| #!/usr/bin/python3 |
| |
| from frc971.control_loops.python import control_loop |
| from frc971.control_loops.python import controls |
| import numpy |
| import math |
| import sys |
| import math |
| from y2022.control_loops.python import catapult_lib |
| from matplotlib import pylab |
| |
| import gflags |
| import glog |
| |
| FLAGS = gflags.FLAGS |
| |
| gflags.DEFINE_bool('plot', True, 'If true, plot the loop response.') |
| |
| ball_mass = 0.25 |
| ball_diameter = 9.5 * 0.0254 |
| lever = 17.5 * 0.0254 |
| |
| G = (14.0 / 72.0) * (12.0 / 33.0) |
| |
| |
| def AddResistance(motor, resistance): |
| motor.resistance += resistance |
| return motor |
| |
| J_ball = 1.5 * ball_mass * lever * lever |
| # Assuming carbon fiber, calculate the mass of the bar. |
| M_bar = (1750 * lever * 0.0254 * 0.0254 * (1.0 - (1 - 0.07)**2.0)) |
| # And the moment of inertia. |
| J_bar = 1.0 / 3.0 * M_bar * lever**2.0 |
| |
| # Do the same for a theoretical cup. Assume a 40 thou thick carbon cup. |
| M_cup = (1750 * 0.0254 * 0.04 * 2 * math.pi * (ball_diameter / 2.)**2.0) |
| J_cup = M_cup * lever**2.0 + M_cup * (ball_diameter / 2.)**2.0 |
| |
| print("J ball", ball_mass * lever * lever) |
| print("J bar", J_bar) |
| print("bar mass", M_bar) |
| print("J cup", J_cup) |
| print("cup mass", M_cup) |
| |
| J = (J_ball + J_bar + J_cup * 1.5) |
| print("J", J) |
| |
| kFinisher = catapult_lib.CatapultParams( |
| name='Finisher', |
| motor=AddResistance(control_loop.NMotor(control_loop.Falcon(), 2), 0.03), |
| G=G, |
| J=J, |
| lever=lever, |
| q_pos=0.01, |
| q_vel=10.0, |
| q_voltage=4.0, |
| r_pos=0.01, |
| controller_poles=[.93], |
| dt=0.0005) |
| |
| |
| def main(argv): |
| # Do all our math with a lower voltage so we have headroom. |
| U = numpy.matrix([[9.0]]) |
| print("For G:", G, " max speed ", catapult_lib.MaxSpeed(params=kFinisher, U=U, final_position = math.pi / 2.0)) |
| |
| if FLAGS.plot: |
| catapult_lib.PlotShot(kFinisher, U, final_position = math.pi / 4.0) |
| |
| gs = [] |
| speed = [] |
| for i in numpy.linspace(0.01, 0.15, 150): |
| kFinisher.G = i |
| gs.append(kFinisher.G) |
| speed.append(catapult_lib.MaxSpeed(params=kFinisher, U=U, final_position = math.pi / 2.0)) |
| pylab.plot(gs, speed, label = "max_speed") |
| pylab.show() |
| return 0 |
| |
| |
| if __name__ == '__main__': |
| argv = FLAGS(sys.argv) |
| sys.exit(main(argv)) |