blob: f20ec2f63d848da9998ab0fbb38d0a622f7f8589 [file] [log] [blame]
#!/usr/bin/python
import numpy
import sys
from frc971.control_loops.python import polytope
from y2017.control_loops.python import drivetrain
from frc971.control_loops.python import control_loop
from frc971.control_loops.python import controls
from frc971.control_loops.python.cim import CIM
from matplotlib import pylab
import gflags
import glog
__author__ = 'Austin Schuh (austin.linux@gmail.com)'
FLAGS = gflags.FLAGS
try:
gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
except gflags.DuplicateFlagError:
pass
def CoerceGoal(region, K, w, R):
"""Intersects a line with a region, and finds the closest point to R.
Finds a point that is closest to R inside the region, and on the line
defined by K X = w. If it is not possible to find a point on the line,
finds a point that is inside the region and closest to the line. This
function assumes that
Args:
region: HPolytope, the valid goal region.
K: numpy.matrix (2 x 1), the matrix for the equation [K1, K2] [x1; x2] = w
w: float, the offset in the equation above.
R: numpy.matrix (2 x 1), the point to be closest to.
Returns:
numpy.matrix (2 x 1), the point.
"""
return DoCoerceGoal(region, K, w, R)[0]
def DoCoerceGoal(region, K, w, R):
if region.IsInside(R):
return (R, True)
perpendicular_vector = K.T / numpy.linalg.norm(K)
parallel_vector = numpy.matrix([[perpendicular_vector[1, 0]],
[-perpendicular_vector[0, 0]]])
# We want to impose the constraint K * X = w on the polytope H * X <= k.
# We do this by breaking X up into parallel and perpendicular components to
# the half plane. This gives us the following equation.
#
# parallel * (parallel.T \dot X) + perpendicular * (perpendicular \dot X)) = X
#
# Then, substitute this into the polytope.
#
# H * (parallel * (parallel.T \dot X) + perpendicular * (perpendicular \dot X)) <= k
#
# Substitute K * X = w
#
# H * parallel * (parallel.T \dot X) + H * perpendicular * w <= k
#
# Move all the knowns to the right side.
#
# H * parallel * ([parallel1 parallel2] * X) <= k - H * perpendicular * w
#
# Let t = parallel.T \dot X, the component parallel to the surface.
#
# H * parallel * t <= k - H * perpendicular * w
#
# This is a polytope which we can solve, and use to figure out the range of X
# that we care about!
t_poly = polytope.HPolytope(
region.H * parallel_vector,
region.k - region.H * perpendicular_vector * w)
vertices = t_poly.Vertices()
if vertices.shape[0]:
# The region exists!
# Find the closest vertex
min_distance = numpy.infty
closest_point = None
for vertex in vertices:
point = parallel_vector * vertex + perpendicular_vector * w
length = numpy.linalg.norm(R - point)
if length < min_distance:
min_distance = length
closest_point = point
return (closest_point, True)
else:
# Find the vertex of the space that is closest to the line.
region_vertices = region.Vertices()
min_distance = numpy.infty
closest_point = None
for vertex in region_vertices:
point = vertex.T
length = numpy.abs((perpendicular_vector.T * point)[0, 0])
if length < min_distance:
min_distance = length
closest_point = point
return (closest_point, False)
class VelocityDrivetrainModel(control_loop.ControlLoop):
def __init__(self, left_low=True, right_low=True, name="VelocityDrivetrainModel"):
super(VelocityDrivetrainModel, self).__init__(name)
self._drivetrain = drivetrain.Drivetrain(left_low=left_low,
right_low=right_low)
self.dt = 0.005
self.A_continuous = numpy.matrix(
[[self._drivetrain.A_continuous[1, 1], self._drivetrain.A_continuous[1, 3]],
[self._drivetrain.A_continuous[3, 1], self._drivetrain.A_continuous[3, 3]]])
self.B_continuous = numpy.matrix(
[[self._drivetrain.B_continuous[1, 0], self._drivetrain.B_continuous[1, 1]],
[self._drivetrain.B_continuous[3, 0], self._drivetrain.B_continuous[3, 1]]])
self.C = numpy.matrix(numpy.eye(2))
self.D = numpy.matrix(numpy.zeros((2, 2)))
self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
self.B_continuous, self.dt)
# FF * X = U (steady state)
self.FF = self.B.I * (numpy.eye(2) - self.A)
self.PlaceControllerPoles([0.90, 0.90])
self.PlaceObserverPoles([0.02, 0.02])
self.G_high = self._drivetrain.G_high
self.G_low = self._drivetrain.G_low
self.resistance = self._drivetrain.resistance
self.r = self._drivetrain.r
self.Kv = self._drivetrain.Kv
self.Kt = self._drivetrain.Kt
self.U_max = self._drivetrain.U_max
self.U_min = self._drivetrain.U_min
class VelocityDrivetrain(object):
HIGH = 'high'
LOW = 'low'
SHIFTING_UP = 'up'
SHIFTING_DOWN = 'down'
def __init__(self):
self.drivetrain_low_low = VelocityDrivetrainModel(
left_low=True, right_low=True, name='VelocityDrivetrainLowLow')
self.drivetrain_low_high = VelocityDrivetrainModel(left_low=True, right_low=False, name='VelocityDrivetrainLowHigh')
self.drivetrain_high_low = VelocityDrivetrainModel(left_low=False, right_low=True, name = 'VelocityDrivetrainHighLow')
self.drivetrain_high_high = VelocityDrivetrainModel(left_low=False, right_low=False, name = 'VelocityDrivetrainHighHigh')
# X is [lvel, rvel]
self.X = numpy.matrix(
[[0.0],
[0.0]])
self.U_poly = polytope.HPolytope(
numpy.matrix([[1, 0],
[-1, 0],
[0, 1],
[0, -1]]),
numpy.matrix([[12],
[12],
[12],
[12]]))
self.U_max = numpy.matrix(
[[12.0],
[12.0]])
self.U_min = numpy.matrix(
[[-12.0000000000],
[-12.0000000000]])
self.dt = 0.005
self.R = numpy.matrix(
[[0.0],
[0.0]])
self.U_ideal = numpy.matrix(
[[0.0],
[0.0]])
# ttrust is the comprimise between having full throttle negative inertia,
# and having no throttle negative inertia. A value of 0 is full throttle
# inertia. A value of 1 is no throttle negative inertia.
self.ttrust = 1.0
self.left_gear = VelocityDrivetrain.LOW
self.right_gear = VelocityDrivetrain.LOW
self.left_shifter_position = 0.0
self.right_shifter_position = 0.0
self.left_cim = CIM()
self.right_cim = CIM()
def IsInGear(self, gear):
return gear is VelocityDrivetrain.HIGH or gear is VelocityDrivetrain.LOW
def MotorRPM(self, shifter_position, velocity):
if shifter_position > 0.5:
return (velocity / self.CurrentDrivetrain().G_high /
self.CurrentDrivetrain().r)
else:
return (velocity / self.CurrentDrivetrain().G_low /
self.CurrentDrivetrain().r)
def CurrentDrivetrain(self):
if self.left_shifter_position > 0.5:
if self.right_shifter_position > 0.5:
return self.drivetrain_high_high
else:
return self.drivetrain_high_low
else:
if self.right_shifter_position > 0.5:
return self.drivetrain_low_high
else:
return self.drivetrain_low_low
def SimShifter(self, gear, shifter_position):
if gear is VelocityDrivetrain.HIGH or gear is VelocityDrivetrain.SHIFTING_UP:
shifter_position = min(shifter_position + 0.5, 1.0)
else:
shifter_position = max(shifter_position - 0.5, 0.0)
if shifter_position == 1.0:
gear = VelocityDrivetrain.HIGH
elif shifter_position == 0.0:
gear = VelocityDrivetrain.LOW
return gear, shifter_position
def ComputeGear(self, wheel_velocity, should_print=False, current_gear=False, gear_name=None):
high_omega = (wheel_velocity / self.CurrentDrivetrain().G_high /
self.CurrentDrivetrain().r)
low_omega = (wheel_velocity / self.CurrentDrivetrain().G_low /
self.CurrentDrivetrain().r)
#print gear_name, "Motor Energy Difference.", 0.5 * 0.000140032647 * (low_omega * low_omega - high_omega * high_omega), "joules"
high_torque = ((12.0 - high_omega / self.CurrentDrivetrain().Kv) *
self.CurrentDrivetrain().Kt / self.CurrentDrivetrain().resistance)
low_torque = ((12.0 - low_omega / self.CurrentDrivetrain().Kv) *
self.CurrentDrivetrain().Kt / self.CurrentDrivetrain().resistance)
high_power = high_torque * high_omega
low_power = low_torque * low_omega
#if should_print:
# print gear_name, "High omega", high_omega, "Low omega", low_omega
# print gear_name, "High torque", high_torque, "Low torque", low_torque
# print gear_name, "High power", high_power, "Low power", low_power
# Shift algorithm improvements.
# TODO(aschuh):
# It takes time to shift. Shifting down for 1 cycle doesn't make sense
# because you will end up slower than without shifting. Figure out how
# to include that info.
# If the driver is still in high gear, but isn't asking for the extra power
# from low gear, don't shift until he asks for it.
goal_gear_is_high = high_power > low_power
#goal_gear_is_high = True
if not self.IsInGear(current_gear):
glog.debug('%s Not in gear.', gear_name)
return current_gear
else:
is_high = current_gear is VelocityDrivetrain.HIGH
if is_high != goal_gear_is_high:
if goal_gear_is_high:
glog.debug('%s Shifting up.', gear_name)
return VelocityDrivetrain.SHIFTING_UP
else:
glog.debug('%s Shifting down.', gear_name)
return VelocityDrivetrain.SHIFTING_DOWN
else:
return current_gear
def FilterVelocity(self, throttle):
# Invert the plant to figure out how the velocity filter would have to work
# out in order to filter out the forwards negative inertia.
# This math assumes that the left and right power and velocity are equal.
# The throttle filter should filter such that the motor in the highest gear
# should be controlling the time constant.
# Do this by finding the index of FF that has the lowest value, and computing
# the sums using that index.
FF_sum = self.CurrentDrivetrain().FF.sum(axis=1)
min_FF_sum_index = numpy.argmin(FF_sum)
min_FF_sum = FF_sum[min_FF_sum_index, 0]
min_K_sum = self.CurrentDrivetrain().K[min_FF_sum_index, :].sum()
# Compute the FF sum for high gear.
high_min_FF_sum = self.drivetrain_high_high.FF[0, :].sum()
# U = self.K[0, :].sum() * (R - x_avg) + self.FF[0, :].sum() * R
# throttle * 12.0 = (self.K[0, :].sum() + self.FF[0, :].sum()) * R
# - self.K[0, :].sum() * x_avg
# R = (throttle * 12.0 + self.K[0, :].sum() * x_avg) /
# (self.K[0, :].sum() + self.FF[0, :].sum())
# U = (K + FF) * R - K * X
# (K + FF) ^-1 * (U + K * X) = R
# Scale throttle by min_FF_sum / high_min_FF_sum. This will make low gear
# have the same velocity goal as high gear, and so that the robot will hold
# the same speed for the same throttle for all gears.
adjusted_ff_voltage = numpy.clip(throttle * 12.0 * min_FF_sum / high_min_FF_sum, -12.0, 12.0)
return ((adjusted_ff_voltage + self.ttrust * min_K_sum * (self.X[0, 0] + self.X[1, 0]) / 2.0)
/ (self.ttrust * min_K_sum + min_FF_sum))
def Update(self, throttle, steering):
# Shift into the gear which sends the most power to the floor.
# This is the same as sending the most torque down to the floor at the
# wheel.
self.left_gear = self.right_gear = True
if True:
self.left_gear = self.ComputeGear(self.X[0, 0], should_print=True,
current_gear=self.left_gear,
gear_name="left")
self.right_gear = self.ComputeGear(self.X[1, 0], should_print=True,
current_gear=self.right_gear,
gear_name="right")
if self.IsInGear(self.left_gear):
self.left_cim.X[0, 0] = self.MotorRPM(self.left_shifter_position, self.X[0, 0])
if self.IsInGear(self.right_gear):
self.right_cim.X[0, 0] = self.MotorRPM(self.right_shifter_position, self.X[0, 0])
if self.IsInGear(self.left_gear) and self.IsInGear(self.right_gear):
# Filter the throttle to provide a nicer response.
fvel = self.FilterVelocity(throttle)
# Constant radius means that angualar_velocity / linear_velocity = constant.
# Compute the left and right velocities.
steering_velocity = numpy.abs(fvel) * steering
left_velocity = fvel - steering_velocity
right_velocity = fvel + steering_velocity
# Write this constraint in the form of K * R = w
# angular velocity / linear velocity = constant
# (left - right) / (left + right) = constant
# left - right = constant * left + constant * right
# (fvel - steering * numpy.abs(fvel) - fvel - steering * numpy.abs(fvel)) /
# (fvel - steering * numpy.abs(fvel) + fvel + steering * numpy.abs(fvel)) =
# constant
# (- 2 * steering * numpy.abs(fvel)) / (2 * fvel) = constant
# (-steering * sign(fvel)) = constant
# (-steering * sign(fvel)) * (left + right) = left - right
# (steering * sign(fvel) + 1) * left + (steering * sign(fvel) - 1) * right = 0
equality_k = numpy.matrix(
[[1 + steering * numpy.sign(fvel), -(1 - steering * numpy.sign(fvel))]])
equality_w = 0.0
self.R[0, 0] = left_velocity
self.R[1, 0] = right_velocity
# Construct a constraint on R by manipulating the constraint on U
# Start out with H * U <= k
# U = FF * R + K * (R - X)
# H * (FF * R + K * R - K * X) <= k
# H * (FF + K) * R <= k + H * K * X
R_poly = polytope.HPolytope(
self.U_poly.H * (self.CurrentDrivetrain().K + self.CurrentDrivetrain().FF),
self.U_poly.k + self.U_poly.H * self.CurrentDrivetrain().K * self.X)
# Limit R back inside the box.
self.boxed_R = CoerceGoal(R_poly, equality_k, equality_w, self.R)
FF_volts = self.CurrentDrivetrain().FF * self.boxed_R
self.U_ideal = self.CurrentDrivetrain().K * (self.boxed_R - self.X) + FF_volts
else:
glog.debug('Not all in gear')
if not self.IsInGear(self.left_gear) and not self.IsInGear(self.right_gear):
# TODO(austin): Use battery volts here.
R_left = self.MotorRPM(self.left_shifter_position, self.X[0, 0])
self.U_ideal[0, 0] = numpy.clip(
self.left_cim.K * (R_left - self.left_cim.X) + R_left / self.left_cim.Kv,
self.left_cim.U_min, self.left_cim.U_max)
self.left_cim.Update(self.U_ideal[0, 0])
R_right = self.MotorRPM(self.right_shifter_position, self.X[1, 0])
self.U_ideal[1, 0] = numpy.clip(
self.right_cim.K * (R_right - self.right_cim.X) + R_right / self.right_cim.Kv,
self.right_cim.U_min, self.right_cim.U_max)
self.right_cim.Update(self.U_ideal[1, 0])
else:
assert False
self.U = numpy.clip(self.U_ideal, self.U_min, self.U_max)
# TODO(austin): Model the robot as not accelerating when you shift...
# This hack only works when you shift at the same time.
if self.IsInGear(self.left_gear) and self.IsInGear(self.right_gear):
self.X = self.CurrentDrivetrain().A * self.X + self.CurrentDrivetrain().B * self.U
self.left_gear, self.left_shifter_position = self.SimShifter(
self.left_gear, self.left_shifter_position)
self.right_gear, self.right_shifter_position = self.SimShifter(
self.right_gear, self.right_shifter_position)
glog.debug('U is %s %s', str(self.U[0, 0]), str(self.U[1, 0]))
glog.debug('Left shifter %s %d Right shifter %s %d',
self.left_gear, self.left_shifter_position,
self.right_gear, self.right_shifter_position)
def main(argv):
vdrivetrain = VelocityDrivetrain()
if not FLAGS.plot:
if len(argv) != 5:
glog.fatal('Expected .h file name and .cc file name')
else:
namespaces = ['y2017', 'control_loops', 'drivetrain']
dog_loop_writer = control_loop.ControlLoopWriter(
"VelocityDrivetrain", [vdrivetrain.drivetrain_low_low,
vdrivetrain.drivetrain_low_high,
vdrivetrain.drivetrain_high_low,
vdrivetrain.drivetrain_high_high],
namespaces=namespaces)
dog_loop_writer.Write(argv[1], argv[2])
cim_writer = control_loop.ControlLoopWriter("CIM", [CIM()])
cim_writer.Write(argv[3], argv[4])
return
vl_plot = []
vr_plot = []
ul_plot = []
ur_plot = []
radius_plot = []
t_plot = []
left_gear_plot = []
right_gear_plot = []
vdrivetrain.left_shifter_position = 0.0
vdrivetrain.right_shifter_position = 0.0
vdrivetrain.left_gear = VelocityDrivetrain.LOW
vdrivetrain.right_gear = VelocityDrivetrain.LOW
glog.debug('K is %s', str(vdrivetrain.CurrentDrivetrain().K))
if vdrivetrain.left_gear is VelocityDrivetrain.HIGH:
glog.debug('Left is high')
else:
glog.debug('Left is low')
if vdrivetrain.right_gear is VelocityDrivetrain.HIGH:
glog.debug('Right is high')
else:
glog.debug('Right is low')
for t in numpy.arange(0, 1.7, vdrivetrain.dt):
if t < 0.5:
vdrivetrain.Update(throttle=0.00, steering=1.0)
elif t < 1.2:
vdrivetrain.Update(throttle=0.5, steering=1.0)
else:
vdrivetrain.Update(throttle=0.00, steering=1.0)
t_plot.append(t)
vl_plot.append(vdrivetrain.X[0, 0])
vr_plot.append(vdrivetrain.X[1, 0])
ul_plot.append(vdrivetrain.U[0, 0])
ur_plot.append(vdrivetrain.U[1, 0])
left_gear_plot.append((vdrivetrain.left_gear is VelocityDrivetrain.HIGH) * 2.0 - 10.0)
right_gear_plot.append((vdrivetrain.right_gear is VelocityDrivetrain.HIGH) * 2.0 - 10.0)
fwd_velocity = (vdrivetrain.X[1, 0] + vdrivetrain.X[0, 0]) / 2
turn_velocity = (vdrivetrain.X[1, 0] - vdrivetrain.X[0, 0])
if abs(fwd_velocity) < 0.0000001:
radius_plot.append(turn_velocity)
else:
radius_plot.append(turn_velocity / fwd_velocity)
# TODO(austin):
# Shifting compensation.
# Tighten the turn.
# Closed loop drive.
pylab.plot(t_plot, vl_plot, label='left velocity')
pylab.plot(t_plot, vr_plot, label='right velocity')
pylab.plot(t_plot, ul_plot, label='left voltage')
pylab.plot(t_plot, ur_plot, label='right voltage')
pylab.plot(t_plot, radius_plot, label='radius')
pylab.plot(t_plot, left_gear_plot, label='left gear high')
pylab.plot(t_plot, right_gear_plot, label='right gear high')
pylab.legend()
pylab.show()
return 0
if __name__ == '__main__':
argv = FLAGS(sys.argv)
glog.init()
sys.exit(main(argv))