,
hook_, forks_;
::aos::Queue<::frc971::control_loops::DrivetrainQueue::Output> drivetrain_;
::aos::Queue<::y2018::control_loops::SuperstructureQueue::Output>
superstructure_;
::ctre::phoenix::CANifier canifier_{0};
::std::atomic<bool> run_{true};
};
class DrivetrainWriter : public ::frc971::wpilib::LoopOutputHandler {
public:
void set_drivetrain_left_victor(::std::unique_ptr<::frc::VictorSP> t) {
drivetrain_left_victor_ = ::std::move(t);
}
void set_drivetrain_right_victor(::std::unique_ptr<::frc::VictorSP> t) {
drivetrain_right_victor_ = ::std::move(t);
}
private:
virtual void Read() override {
::frc971::control_loops::drivetrain_queue.output.FetchAnother();
}
virtual void Write() override {
auto &queue = ::frc971::control_loops::drivetrain_queue.output;
LOG_STRUCT(DEBUG, "will output", *queue);
drivetrain_left_victor_->SetSpeed(queue->left_voltage / 12.0);
drivetrain_right_victor_->SetSpeed(-queue->right_voltage / 12.0);
}
virtual void Stop() override {
LOG(WARNING, "drivetrain output too old\n");
drivetrain_left_victor_->SetDisabled();
drivetrain_right_victor_->SetDisabled();
}
::std::unique_ptr<::frc::VictorSP> drivetrain_left_victor_,
drivetrain_right_victor_;
};
class SuperstructureWriter : public ::frc971::wpilib::LoopOutputHandler {
public:
void set_proximal_victor(::std::unique_ptr<::frc::VictorSP> t) {
proximal_victor_ = ::std::move(t);
}
void set_distal_victor(::std::unique_ptr<::frc::VictorSP> t) {
distal_victor_ = ::std::move(t);
}
void set_hanger_victor(::std::unique_ptr<::frc::VictorSP> t) {
hanger_victor_ = ::std::move(t);
}
void set_left_intake_elastic_victor(::std::unique_ptr<::frc::VictorSP> t) {
left_intake_elastic_victor_ = ::std::move(t);
}
void set_right_intake_elastic_victor(::std::unique_ptr<::frc::VictorSP> t) {
right_intake_elastic_victor_ = ::std::move(t);
}
void set_left_intake_rollers_victor(::std::unique_ptr<::frc::VictorSP> t) {
left_intake_rollers_victor_ = ::std::move(t);
}
void set_right_intake_rollers_victor(::std::unique_ptr<::frc::VictorSP> t) {
right_intake_rollers_victor_ = ::std::move(t);
}
private:
virtual void Read() override {
::y2018::control_loops::superstructure_queue.output.FetchAnother();
}
virtual void Write() override {
auto &queue = ::y2018::control_loops::superstructure_queue.output;
LOG_STRUCT(DEBUG, "will output", *queue);
left_intake_elastic_victor_->SetSpeed(
::aos::Clip(-queue->left_intake.voltage_elastic, -kMaxBringupPower,
kMaxBringupPower) /
12.0);
right_intake_elastic_victor_->SetSpeed(
::aos::Clip(queue->right_intake.voltage_elastic, -kMaxBringupPower,
kMaxBringupPower) /
12.0);
left_intake_rollers_victor_->SetSpeed(
::aos::Clip(-queue->left_intake.voltage_rollers, -kMaxBringupPower,
kMaxBringupPower) /
12.0);
right_intake_rollers_victor_->SetSpeed(
::aos::Clip(queue->right_intake.voltage_rollers, -kMaxBringupPower,
kMaxBringupPower) /
12.0);
proximal_victor_->SetSpeed(::aos::Clip(-queue->voltage_proximal,
-kMaxBringupPower,
kMaxBringupPower) /
12.0);
distal_victor_->SetSpeed(::aos::Clip(queue->voltage_distal,
-kMaxBringupPower, kMaxBringupPower) /
12.0);
hanger_victor_->SetSpeed(
::aos::Clip(-queue->voltage_winch, -kMaxBringupPower, kMaxBringupPower) /
12.0);
}
virtual void Stop() override {
LOG(WARNING, "Superstructure output too old.\n");
left_intake_rollers_victor_->SetDisabled();
right_intake_rollers_victor_->SetDisabled();
left_intake_elastic_victor_->SetDisabled();
right_intake_elastic_victor_->SetDisabled();
proximal_victor_->SetDisabled();
distal_victor_->SetDisabled();
hanger_victor_->SetDisabled();
}
::std::unique_ptr<::frc::VictorSP> left_intake_rollers_victor_,
right_intake_rollers_victor_, left_intake_elastic_victor_,
right_intake_elastic_victor_, proximal_victor_, distal_victor_,
hanger_victor_;
};
class WPILibRobot : public ::frc971::wpilib::WPILibRobotBase {
public:
::std::unique_ptr<Encoder> make_encoder(int index) {
return make_unique<Encoder>(10 + index * 2, 11 + index * 2, false,
Encoder::k4X);
}
void Run() override {
::aos::InitNRT();
::aos::SetCurrentThreadName("StartCompetition");
::frc971::wpilib::JoystickSender joystick_sender;
::std::thread joystick_thread(::std::ref(joystick_sender));
::frc971::wpilib::PDPFetcher pdp_fetcher;
::std::thread pdp_fetcher_thread(::std::ref(pdp_fetcher));
SensorReader reader;
// TODO(Sabina): Update port numbers(Sensors and Victors)
reader.set_drivetrain_left_encoder(make_encoder(0));
reader.set_left_drivetrain_shifter_potentiometer(
make_unique<AnalogInput>(6));
reader.set_drivetrain_right_encoder(make_encoder(1));
reader.set_right_drivetrain_shifter_potentiometer(
make_unique<AnalogInput>(7));
reader.set_proximal_encoder(make_encoder(4));
reader.set_proximal_absolute_pwm(make_unique<DigitalInput>(2));
reader.set_proximal_potentiometer(make_unique<AnalogInput>(2));
reader.set_distal_encoder(make_encoder(2));
reader.set_distal_absolute_pwm(make_unique<DigitalInput>(3));
reader.set_distal_potentiometer(make_unique<AnalogInput>(3));
reader.set_right_intake_encoder(make_encoder(5));
reader.set_right_intake_absolute_pwm(make_unique<DigitalInput>(7));
reader.set_right_intake_potentiometer(make_unique<AnalogInput>(1));
reader.set_right_intake_spring_angle(make_unique<AnalogInput>(5));
reader.set_right_intake_cube_detector(make_unique<DigitalInput>(1));
reader.set_left_intake_encoder(make_encoder(3));
reader.set_left_intake_absolute_pwm(make_unique<DigitalInput>(4));
reader.set_left_intake_potentiometer(make_unique<AnalogInput>(0));
reader.set_left_intake_spring_angle(make_unique<AnalogInput>(4));
reader.set_left_intake_cube_detector(make_unique<DigitalInput>(0));
reader.set_claw_beambreak(make_unique<DigitalInput>(8));
reader.set_box_back_beambreak(make_unique<DigitalInput>(9));
reader.set_pwm_trigger(make_unique<DigitalInput>(25));
reader.set_lidar_lite_input(make_unique<DigitalInput>(22));
reader.set_dma(make_unique<DMA>());
::std::thread reader_thread(::std::ref(reader));
auto imu_trigger = make_unique<DigitalInput>(5);
::frc971::wpilib::ADIS16448 imu(SPI::Port::kOnboardCS1, imu_trigger.get());
imu.SetDummySPI(SPI::Port::kOnboardCS2);
auto imu_reset = make_unique<DigitalOutput>(6);
imu.set_reset(imu_reset.get());
::std::thread imu_thread(::std::ref(imu));
// While as of 2/9/18 the drivetrain Victors are SPX, it appears as though
// they are identical, as far as DrivetrainWriter is concerned, to the SP
// variety so all the Victors are written as SPs.
DrivetrainWriter drivetrain_writer;
drivetrain_writer.set_drivetrain_left_victor(
::std::unique_ptr<::frc::VictorSP>(new ::frc::VictorSP(2)));
drivetrain_writer.set_drivetrain_right_victor(
::std::unique_ptr<::frc::VictorSP>(new ::frc::VictorSP(3)));
::std::thread drivetrain_writer_thread(::std::ref(drivetrain_writer));
SuperstructureWriter superstructure_writer;
superstructure_writer.set_left_intake_elastic_victor(
::std::unique_ptr<::frc::VictorSP>(new ::frc::VictorSP(4)));
superstructure_writer.set_left_intake_rollers_victor(
::std::unique_ptr<::frc::VictorSP>(new ::frc::VictorSP(5)));
superstructure_writer.set_right_intake_elastic_victor(
::std::unique_ptr<::frc::VictorSP>(new ::frc::VictorSP(7)));
superstructure_writer.set_right_intake_rollers_victor(
::std::unique_ptr<::frc::VictorSP>(new ::frc::VictorSP(6)));
superstructure_writer.set_proximal_victor(
::std::unique_ptr<::frc::VictorSP>(new ::frc::VictorSP(0)));
superstructure_writer.set_distal_victor(
::std::unique_ptr<::frc::VictorSP>(new ::frc::VictorSP(1)));
superstructure_writer.set_hanger_victor(
::std::unique_ptr<::frc::VictorSP>(new ::frc::VictorSP(8)));
::std::thread superstructure_writer_thread(
::std::ref(superstructure_writer));
::frc971::wpilib::BufferedPcm *pcm = new ::frc971::wpilib::BufferedPcm();
SolenoidWriter solenoid_writer(pcm);
solenoid_writer.set_left_drivetrain_shifter(pcm->MakeSolenoid(0));
solenoid_writer.set_right_drivetrain_shifter(pcm->MakeSolenoid(1));
solenoid_writer.set_claw(pcm->MakeSolenoid(2));
solenoid_writer.set_arm_brakes(pcm->MakeSolenoid(3));
solenoid_writer.set_hook(pcm->MakeSolenoid(4));
solenoid_writer.set_forks(pcm->MakeSolenoid(5));
::std::thread solenoid_thread(::std::ref(solenoid_writer));
// Wait forever. Not much else to do...
while (true) {
const int r = select(0, nullptr, nullptr, nullptr, nullptr);
if (r != 0) {
PLOG(WARNING, "infinite select failed");
} else {
PLOG(WARNING, "infinite select succeeded??\n");
}
}
LOG(ERROR, "Exiting WPILibRobot\n");
joystick_sender.Quit();
joystick_thread.join();
pdp_fetcher.Quit();
pdp_fetcher_thread.join();
reader.Quit();
reader_thread.join();
imu.Quit();
imu_thread.join();
drivetrain_writer.Quit();
drivetrain_writer_thread.join();
superstructure_writer.Quit();
superstructure_writer_thread.join();
::aos::Cleanup();
}
};
} // namespace
} // namespace wpilib
} // namespace y2018
AOS_ROBOT_CLASS(::y2018::wpilib::WPILibRobot);