| /*----------------------------------------------------------------------------*/ |
| /* Copyright (c) FIRST 2008. All Rights Reserved. */ |
| /* Open Source Software - may be modified and shared by FRC teams. The code */ |
| /* must be accompanied by the FIRST BSD license file in $(WIND_BASE)/WPILib. */ |
| /*----------------------------------------------------------------------------*/ |
| |
| #include "PWM.h" |
| |
| #include "DigitalModule.h" |
| #include "NetworkCommunication/UsageReporting.h" |
| #include "Resource.h" |
| #include "Utility.h" |
| #include "WPIErrors.h" |
| |
| constexpr float PWM::kDefaultPwmPeriod; |
| constexpr float PWM::kDefaultPwmCenter; |
| const int32_t PWM::kDefaultPwmStepsDown; |
| const int32_t PWM::kPwmDisabled; |
| static Resource *allocated = NULL; |
| |
| /** |
| * Initialize PWMs given an module and channel. |
| * |
| * This method is private and is the common path for all the constructors for creating PWM |
| * instances. Checks module and channel value ranges and allocates the appropriate channel. |
| * The allocation is only done to help users ensure that they don't double assign channels. |
| */ |
| void PWM::InitPWM(uint8_t moduleNumber, uint32_t channel) |
| { |
| m_table = NULL; |
| char buf[64]; |
| Resource::CreateResourceObject(&allocated, tDIO::kNumSystems * kPwmChannels); |
| if (!CheckPWMModule(moduleNumber)) |
| { |
| snprintf(buf, 64, "Digital Module %d", moduleNumber); |
| wpi_setWPIErrorWithContext(ModuleIndexOutOfRange, buf); |
| return; |
| } |
| if (!CheckPWMChannel(channel)) |
| { |
| snprintf(buf, 64, "PWM Channel %d", channel); |
| wpi_setWPIErrorWithContext(ChannelIndexOutOfRange, buf); |
| return; |
| } |
| |
| snprintf(buf, 64, "PWM %d (Module: %d)", channel, moduleNumber); |
| if (allocated->Allocate((moduleNumber - 1) * kPwmChannels + channel - 1, |
| buf, this) == ~0ul) |
| { |
| return; |
| } |
| m_channel = channel; |
| m_module = DigitalModule::GetInstance(moduleNumber); |
| m_module->SetPWM(m_channel, kPwmDisabled); |
| m_eliminateDeadband = false; |
| |
| nUsageReporting::report(nUsageReporting::kResourceType_PWM, channel, moduleNumber - 1); |
| } |
| |
| /** |
| * Allocate a PWM given a module and channel. |
| * Allocate a PWM using a module and channel number. |
| * |
| * @param moduleNumber The digital module (1 or 2). |
| * @param channel The PWM channel on the digital module (1..10). |
| */ |
| PWM::PWM(uint8_t moduleNumber, uint32_t channel) |
| : m_module(NULL) |
| { |
| InitPWM(moduleNumber, channel); |
| } |
| |
| /** |
| * Allocate a PWM in the default module given a channel. |
| * |
| * Using a default module allocate a PWM given the channel number. The default module is the first |
| * slot numerically in the cRIO chassis. |
| * |
| * @param channel The PWM channel on the digital module. |
| */ |
| PWM::PWM(uint32_t channel) |
| : m_module(NULL) |
| { |
| InitPWM(GetDefaultDigitalModule(), channel); |
| } |
| |
| /** |
| * Free the PWM channel. |
| * |
| * Free the resource associated with the PWM channel and set the value to 0. |
| */ |
| PWM::~PWM() |
| { |
| if (m_module) |
| { |
| m_module->SetPWM(m_channel, kPwmDisabled); |
| allocated->Free((m_module->GetNumber() - 1) * kPwmChannels + m_channel - 1, |
| this); |
| } |
| } |
| |
| /** |
| * Optionally eliminate the deadband from a speed controller. |
| * @param eliminateDeadband If true, set the motor curve on the Jaguar to eliminate |
| * the deadband in the middle of the range. Otherwise, keep the full range without |
| * modifying any values. |
| */ |
| void PWM::EnableDeadbandElimination(bool eliminateDeadband) |
| { |
| if (StatusIsFatal()) return; |
| m_eliminateDeadband = eliminateDeadband; |
| } |
| |
| /** |
| * Set the bounds on the PWM values. |
| * This sets the bounds on the PWM values for a particular each type of controller. The values |
| * determine the upper and lower speeds as well as the deadband bracket. |
| * @param max The Minimum pwm value |
| * @param deadbandMax The high end of the deadband range |
| * @param center The center speed (off) |
| * @param deadbandMin The low end of the deadband range |
| * @param min The minimum pwm value |
| */ |
| void PWM::SetBounds(int32_t max, int32_t deadbandMax, int32_t center, int32_t deadbandMin, int32_t min) |
| { |
| if (StatusIsFatal()) return; |
| m_maxPwm = max; |
| m_deadbandMaxPwm = deadbandMax; |
| m_centerPwm = center; |
| m_deadbandMinPwm = deadbandMin; |
| m_minPwm = min; |
| } |
| |
| |
| /** |
| * Set the bounds on the PWM pulse widths. |
| * This sets the bounds on the PWM values for a particular type of controller. The values |
| * determine the upper and lower speeds as well as the deadband bracket. |
| * @param max The max PWM pulse width in ms |
| * @param deadbandMax The high end of the deadband range pulse width in ms |
| * @param center The center (off) pulse width in ms |
| * @param deadbandMin The low end of the deadband pulse width in ms |
| * @param min The minimum pulse width in ms |
| */ |
| void PWM::SetBounds(double max, double deadbandMax, double center, double deadbandMin, double min) |
| { |
| if (StatusIsFatal()) return; |
| |
| double loopTime = m_module->GetLoopTiming()/(kSystemClockTicksPerMicrosecond*1e3); |
| |
| m_maxPwm = (int32_t)((max-kDefaultPwmCenter)/loopTime+kDefaultPwmStepsDown-1); |
| m_deadbandMaxPwm = (int32_t)((deadbandMax-kDefaultPwmCenter)/loopTime+kDefaultPwmStepsDown-1); |
| m_centerPwm = (int32_t)((center-kDefaultPwmCenter)/loopTime+kDefaultPwmStepsDown-1); |
| m_deadbandMinPwm = (int32_t)((deadbandMin-kDefaultPwmCenter)/loopTime+kDefaultPwmStepsDown-1); |
| m_minPwm = (int32_t)((min-kDefaultPwmCenter)/loopTime+kDefaultPwmStepsDown-1); |
| } |
| |
| uint32_t PWM::GetModuleNumber() |
| { |
| return m_module->GetNumber(); |
| } |
| |
| /** |
| * Set the PWM value based on a position. |
| * |
| * This is intended to be used by servos. |
| * |
| * @pre SetMaxPositivePwm() called. |
| * @pre SetMinNegativePwm() called. |
| * |
| * @param pos The position to set the servo between 0.0 and 1.0. |
| */ |
| void PWM::SetPosition(float pos) |
| { |
| if (StatusIsFatal()) return; |
| if (pos < 0.0) |
| { |
| pos = 0.0; |
| } |
| else if (pos > 1.0) |
| { |
| pos = 1.0; |
| } |
| |
| int32_t rawValue; |
| // note, need to perform the multiplication below as floating point before converting to int |
| rawValue = (int32_t)( (pos * (float) GetFullRangeScaleFactor()) + GetMinNegativePwm()); |
| |
| wpi_assert((rawValue >= GetMinNegativePwm()) && (rawValue <= GetMaxPositivePwm())); |
| wpi_assert(rawValue != kPwmDisabled); |
| |
| // send the computed pwm value to the FPGA |
| SetRaw((uint8_t)rawValue); |
| } |
| |
| /** |
| * Get the PWM value in terms of a position. |
| * |
| * This is intended to be used by servos. |
| * |
| * @pre SetMaxPositivePwm() called. |
| * @pre SetMinNegativePwm() called. |
| * |
| * @return The position the servo is set to between 0.0 and 1.0. |
| */ |
| float PWM::GetPosition() |
| { |
| if (StatusIsFatal()) return 0.0; |
| int32_t value = GetRaw(); |
| if (value < GetMinNegativePwm()) |
| { |
| return 0.0; |
| } |
| else if (value > GetMaxPositivePwm()) |
| { |
| return 1.0; |
| } |
| else |
| { |
| return (float)(value - GetMinNegativePwm()) / (float)GetFullRangeScaleFactor(); |
| } |
| } |
| |
| /** |
| * Set the PWM value based on a speed. |
| * |
| * This is intended to be used by speed controllers. |
| * |
| * @pre SetMaxPositivePwm() called. |
| * @pre SetMinPositivePwm() called. |
| * @pre SetCenterPwm() called. |
| * @pre SetMaxNegativePwm() called. |
| * @pre SetMinNegativePwm() called. |
| * |
| * @param speed The speed to set the speed controller between -1.0 and 1.0. |
| */ |
| void PWM::SetSpeed(float speed) |
| { |
| if (StatusIsFatal()) return; |
| // clamp speed to be in the range 1.0 >= speed >= -1.0 |
| if (speed < -1.0) |
| { |
| speed = -1.0; |
| } |
| else if (speed > 1.0) |
| { |
| speed = 1.0; |
| } |
| |
| // calculate the desired output pwm value by scaling the speed appropriately |
| int32_t rawValue; |
| if (speed == 0.0) |
| { |
| rawValue = GetCenterPwm(); |
| } |
| else if (speed > 0.0) |
| { |
| rawValue = (int32_t)(speed * ((float)GetPositiveScaleFactor()) + |
| ((float) GetMinPositivePwm()) + 0.5); |
| } |
| else |
| { |
| rawValue = (int32_t)(speed * ((float)GetNegativeScaleFactor()) + |
| ((float) GetMaxNegativePwm()) + 0.5); |
| } |
| |
| // the above should result in a pwm_value in the valid range |
| wpi_assert((rawValue >= GetMinNegativePwm()) && (rawValue <= GetMaxPositivePwm())); |
| wpi_assert(rawValue != kPwmDisabled); |
| |
| // send the computed pwm value to the FPGA |
| SetRaw((uint8_t)rawValue); |
| } |
| |
| /** |
| * Get the PWM value in terms of speed. |
| * |
| * This is intended to be used by speed controllers. |
| * |
| * @pre SetMaxPositivePwm() called. |
| * @pre SetMinPositivePwm() called. |
| * @pre SetMaxNegativePwm() called. |
| * @pre SetMinNegativePwm() called. |
| * |
| * @return The most recently set speed between -1.0 and 1.0. |
| */ |
| float PWM::GetSpeed() |
| { |
| if (StatusIsFatal()) return 0.0; |
| int32_t value = GetRaw(); |
| if (value == PWM::kPwmDisabled) |
| { |
| return 0.0; |
| } |
| else if (value > GetMaxPositivePwm()) |
| { |
| return 1.0; |
| } |
| else if (value < GetMinNegativePwm()) |
| { |
| return -1.0; |
| } |
| else if (value > GetMinPositivePwm()) |
| { |
| return (float)(value - GetMinPositivePwm()) / (float)GetPositiveScaleFactor(); |
| } |
| else if (value < GetMaxNegativePwm()) |
| { |
| return (float)(value - GetMaxNegativePwm()) / (float)GetNegativeScaleFactor(); |
| } |
| else |
| { |
| return 0.0; |
| } |
| } |
| |
| /** |
| * Set the PWM value directly to the hardware. |
| * |
| * Write a raw value to a PWM channel. |
| * |
| * @param value Raw PWM value. Range 0 - 255. |
| */ |
| void PWM::SetRaw(uint8_t value) |
| { |
| if (StatusIsFatal()) return; |
| m_module->SetPWM(m_channel, value); |
| } |
| |
| /** |
| * Get the PWM value directly from the hardware. |
| * |
| * Read a raw value from a PWM channel. |
| * |
| * @return Raw PWM control value. Range: 0 - 255. |
| */ |
| uint8_t PWM::GetRaw() |
| { |
| if (StatusIsFatal()) return 0; |
| return m_module->GetPWM(m_channel); |
| } |
| |
| /** |
| * Slow down the PWM signal for old devices. |
| * |
| * @param mult The period multiplier to apply to this channel |
| */ |
| void PWM::SetPeriodMultiplier(PeriodMultiplier mult) |
| { |
| if (StatusIsFatal()) return; |
| switch(mult) |
| { |
| case kPeriodMultiplier_4X: |
| m_module->SetPWMPeriodScale(m_channel, 3); // Squelch 3 out of 4 outputs |
| break; |
| case kPeriodMultiplier_2X: |
| m_module->SetPWMPeriodScale(m_channel, 1); // Squelch 1 out of 2 outputs |
| break; |
| case kPeriodMultiplier_1X: |
| m_module->SetPWMPeriodScale(m_channel, 0); // Don't squelch any outputs |
| break; |
| default: |
| wpi_assert(false); |
| } |
| } |
| |
| |
| void PWM::ValueChanged(ITable* source, const std::string& key, EntryValue value, bool isNew) { |
| SetSpeed(value.f); |
| } |
| |
| void PWM::UpdateTable() { |
| if (m_table != NULL) { |
| m_table->PutNumber("Value", GetSpeed()); |
| } |
| } |
| |
| void PWM::StartLiveWindowMode() { |
| SetSpeed(0); |
| if (m_table != NULL) { |
| m_table->AddTableListener("Value", this, true); |
| } |
| } |
| |
| void PWM::StopLiveWindowMode() { |
| SetSpeed(0); |
| if (m_table != NULL) { |
| m_table->RemoveTableListener(this); |
| } |
| } |
| |
| std::string PWM::GetSmartDashboardType() { |
| return "Speed Controller"; |
| } |
| |
| void PWM::InitTable(ITable *subTable) { |
| m_table = subTable; |
| UpdateTable(); |
| } |
| |
| ITable * PWM::GetTable() { |
| return m_table; |
| } |
| |