blob: 62df7701c7530a18234d9a5336ba8a3a3601d9b0 [file] [log] [blame]
// Copyright (c) 2000, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// ---
//
// Reorganized by Craig Silverstein
// "Handles" by Ilan Horn
//
// This approach to arenas overcomes many of the limitations described
// in the "Specialized allocators" section of
// http://www.pdos.lcs.mit.edu/~dm/c++-new.html
//
// A somewhat similar approach to Gladiator, but for heap-detection, was
// suggested by Ron van der Wal and Scott Meyers at
// http://www.aristeia.com/BookErrata/M27Comments_frames.html
#include <config.h>
#include "base/arena.h"
#include "base/arena-inl.h"
#include <assert.h>
#include <algorithm>
#ifdef HAVE_UNISTD_H
# include <unistd.h>
#endif
#include <vector>
#include <sys/types.h> // one place uintptr_t might be
#ifdef HAVE_INTTYPES_H
# include <inttypes.h>
#endif // another place uintptr_t might be
#ifdef HAVE_UNISTD_H
# include <unistd.h>
#endif // last place uintptr_t might be
#include "base/macros.h" // for uint64
#include "base/mutex.h"
#include "base/util.h" // for DCHECK_*
using std::min;
using std::vector;
// TODO(csilvers): add in a portable implementation of aligned_malloc
static void* aligned_malloc(size_t size, size_t alignment) {
LOG(FATAL) << "page_aligned_ not currently supported\n";
}
// The value here doesn't matter until page_aligned_ is supported.
static const int kPageSize = 8192; // should be getpagesize()
namespace ctemplate {
// We used to only keep track of how much space has been allocated in
// debug mode. Now we track this for optimized builds, as well. If you
// want to play with the old scheme to see if this helps performance,
// change this ARENASET() macro to a NOP. However, NOTE: some
// applications of arenas depend on this space information (exported
// via bytes_allocated()).
#define ARENASET(x) (x)
// ----------------------------------------------------------------------
// BaseArena::BaseArena()
// BaseArena::~BaseArena()
// Destroying the arena automatically calls Reset()
// ----------------------------------------------------------------------
BaseArena::BaseArena(char* first, const size_t block_size, bool align_to_page)
: remaining_(0),
first_block_we_own_(first ? 1 : 0),
block_size_(block_size),
freestart_(NULL), // set for real in Reset()
last_alloc_(NULL),
blocks_alloced_(1),
overflow_blocks_(NULL),
page_aligned_(align_to_page),
handle_alignment_(1),
handle_alignment_bits_(0),
block_size_bits_(0) {
assert(block_size > kDefaultAlignment);
while ((static_cast<size_t>(1) << block_size_bits_) < block_size_) {
++block_size_bits_;
}
if (page_aligned_) {
// kPageSize must be power of 2, so make sure of this.
CHECK(kPageSize > 0 && 0 == (kPageSize & (kPageSize - 1)))
<< "kPageSize[ " << kPageSize << "] is not "
<< "correctly initialized: not a power of 2.";
}
if (first) {
CHECK(!page_aligned_ ||
(reinterpret_cast<uintptr_t>(first) & (kPageSize - 1)) == 0);
first_blocks_[0].mem = first;
} else {
if (page_aligned_) {
// Make sure the blocksize is page multiple, as we need to end on a page
// boundary.
CHECK_EQ(block_size & (kPageSize - 1), 0) << "block_size is not a"
<< "multiple of kPageSize";
first_blocks_[0].mem = reinterpret_cast<char*>(aligned_malloc(block_size_,
kPageSize));
PCHECK(NULL != first_blocks_[0].mem);
} else {
first_blocks_[0].mem = reinterpret_cast<char*>(malloc(block_size_));
}
}
first_blocks_[0].size = block_size_;
Reset();
}
BaseArena::~BaseArena() {
FreeBlocks();
assert(overflow_blocks_ == NULL); // FreeBlocks() should do that
// The first X blocks stay allocated always by default. Delete them now.
for ( int i = first_block_we_own_; i < blocks_alloced_; ++i )
free(first_blocks_[i].mem);
}
// ----------------------------------------------------------------------
// BaseArena::block_count()
// Only reason this is in .cc file is because it involves STL.
// ----------------------------------------------------------------------
int BaseArena::block_count() const {
return (blocks_alloced_ +
(overflow_blocks_ ? static_cast<int>(overflow_blocks_->size()) : 0));
}
// ----------------------------------------------------------------------
// BaseArena::Reset()
// Clears all the memory an arena is using.
// ----------------------------------------------------------------------
void BaseArena::Reset() {
FreeBlocks();
freestart_ = first_blocks_[0].mem;
remaining_ = first_blocks_[0].size;
last_alloc_ = NULL;
ARENASET(status_.bytes_allocated_ = block_size_);
// We do not know for sure whether or not the first block is aligned,
// so we fix that right now.
const int overage = reinterpret_cast<uintptr_t>(freestart_) &
(kDefaultAlignment-1);
if (overage > 0) {
const int waste = kDefaultAlignment - overage;
freestart_ += waste;
remaining_ -= waste;
}
freestart_when_empty_ = freestart_;
assert(!(reinterpret_cast<uintptr_t>(freestart_)&(kDefaultAlignment-1)));
}
// ----------------------------------------------------------------------
// BaseArena::MakeNewBlock()
// Our sbrk() equivalent. We always make blocks of the same size
// (though GetMemory() can also make a new block for really big
// data.
// ----------------------------------------------------------------------
void BaseArena::MakeNewBlock() {
AllocatedBlock *block = AllocNewBlock(block_size_);
freestart_ = block->mem;
remaining_ = block->size;
}
// -------------------------------------------------------------
// BaseArena::AllocNewBlock()
// Adds and returns an AllocatedBlock.
// The returned AllocatedBlock* is valid until the next call
// to AllocNewBlock or Reset. (i.e. anything that might
// affect overflow_blocks_).
// -------------------------------------------------------------
BaseArena::AllocatedBlock* BaseArena::AllocNewBlock(const size_t block_size) {
AllocatedBlock *block;
// Find the next block.
if ( blocks_alloced_ < ARRAYSIZE(first_blocks_) ) {
// Use one of the pre-allocated blocks
block = &first_blocks_[blocks_alloced_++];
} else { // oops, out of space, move to the vector
if (overflow_blocks_ == NULL) overflow_blocks_ = new vector<AllocatedBlock>;
// Adds another block to the vector.
overflow_blocks_->resize(overflow_blocks_->size()+1);
// block points to the last block of the vector.
block = &overflow_blocks_->back();
}
if (page_aligned_) {
// We need the size to be multiple of kPageSize to mprotect it later.
size_t num_pages = ((block_size - 1) / kPageSize) + 1;
size_t new_block_size = num_pages * kPageSize;
block->mem = reinterpret_cast<char*>(aligned_malloc(new_block_size,
kPageSize));
PCHECK(NULL != block->mem);
block->size = new_block_size;
} else {
block->mem = reinterpret_cast<char*>(malloc(block_size));
block->size = block_size;
}
ARENASET(status_.bytes_allocated_ += block_size);
return block;
}
// ----------------------------------------------------------------------
// BaseArena::IndexToBlock()
// Index encoding is as follows:
// For blocks in the first_blocks_ array, we use index of the block in
// the array.
// For blocks in the overflow_blocks_ vector, we use the index of the
// block in iverflow_blocks_, plus the size of the first_blocks_ array.
// ----------------------------------------------------------------------
const BaseArena::AllocatedBlock *BaseArena::IndexToBlock(int index) const {
if (index < ARRAYSIZE(first_blocks_)) {
return &first_blocks_[index];
}
CHECK(overflow_blocks_ != NULL);
int index_in_overflow_blocks = index - ARRAYSIZE(first_blocks_);
CHECK_GE(index_in_overflow_blocks, 0);
CHECK_LT(static_cast<size_t>(index_in_overflow_blocks),
overflow_blocks_->size());
return &(*overflow_blocks_)[index_in_overflow_blocks];
}
// ----------------------------------------------------------------------
// BaseArena::GetMemoryFallback()
// We take memory out of our pool, aligned on the byte boundary
// requested. If we don't have space in our current pool, we
// allocate a new block (wasting the remaining space in the
// current block) and give you that. If your memory needs are
// too big for a single block, we make a special your-memory-only
// allocation -- this is equivalent to not using the arena at all.
// ----------------------------------------------------------------------
void* BaseArena::GetMemoryFallback(const size_t size, const int align_as_int) {
if (0 == size) {
return NULL; // stl/stl_alloc.h says this is okay
}
// This makes the type-checker happy.
const size_t align = static_cast<size_t>(align_as_int);
assert(align_as_int > 0 && 0 == (align & (align - 1))); // must be power of 2
// If the object is more than a quarter of the block size, allocate
// it separately to avoid wasting too much space in leftover bytes
if (block_size_ == 0 || size > block_size_/4) {
// then it gets its own block in the arena
assert(align <= kDefaultAlignment); // because that's what new gives us
// This block stays separate from the rest of the world; in particular
// we don't update last_alloc_ so you can't reclaim space on this block.
return AllocNewBlock(size)->mem;
}
const size_t overage =
(reinterpret_cast<uintptr_t>(freestart_) & (align-1));
if (overage) {
const size_t waste = align - overage;
freestart_ += waste;
if (waste < remaining_) {
remaining_ -= waste;
} else {
remaining_ = 0;
}
}
if (size > remaining_) {
MakeNewBlock();
}
remaining_ -= size;
last_alloc_ = freestart_;
freestart_ += size;
assert(0 == (reinterpret_cast<uintptr_t>(last_alloc_) & (align-1)));
return reinterpret_cast<void*>(last_alloc_);
}
// ----------------------------------------------------------------------
// BaseArena::ReturnMemoryFallback()
// BaseArena::FreeBlocks()
// Unlike GetMemory(), which does actual work, ReturnMemory() is a
// no-op: we don't "free" memory until Reset() is called. We do
// update some stats, though. Note we do no checking that the
// pointer you pass in was actually allocated by us, or that it
// was allocated for the size you say, so be careful here!
// FreeBlocks() does the work for Reset(), actually freeing all
// memory allocated in one fell swoop.
// ----------------------------------------------------------------------
void BaseArena::FreeBlocks() {
for ( int i = 1; i < blocks_alloced_; ++i ) { // keep first block alloced
free(first_blocks_[i].mem);
first_blocks_[i].mem = NULL;
first_blocks_[i].size = 0;
}
blocks_alloced_ = 1;
if (overflow_blocks_ != NULL) {
vector<AllocatedBlock>::iterator it;
for (it = overflow_blocks_->begin(); it != overflow_blocks_->end(); ++it) {
free(it->mem);
}
delete overflow_blocks_; // These should be used very rarely
overflow_blocks_ = NULL;
}
}
// ----------------------------------------------------------------------
// BaseArena::AdjustLastAlloc()
// If you realize you didn't want your last alloc to be for
// the size you asked, after all, you can fix it by calling
// this. We'll grow or shrink the last-alloc region if we
// can (we can always shrink, but we might not be able to
// grow if you want to grow too big.
// RETURNS true if we successfully modified the last-alloc
// region, false if the pointer you passed in wasn't actually
// the last alloc or if you tried to grow bigger than we could.
// ----------------------------------------------------------------------
bool BaseArena::AdjustLastAlloc(void *last_alloc, const size_t newsize) {
// It's only legal to call this on the last thing you alloced.
if (last_alloc == NULL || last_alloc != last_alloc_) return false;
// last_alloc_ should never point into a "big" block, w/ size >= block_size_
assert(freestart_ >= last_alloc_ && freestart_ <= last_alloc_ + block_size_);
assert(remaining_ >= 0); // should be: it's a size_t!
if (newsize > (freestart_ - last_alloc_) + remaining_)
return false; // not enough room, even after we get back last_alloc_ space
const char* old_freestart = freestart_; // where last alloc used to end
freestart_ = last_alloc_ + newsize; // where last alloc ends now
remaining_ -= (freestart_ - old_freestart); // how much new space we've taken
return true;
}
// ----------------------------------------------------------------------
// BaseArena::GetMemoryWithHandle()
// First, memory is allocated using GetMemory, using handle_alignment_.
// Since using different alignments for different handles would make
// the handles incompatible (e.g., we could end up with the same handle
// value referencing two different allocations, the alignment is not passed
// as an argument to GetMemoryWithHandle, and handle_alignment_ is used
// automatically for all GetMemoryWithHandle calls.
// Then we go about building a handle to reference the allocated memory.
// The block index used for the allocation, along with the offset inside
// the block, are encoded into the handle as follows:
// (block_index*block_size)+offset
// offset is simply the difference between the pointer returned by
// GetMemory and the starting pointer of the block.
// The above value is then divided by the alignment. As we know that
// both offset and the block_size are divisable by the alignment (this is
// enforced by set_handle_alignment() for block_size, and by GetMemory()
// for the offset), this does not lose any information, but allows to cram
// more into the limited space in handle.
// If the result does not fit into an unsigned 32-bit integer, we
// have run out of space that the handle can represent, and return
// an invalid handle. Note that the returned pointer is still usable,
// but this allocation cannot be referenced by a handle.
// ----------------------------------------------------------------------
void* BaseArena::GetMemoryWithHandle(
const size_t size, BaseArena::Handle* handle) {
CHECK(handle != NULL);
// For efficiency, handles are always allocated aligned to a power of 2.
void* p = GetMemory(size, (1 << handle_alignment_bits_));
// Find the index of the block the memory was allocated from. In most
// cases, this will be the last block, so the following loop will
// iterate exactly once.
int block_index;
const AllocatedBlock* block = NULL;
for (block_index = block_count() - 1; block_index >= 0; --block_index) {
block = IndexToBlock(block_index);
if ((p >= block->mem) && (p < (block->mem + block->size))) {
break;
}
}
CHECK_GE(block_index, 0) << "Failed to find block that was allocated from";
CHECK(block != NULL) << "Failed to find block that was allocated from";
const uint64 offset = reinterpret_cast<char*>(p) - block->mem;
DCHECK_LT(offset, block_size_);
DCHECK((offset & ((1 << handle_alignment_bits_) - 1)) == 0);
DCHECK((block_size_ & ((1 << handle_alignment_bits_) - 1)) == 0);
uint64 handle_value =
((static_cast<uint64>(block_index) << block_size_bits_) + offset) >>
handle_alignment_bits_;
if (handle_value >= static_cast<uint64>(0xFFFFFFFF)) {
// We ran out of space to be able to return a handle, so return an invalid
// handle.
handle_value = Handle::kInvalidValue;
}
handle->handle_ = static_cast<uint32>(handle_value);
return p;
}
// ----------------------------------------------------------------------
// BaseArena::set_handle_alignment()
// Set the alignment to be used when Handles are requested. This can only
// be set for an arena that is empty - it cannot be changed on the fly.
// The alignment must be a power of 2 that the block size is divisable by.
// The default alignment is 1.
// Trying to set an alignment that does not meet the above constraints will
// cause a CHECK-failure.
// ----------------------------------------------------------------------
void BaseArena::set_handle_alignment(int align) {
CHECK(align > 0 && 0 == (align & (align - 1))); // must be power of 2
CHECK(static_cast<size_t>(align) < block_size_);
CHECK((block_size_ % align) == 0);
CHECK(is_empty());
handle_alignment_ = align;
handle_alignment_bits_ = 0;
while ((1 << handle_alignment_bits_) < handle_alignment_) {
++handle_alignment_bits_;
}
}
// ----------------------------------------------------------------------
// BaseArena::HandleToPointer()
// First, the handle value needs to gain back the alignment factor that
// was divided out of it by GetMemoryWithHandle. Once this is done, it
// becomes trivial to extract the block index and offset in the block out
// of it, and calculate the pointer.
// ----------------------------------------------------------------------
void* BaseArena::HandleToPointer(const Handle& h) const {
CHECK(h.valid());
uint64 handle = static_cast<uint64>(h.handle_) << handle_alignment_bits_;
int block_index = static_cast<int>(handle >> block_size_bits_);
size_t block_offset =
static_cast<size_t>(handle & ((1 << block_size_bits_) - 1));
const AllocatedBlock* block = IndexToBlock(block_index);
CHECK(block != NULL);
return reinterpret_cast<void*>(block->mem + block_offset);
}
// ----------------------------------------------------------------------
// UnsafeArena::Realloc()
// SafeArena::Realloc()
// If you decide you want to grow -- or shrink -- a memory region,
// we'll do it for you here. Typically this will involve copying
// the existing memory to somewhere else on the arena that has
// more space reserved. But if you're reallocing the last-allocated
// block, we may be able to accomodate you just by updating a
// pointer. In any case, we return a pointer to the new memory
// location, which may be the same as the pointer you passed in.
// Here's an example of how you might use Realloc():
//
// compr_buf = arena->Alloc(uncompr_size); // get too-much space
// int compr_size;
// zlib.Compress(uncompr_buf, uncompr_size, compr_buf, &compr_size);
// compr_buf = arena->Realloc(compr_buf, uncompr_size, compr_size);
// ----------------------------------------------------------------------
char* UnsafeArena::Realloc(char* s, size_t oldsize, size_t newsize) {
assert(oldsize >= 0 && newsize >= 0);
if ( AdjustLastAlloc(s, newsize) ) // in case s was last alloc
return s;
if ( newsize <= oldsize ) {
return s; // no need to do anything; we're ain't reclaiming any memory!
}
char * newstr = Alloc(newsize);
memcpy(newstr, s, min(oldsize, newsize));
return newstr;
}
char* SafeArena::Realloc(char* s, size_t oldsize, size_t newsize) {
assert(oldsize >= 0 && newsize >= 0);
{ MutexLock lock(&mutex_);
if ( AdjustLastAlloc(s, newsize) ) // in case s was last alloc
return s;
}
if ( newsize <= oldsize ) {
return s; // no need to do anything; we're ain't reclaiming any memory!
}
char * newstr = Alloc(newsize);
memcpy(newstr, s, min(oldsize, newsize));
return newstr;
}
}