| /** |
| * The MIT License (MIT) |
| * |
| * Copyright (c) 2015-2021 Nicholas Fraser and the MPack authors |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in all |
| * copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| * |
| */ |
| |
| /* |
| * This is the MPack 1.1 amalgamation package. |
| * |
| * http://github.com/ludocode/mpack |
| */ |
| |
| #define MPACK_INTERNAL 1 |
| #define MPACK_EMIT_INLINE_DEFS 0 |
| |
| #include "wpi/mpack.h" |
| |
| |
| /* mpack/mpack-platform.c.c */ |
| |
| |
| // We define MPACK_EMIT_INLINE_DEFS and include mpack.h to emit |
| // standalone definitions of all (non-static) inline functions in MPack. |
| |
| #define MPACK_INTERNAL 1 |
| #define MPACK_EMIT_INLINE_DEFS 0 |
| |
| /* #include "mpack-platform.h" */ |
| /* #include "mpack.h" */ |
| |
| MPACK_SILENCE_WARNINGS_BEGIN |
| namespace mpack { |
| |
| #if MPACK_DEBUG |
| |
| #if MPACK_STDIO |
| void mpack_assert_fail_format(const char* format, ...) { |
| char buffer[512]; |
| va_list args; |
| va_start(args, format); |
| vsnprintf(buffer, sizeof(buffer), format, args); |
| va_end(args); |
| buffer[sizeof(buffer) - 1] = 0; |
| mpack_assert_fail_wrapper(buffer); |
| } |
| |
| void mpack_break_hit_format(const char* format, ...) { |
| char buffer[512]; |
| va_list args; |
| va_start(args, format); |
| vsnprintf(buffer, sizeof(buffer), format, args); |
| va_end(args); |
| buffer[sizeof(buffer) - 1] = 0; |
| mpack_break_hit(buffer); |
| } |
| #endif |
| |
| #if !MPACK_CUSTOM_ASSERT |
| void mpack_assert_fail(const char* message) { |
| MPACK_UNUSED(message); |
| |
| #if MPACK_STDIO |
| fprintf(stderr, "%s\n", message); |
| #endif |
| } |
| #endif |
| |
| // We split the assert failure from the wrapper so that a |
| // custom assert function can return. |
| void mpack_assert_fail_wrapper(const char* message) { |
| |
| #ifdef MPACK_GCOV |
| // gcov marks even __builtin_unreachable() as an uncovered line. this |
| // silences it. |
| (mpack_assert_fail(message), __builtin_unreachable()); |
| |
| #else |
| mpack_assert_fail(message); |
| |
| // mpack_assert_fail() is not supposed to return. in case it does, we |
| // abort. |
| |
| #if !MPACK_NO_BUILTINS |
| #if defined(__GNUC__) || defined(__clang__) |
| __builtin_trap(); |
| #elif defined(WIN32) |
| __debugbreak(); |
| #endif |
| #endif |
| |
| #if (defined(__GNUC__) || defined(__clang__)) && !MPACK_NO_BUILTINS |
| __builtin_abort(); |
| #elif MPACK_STDLIB |
| abort(); |
| #endif |
| |
| MPACK_UNREACHABLE; |
| #endif |
| } |
| |
| #if !MPACK_CUSTOM_BREAK |
| |
| // If we have a custom assert handler, break wraps it by default. |
| // This allows users of MPack to only implement mpack_assert_fail() without |
| // having to worry about the difference between assert and break. |
| // |
| // MPACK_CUSTOM_BREAK is available to define a separate break handler |
| // (which is needed by the unit test suite), but this is not offered in |
| // mpack-config.h for simplicity. |
| |
| #if MPACK_CUSTOM_ASSERT |
| void mpack_break_hit(const char* message) { |
| mpack_assert_fail_wrapper(message); |
| } |
| #else |
| void mpack_break_hit(const char* message) { |
| MPACK_UNUSED(message); |
| |
| #if MPACK_STDIO |
| fprintf(stderr, "%s\n", message); |
| #endif |
| |
| #if defined(__GNUC__) || defined(__clang__) && !MPACK_NO_BUILTINS |
| __builtin_trap(); |
| #elif defined(WIN32) && !MPACK_NO_BUILTINS |
| __debugbreak(); |
| #elif MPACK_STDLIB |
| abort(); |
| #endif |
| } |
| #endif |
| |
| #endif |
| |
| #endif |
| |
| |
| |
| // The below are adapted from the C wikibook: |
| // https://en.wikibooks.org/wiki/C_Programming/Strings |
| |
| #ifndef mpack_memcmp |
| int mpack_memcmp(const void* s1, const void* s2, size_t n) { |
| const unsigned char *us1 = (const unsigned char *) s1; |
| const unsigned char *us2 = (const unsigned char *) s2; |
| while (n-- != 0) { |
| if (*us1 != *us2) |
| return (*us1 < *us2) ? -1 : +1; |
| us1++; |
| us2++; |
| } |
| return 0; |
| } |
| #endif |
| |
| #ifndef mpack_memcpy |
| void* mpack_memcpy(void* MPACK_RESTRICT s1, const void* MPACK_RESTRICT s2, size_t n) { |
| char* MPACK_RESTRICT dst = (char *)s1; |
| const char* MPACK_RESTRICT src = (const char *)s2; |
| while (n-- != 0) |
| *dst++ = *src++; |
| return s1; |
| } |
| #endif |
| |
| #ifndef mpack_memmove |
| void* mpack_memmove(void* s1, const void* s2, size_t n) { |
| char *p1 = (char *)s1; |
| const char *p2 = (const char *)s2; |
| if (p2 < p1 && p1 < p2 + n) { |
| p2 += n; |
| p1 += n; |
| while (n-- != 0) |
| *--p1 = *--p2; |
| } else |
| while (n-- != 0) |
| *p1++ = *p2++; |
| return s1; |
| } |
| #endif |
| |
| #ifndef mpack_memset |
| void* mpack_memset(void* s, int c, size_t n) { |
| unsigned char *us = (unsigned char *)s; |
| unsigned char uc = (unsigned char)c; |
| while (n-- != 0) |
| *us++ = uc; |
| return s; |
| } |
| #endif |
| |
| #ifndef mpack_strlen |
| size_t mpack_strlen(const char* s) { |
| const char* p = s; |
| while (*p != '\0') |
| p++; |
| return (size_t)(p - s); |
| } |
| #endif |
| |
| |
| |
| #if defined(MPACK_MALLOC) && !defined(MPACK_REALLOC) |
| void* mpack_realloc(void* old_ptr, size_t used_size, size_t new_size) { |
| if (new_size == 0) { |
| if (old_ptr) |
| MPACK_FREE(old_ptr); |
| return NULL; |
| } |
| |
| void* new_ptr = MPACK_MALLOC(new_size); |
| if (new_ptr == NULL) |
| return NULL; |
| |
| mpack_memcpy(new_ptr, old_ptr, used_size); |
| MPACK_FREE(old_ptr); |
| return new_ptr; |
| } |
| #endif |
| |
| MPACK_SILENCE_WARNINGS_END |
| |
| /* mpack/mpack-common.c.c */ |
| |
| #define MPACK_INTERNAL 1 |
| |
| /* #include "mpack-common.h" */ |
| |
| MPACK_SILENCE_WARNINGS_BEGIN |
| |
| const char* mpack_error_to_string(mpack_error_t error) { |
| #if MPACK_STRINGS |
| switch (error) { |
| #define MPACK_ERROR_STRING_CASE(e) case e: return #e |
| MPACK_ERROR_STRING_CASE(mpack_ok); |
| MPACK_ERROR_STRING_CASE(mpack_error_io); |
| MPACK_ERROR_STRING_CASE(mpack_error_invalid); |
| MPACK_ERROR_STRING_CASE(mpack_error_unsupported); |
| MPACK_ERROR_STRING_CASE(mpack_error_type); |
| MPACK_ERROR_STRING_CASE(mpack_error_too_big); |
| MPACK_ERROR_STRING_CASE(mpack_error_memory); |
| MPACK_ERROR_STRING_CASE(mpack_error_bug); |
| MPACK_ERROR_STRING_CASE(mpack_error_data); |
| MPACK_ERROR_STRING_CASE(mpack_error_eof); |
| #undef MPACK_ERROR_STRING_CASE |
| } |
| mpack_assert(0, "unrecognized error %i", (int)error); |
| return "(unknown mpack_error_t)"; |
| #else |
| MPACK_UNUSED(error); |
| return ""; |
| #endif |
| } |
| |
| const char* mpack_type_to_string(mpack_type_t type) { |
| #if MPACK_STRINGS |
| switch (type) { |
| #define MPACK_TYPE_STRING_CASE(e) case e: return #e |
| MPACK_TYPE_STRING_CASE(mpack_type_missing); |
| MPACK_TYPE_STRING_CASE(mpack_type_nil); |
| MPACK_TYPE_STRING_CASE(mpack_type_bool); |
| MPACK_TYPE_STRING_CASE(mpack_type_float); |
| MPACK_TYPE_STRING_CASE(mpack_type_double); |
| MPACK_TYPE_STRING_CASE(mpack_type_int); |
| MPACK_TYPE_STRING_CASE(mpack_type_uint); |
| MPACK_TYPE_STRING_CASE(mpack_type_str); |
| MPACK_TYPE_STRING_CASE(mpack_type_bin); |
| MPACK_TYPE_STRING_CASE(mpack_type_array); |
| MPACK_TYPE_STRING_CASE(mpack_type_map); |
| #if MPACK_EXTENSIONS |
| MPACK_TYPE_STRING_CASE(mpack_type_ext); |
| #endif |
| #undef MPACK_TYPE_STRING_CASE |
| } |
| mpack_assert(0, "unrecognized type %i", (int)type); |
| return "(unknown mpack_type_t)"; |
| #else |
| MPACK_UNUSED(type); |
| return ""; |
| #endif |
| } |
| |
| int mpack_tag_cmp(mpack_tag_t left, mpack_tag_t right) { |
| |
| // positive numbers may be stored as int; convert to uint |
| if (left.type == mpack_type_int && left.v.i >= 0) { |
| left.type = mpack_type_uint; |
| left.v.u = (uint64_t)left.v.i; |
| } |
| if (right.type == mpack_type_int && right.v.i >= 0) { |
| right.type = mpack_type_uint; |
| right.v.u = (uint64_t)right.v.i; |
| } |
| |
| if (left.type != right.type) |
| return ((int)left.type < (int)right.type) ? -1 : 1; |
| |
| switch (left.type) { |
| case mpack_type_missing: // fallthrough |
| case mpack_type_nil: |
| return 0; |
| |
| case mpack_type_bool: |
| return (int)left.v.b - (int)right.v.b; |
| |
| case mpack_type_int: |
| if (left.v.i == right.v.i) |
| return 0; |
| return (left.v.i < right.v.i) ? -1 : 1; |
| |
| case mpack_type_uint: |
| if (left.v.u == right.v.u) |
| return 0; |
| return (left.v.u < right.v.u) ? -1 : 1; |
| |
| case mpack_type_array: |
| case mpack_type_map: |
| if (left.v.n == right.v.n) |
| return 0; |
| return (left.v.n < right.v.n) ? -1 : 1; |
| |
| case mpack_type_str: |
| case mpack_type_bin: |
| if (left.v.l == right.v.l) |
| return 0; |
| return (left.v.l < right.v.l) ? -1 : 1; |
| |
| #if MPACK_EXTENSIONS |
| case mpack_type_ext: |
| if (left.exttype == right.exttype) { |
| if (left.v.l == right.v.l) |
| return 0; |
| return (left.v.l < right.v.l) ? -1 : 1; |
| } |
| return (int)left.exttype - (int)right.exttype; |
| #endif |
| |
| // floats should not normally be compared for equality. we compare |
| // with memcmp() to silence compiler warnings, but this will return |
| // equal if both are NaNs with the same representation (though we may |
| // want this, for instance if you are for some bizarre reason using |
| // floats as map keys.) i'm not sure what the right thing to |
| // do is here. check for NaN first? always return false if the type |
| // is float? use operator== and pragmas to silence compiler warning? |
| // please send me your suggestions. |
| // note also that we don't convert floats to doubles, so when this is |
| // used for ordering purposes, all floats are ordered before all |
| // doubles. |
| case mpack_type_float: |
| return mpack_memcmp(&left.v.f, &right.v.f, sizeof(left.v.f)); |
| case mpack_type_double: |
| return mpack_memcmp(&left.v.d, &right.v.d, sizeof(left.v.d)); |
| } |
| |
| mpack_assert(0, "unrecognized type %i", (int)left.type); |
| return false; |
| } |
| |
| #if MPACK_DEBUG && MPACK_STDIO |
| static char mpack_hex_char(uint8_t hex_value) { |
| // Older compilers (e.g. GCC 4.4.7) promote the result of this ternary to |
| // int and warn under -Wconversion, so we have to cast it back to char. |
| return (char)((hex_value < 10) ? (char)('0' + hex_value) : (char)('a' + (hex_value - 10))); |
| } |
| |
| static void mpack_tag_debug_complete_bin_ext(mpack_tag_t tag, size_t string_length, char* buffer, size_t buffer_size, |
| const char* prefix, size_t prefix_size) |
| { |
| // If at any point in this function we run out of space in the buffer, we |
| // bail out. The outer tag print wrapper will make sure we have a |
| // null-terminator. |
| |
| if (string_length == 0 || string_length >= buffer_size) |
| return; |
| buffer += string_length; |
| buffer_size -= string_length; |
| |
| size_t total = mpack_tag_bytes(&tag); |
| if (total == 0) { |
| strncpy(buffer, ">", buffer_size); |
| return; |
| } |
| |
| strncpy(buffer, ": ", buffer_size); |
| if (buffer_size < 2) |
| return; |
| buffer += 2; |
| buffer_size -= 2; |
| |
| size_t hex_bytes = 0; |
| size_t i; |
| for (i = 0; i < MPACK_PRINT_BYTE_COUNT && i < prefix_size && buffer_size > 2; ++i) { |
| uint8_t byte = (uint8_t)prefix[i]; |
| buffer[0] = mpack_hex_char((uint8_t)(byte >> 4)); |
| buffer[1] = mpack_hex_char((uint8_t)(byte & 0xfu)); |
| buffer += 2; |
| buffer_size -= 2; |
| ++hex_bytes; |
| } |
| |
| if (buffer_size != 0) |
| mpack_snprintf(buffer, buffer_size, "%s>", (total > hex_bytes) ? "..." : ""); |
| } |
| |
| static void mpack_tag_debug_pseudo_json_bin(mpack_tag_t tag, char* buffer, size_t buffer_size, |
| const char* prefix, size_t prefix_size) |
| { |
| mpack_assert(mpack_tag_type(&tag) == mpack_type_bin); |
| size_t length = (size_t)mpack_snprintf(buffer, buffer_size, "<binary data of length %u", tag.v.l); |
| mpack_tag_debug_complete_bin_ext(tag, length, buffer, buffer_size, prefix, prefix_size); |
| } |
| |
| #if MPACK_EXTENSIONS |
| static void mpack_tag_debug_pseudo_json_ext(mpack_tag_t tag, char* buffer, size_t buffer_size, |
| const char* prefix, size_t prefix_size) |
| { |
| mpack_assert(mpack_tag_type(&tag) == mpack_type_ext); |
| size_t length = (size_t)mpack_snprintf(buffer, buffer_size, "<ext data of type %i and length %u", |
| mpack_tag_ext_exttype(&tag), mpack_tag_ext_length(&tag)); |
| mpack_tag_debug_complete_bin_ext(tag, length, buffer, buffer_size, prefix, prefix_size); |
| } |
| #endif |
| |
| static void mpack_tag_debug_pseudo_json_impl(mpack_tag_t tag, char* buffer, size_t buffer_size, |
| const char* prefix, size_t prefix_size) |
| { |
| switch (tag.type) { |
| case mpack_type_missing: |
| mpack_snprintf(buffer, buffer_size, "<missing!>"); |
| return; |
| case mpack_type_nil: |
| mpack_snprintf(buffer, buffer_size, "null"); |
| return; |
| case mpack_type_bool: |
| mpack_snprintf(buffer, buffer_size, tag.v.b ? "true" : "false"); |
| return; |
| case mpack_type_int: |
| mpack_snprintf(buffer, buffer_size, "%" PRIi64, tag.v.i); |
| return; |
| case mpack_type_uint: |
| mpack_snprintf(buffer, buffer_size, "%" PRIu64, tag.v.u); |
| return; |
| case mpack_type_float: |
| #if MPACK_FLOAT |
| mpack_snprintf(buffer, buffer_size, "%f", tag.v.f); |
| #else |
| mpack_snprintf(buffer, buffer_size, "<float>"); |
| #endif |
| return; |
| case mpack_type_double: |
| #if MPACK_DOUBLE |
| mpack_snprintf(buffer, buffer_size, "%f", tag.v.d); |
| #else |
| mpack_snprintf(buffer, buffer_size, "<double>"); |
| #endif |
| return; |
| |
| case mpack_type_str: |
| mpack_snprintf(buffer, buffer_size, "<string of %u bytes>", tag.v.l); |
| return; |
| case mpack_type_bin: |
| mpack_tag_debug_pseudo_json_bin(tag, buffer, buffer_size, prefix, prefix_size); |
| return; |
| #if MPACK_EXTENSIONS |
| case mpack_type_ext: |
| mpack_tag_debug_pseudo_json_ext(tag, buffer, buffer_size, prefix, prefix_size); |
| return; |
| #endif |
| |
| case mpack_type_array: |
| mpack_snprintf(buffer, buffer_size, "<array of %u elements>", tag.v.n); |
| return; |
| case mpack_type_map: |
| mpack_snprintf(buffer, buffer_size, "<map of %u key-value pairs>", tag.v.n); |
| return; |
| } |
| |
| mpack_snprintf(buffer, buffer_size, "<unknown!>"); |
| } |
| |
| void mpack_tag_debug_pseudo_json(mpack_tag_t tag, char* buffer, size_t buffer_size, |
| const char* prefix, size_t prefix_size) |
| { |
| mpack_assert(buffer_size > 0, "buffer size cannot be zero!"); |
| buffer[0] = 0; |
| |
| mpack_tag_debug_pseudo_json_impl(tag, buffer, buffer_size, prefix, prefix_size); |
| |
| // We always null-terminate the buffer manually just in case the snprintf() |
| // function doesn't null-terminate when the string doesn't fit. |
| buffer[buffer_size - 1] = 0; |
| } |
| |
| static void mpack_tag_debug_describe_impl(mpack_tag_t tag, char* buffer, size_t buffer_size) { |
| switch (tag.type) { |
| case mpack_type_missing: |
| mpack_snprintf(buffer, buffer_size, "missing"); |
| return; |
| case mpack_type_nil: |
| mpack_snprintf(buffer, buffer_size, "nil"); |
| return; |
| case mpack_type_bool: |
| mpack_snprintf(buffer, buffer_size, tag.v.b ? "true" : "false"); |
| return; |
| case mpack_type_int: |
| mpack_snprintf(buffer, buffer_size, "int %" PRIi64, tag.v.i); |
| return; |
| case mpack_type_uint: |
| mpack_snprintf(buffer, buffer_size, "uint %" PRIu64, tag.v.u); |
| return; |
| case mpack_type_float: |
| #if MPACK_FLOAT |
| mpack_snprintf(buffer, buffer_size, "float %f", tag.v.f); |
| #else |
| mpack_snprintf(buffer, buffer_size, "float"); |
| #endif |
| return; |
| case mpack_type_double: |
| #if MPACK_DOUBLE |
| mpack_snprintf(buffer, buffer_size, "double %f", tag.v.d); |
| #else |
| mpack_snprintf(buffer, buffer_size, "double"); |
| #endif |
| return; |
| case mpack_type_str: |
| mpack_snprintf(buffer, buffer_size, "str of %u bytes", tag.v.l); |
| return; |
| case mpack_type_bin: |
| mpack_snprintf(buffer, buffer_size, "bin of %u bytes", tag.v.l); |
| return; |
| #if MPACK_EXTENSIONS |
| case mpack_type_ext: |
| mpack_snprintf(buffer, buffer_size, "ext of type %i, %u bytes", |
| mpack_tag_ext_exttype(&tag), mpack_tag_ext_length(&tag)); |
| return; |
| #endif |
| case mpack_type_array: |
| mpack_snprintf(buffer, buffer_size, "array of %u elements", tag.v.n); |
| return; |
| case mpack_type_map: |
| mpack_snprintf(buffer, buffer_size, "map of %u key-value pairs", tag.v.n); |
| return; |
| } |
| |
| mpack_snprintf(buffer, buffer_size, "unknown!"); |
| } |
| |
| void mpack_tag_debug_describe(mpack_tag_t tag, char* buffer, size_t buffer_size) { |
| mpack_assert(buffer_size > 0, "buffer size cannot be zero!"); |
| buffer[0] = 0; |
| |
| mpack_tag_debug_describe_impl(tag, buffer, buffer_size); |
| |
| // We always null-terminate the buffer manually just in case the snprintf() |
| // function doesn't null-terminate when the string doesn't fit. |
| buffer[buffer_size - 1] = 0; |
| } |
| #endif |
| |
| |
| |
| #if MPACK_READ_TRACKING || MPACK_WRITE_TRACKING |
| |
| #ifndef MPACK_TRACKING_INITIAL_CAPACITY |
| // seems like a reasonable number. we grow by doubling, and it only |
| // needs to be as long as the maximum depth of the message. |
| #define MPACK_TRACKING_INITIAL_CAPACITY 8 |
| #endif |
| |
| mpack_error_t mpack_track_init(mpack_track_t* track) { |
| track->count = 0; |
| track->capacity = MPACK_TRACKING_INITIAL_CAPACITY; |
| track->elements = (mpack_track_element_t*)MPACK_MALLOC(sizeof(mpack_track_element_t) * track->capacity); |
| if (track->elements == NULL) |
| return mpack_error_memory; |
| return mpack_ok; |
| } |
| |
| mpack_error_t mpack_track_grow(mpack_track_t* track) { |
| mpack_assert(track->elements, "null track elements!"); |
| mpack_assert(track->count == track->capacity, "incorrect growing?"); |
| |
| size_t new_capacity = track->capacity * 2; |
| |
| mpack_track_element_t* new_elements = (mpack_track_element_t*)mpack_realloc(track->elements, |
| sizeof(mpack_track_element_t) * track->count, sizeof(mpack_track_element_t) * new_capacity); |
| if (new_elements == NULL) |
| return mpack_error_memory; |
| |
| track->elements = new_elements; |
| track->capacity = new_capacity; |
| return mpack_ok; |
| } |
| |
| mpack_error_t mpack_track_push(mpack_track_t* track, mpack_type_t type, uint32_t count) { |
| mpack_assert(track->elements, "null track elements!"); |
| mpack_log("track pushing %s count %i\n", mpack_type_to_string(type), (int)count); |
| |
| // grow if needed |
| if (track->count == track->capacity) { |
| mpack_error_t error = mpack_track_grow(track); |
| if (error != mpack_ok) |
| return error; |
| } |
| |
| // insert new track |
| track->elements[track->count].type = type; |
| track->elements[track->count].left = count; |
| track->elements[track->count].builder = false; |
| track->elements[track->count].key_needs_value = false; |
| ++track->count; |
| return mpack_ok; |
| } |
| |
| // TODO dedupe this |
| mpack_error_t mpack_track_push_builder(mpack_track_t* track, mpack_type_t type) { |
| mpack_assert(track->elements, "null track elements!"); |
| mpack_log("track pushing %s builder\n", mpack_type_to_string(type)); |
| |
| // grow if needed |
| if (track->count == track->capacity) { |
| mpack_error_t error = mpack_track_grow(track); |
| if (error != mpack_ok) |
| return error; |
| } |
| |
| // insert new track |
| track->elements[track->count].type = type; |
| track->elements[track->count].left = 0; |
| track->elements[track->count].builder = true; |
| track->elements[track->count].key_needs_value = false; |
| ++track->count; |
| return mpack_ok; |
| } |
| |
| static mpack_error_t mpack_track_pop_impl(mpack_track_t* track, mpack_type_t type, bool builder) { |
| mpack_assert(track->elements, "null track elements!"); |
| mpack_log("track popping %s\n", mpack_type_to_string(type)); |
| |
| if (track->count == 0) { |
| mpack_break("attempting to close a %s but nothing was opened!", mpack_type_to_string(type)); |
| return mpack_error_bug; |
| } |
| |
| mpack_track_element_t* element = &track->elements[track->count - 1]; |
| |
| if (element->type != type) { |
| mpack_break("attempting to close a %s but the open element is a %s!", |
| mpack_type_to_string(type), mpack_type_to_string(element->type)); |
| return mpack_error_bug; |
| } |
| |
| if (element->key_needs_value) { |
| mpack_assert(type == mpack_type_map, "key_needs_value can only be true for maps!"); |
| mpack_break("attempting to close a %s but an odd number of elements were written", |
| mpack_type_to_string(type)); |
| return mpack_error_bug; |
| } |
| |
| if (element->left != 0) { |
| mpack_break("attempting to close a %s but there are %i %s left", |
| mpack_type_to_string(type), element->left, |
| (type == mpack_type_map || type == mpack_type_array) ? "elements" : "bytes"); |
| return mpack_error_bug; |
| } |
| |
| if (element->builder != builder) { |
| mpack_break("attempting to pop a %sbuilder but the open element is %sa builder", |
| builder ? "" : "non-", |
| element->builder ? "" : "not "); |
| return mpack_error_bug; |
| } |
| |
| --track->count; |
| return mpack_ok; |
| } |
| |
| mpack_error_t mpack_track_pop(mpack_track_t* track, mpack_type_t type) { |
| return mpack_track_pop_impl(track, type, false); |
| } |
| |
| mpack_error_t mpack_track_pop_builder(mpack_track_t* track, mpack_type_t type) { |
| return mpack_track_pop_impl(track, type, true); |
| } |
| |
| mpack_error_t mpack_track_peek_element(mpack_track_t* track, bool read) { |
| MPACK_UNUSED(read); |
| mpack_assert(track->elements, "null track elements!"); |
| |
| // if there are no open elements, that's fine, we can read/write elements at will |
| if (track->count == 0) |
| return mpack_ok; |
| |
| mpack_track_element_t* element = &track->elements[track->count - 1]; |
| |
| if (element->type != mpack_type_map && element->type != mpack_type_array) { |
| mpack_break("elements cannot be %s within an %s", read ? "read" : "written", |
| mpack_type_to_string(element->type)); |
| return mpack_error_bug; |
| } |
| |
| if (!element->builder && element->left == 0 && !element->key_needs_value) { |
| mpack_break("too many elements %s for %s", read ? "read" : "written", |
| mpack_type_to_string(element->type)); |
| return mpack_error_bug; |
| } |
| |
| return mpack_ok; |
| } |
| |
| mpack_error_t mpack_track_element(mpack_track_t* track, bool read) { |
| mpack_error_t error = mpack_track_peek_element(track, read); |
| if (track->count == 0 || error != mpack_ok) |
| return error; |
| |
| mpack_track_element_t* element = &track->elements[track->count - 1]; |
| |
| if (element->type == mpack_type_map) { |
| if (!element->key_needs_value) { |
| element->key_needs_value = true; |
| return mpack_ok; // don't decrement |
| } |
| element->key_needs_value = false; |
| } |
| |
| if (!element->builder) |
| --element->left; |
| return mpack_ok; |
| } |
| |
| mpack_error_t mpack_track_bytes(mpack_track_t* track, bool read, size_t count) { |
| MPACK_UNUSED(read); |
| mpack_assert(track->elements, "null track elements!"); |
| |
| if (count > MPACK_UINT32_MAX) { |
| mpack_break("%s more bytes than could possibly fit in a str/bin/ext!", |
| read ? "reading" : "writing"); |
| return mpack_error_bug; |
| } |
| |
| if (track->count == 0) { |
| mpack_break("bytes cannot be %s with no open bin, str or ext", read ? "read" : "written"); |
| return mpack_error_bug; |
| } |
| |
| mpack_track_element_t* element = &track->elements[track->count - 1]; |
| |
| if (element->type == mpack_type_map || element->type == mpack_type_array) { |
| mpack_break("bytes cannot be %s within an %s", read ? "read" : "written", |
| mpack_type_to_string(element->type)); |
| return mpack_error_bug; |
| } |
| |
| if (element->left < count) { |
| mpack_break("too many bytes %s for %s", read ? "read" : "written", |
| mpack_type_to_string(element->type)); |
| return mpack_error_bug; |
| } |
| |
| element->left -= (uint32_t)count; |
| return mpack_ok; |
| } |
| |
| mpack_error_t mpack_track_str_bytes_all(mpack_track_t* track, bool read, size_t count) { |
| mpack_error_t error = mpack_track_bytes(track, read, count); |
| if (error != mpack_ok) |
| return error; |
| |
| mpack_track_element_t* element = &track->elements[track->count - 1]; |
| |
| if (element->type != mpack_type_str) { |
| mpack_break("the open type must be a string, not a %s", mpack_type_to_string(element->type)); |
| return mpack_error_bug; |
| } |
| |
| if (element->left != 0) { |
| mpack_break("not all bytes were read; the wrong byte count was requested for a string read."); |
| return mpack_error_bug; |
| } |
| |
| return mpack_ok; |
| } |
| |
| mpack_error_t mpack_track_check_empty(mpack_track_t* track) { |
| if (track->count != 0) { |
| mpack_break("unclosed %s", mpack_type_to_string(track->elements[0].type)); |
| return mpack_error_bug; |
| } |
| return mpack_ok; |
| } |
| |
| mpack_error_t mpack_track_destroy(mpack_track_t* track, bool cancel) { |
| mpack_error_t error = cancel ? mpack_ok : mpack_track_check_empty(track); |
| if (track->elements) { |
| MPACK_FREE(track->elements); |
| track->elements = NULL; |
| } |
| return error; |
| } |
| #endif |
| |
| |
| |
| static bool mpack_utf8_check_impl(const uint8_t* str, size_t count, bool allow_null) { |
| while (count > 0) { |
| uint8_t lead = str[0]; |
| |
| // NUL |
| if (!allow_null && lead == '\0') // we don't allow NUL bytes in MPack C-strings |
| return false; |
| |
| // ASCII |
| if (lead <= 0x7F) { |
| ++str; |
| --count; |
| |
| // 2-byte sequence |
| } else if ((lead & 0xE0) == 0xC0) { |
| if (count < 2) // truncated sequence |
| return false; |
| |
| uint8_t cont = str[1]; |
| if ((cont & 0xC0) != 0x80) // not a continuation byte |
| return false; |
| |
| str += 2; |
| count -= 2; |
| |
| uint32_t z = ((uint32_t)(lead & ~0xE0) << 6) | |
| (uint32_t)(cont & ~0xC0); |
| |
| if (z < 0x80) // overlong sequence |
| return false; |
| |
| // 3-byte sequence |
| } else if ((lead & 0xF0) == 0xE0) { |
| if (count < 3) // truncated sequence |
| return false; |
| |
| uint8_t cont1 = str[1]; |
| if ((cont1 & 0xC0) != 0x80) // not a continuation byte |
| return false; |
| uint8_t cont2 = str[2]; |
| if ((cont2 & 0xC0) != 0x80) // not a continuation byte |
| return false; |
| |
| str += 3; |
| count -= 3; |
| |
| uint32_t z = ((uint32_t)(lead & ~0xF0) << 12) | |
| ((uint32_t)(cont1 & ~0xC0) << 6) | |
| (uint32_t)(cont2 & ~0xC0); |
| |
| if (z < 0x800) // overlong sequence |
| return false; |
| if (z >= 0xD800 && z <= 0xDFFF) // surrogate |
| return false; |
| |
| // 4-byte sequence |
| } else if ((lead & 0xF8) == 0xF0) { |
| if (count < 4) // truncated sequence |
| return false; |
| |
| uint8_t cont1 = str[1]; |
| if ((cont1 & 0xC0) != 0x80) // not a continuation byte |
| return false; |
| uint8_t cont2 = str[2]; |
| if ((cont2 & 0xC0) != 0x80) // not a continuation byte |
| return false; |
| uint8_t cont3 = str[3]; |
| if ((cont3 & 0xC0) != 0x80) // not a continuation byte |
| return false; |
| |
| str += 4; |
| count -= 4; |
| |
| uint32_t z = ((uint32_t)(lead & ~0xF8) << 18) | |
| ((uint32_t)(cont1 & ~0xC0) << 12) | |
| ((uint32_t)(cont2 & ~0xC0) << 6) | |
| (uint32_t)(cont3 & ~0xC0); |
| |
| if (z < 0x10000) // overlong sequence |
| return false; |
| if (z > 0x10FFFF) // codepoint limit |
| return false; |
| |
| } else { |
| return false; // continuation byte without a lead, or lead for a 5-byte sequence or longer |
| } |
| } |
| return true; |
| } |
| |
| bool mpack_utf8_check(const char* str, size_t bytes) { |
| return mpack_utf8_check_impl((const uint8_t*)str, bytes, true); |
| } |
| |
| bool mpack_utf8_check_no_null(const char* str, size_t bytes) { |
| return mpack_utf8_check_impl((const uint8_t*)str, bytes, false); |
| } |
| |
| bool mpack_str_check_no_null(const char* str, size_t bytes) { |
| size_t i; |
| for (i = 0; i < bytes; ++i) |
| if (str[i] == '\0') |
| return false; |
| return true; |
| } |
| |
| #if MPACK_DEBUG && MPACK_STDIO |
| void mpack_print_append(mpack_print_t* print, const char* data, size_t count) { |
| |
| // copy whatever fits into the buffer |
| size_t copy = print->size - print->count; |
| if (copy > count) |
| copy = count; |
| mpack_memcpy(print->buffer + print->count, data, copy); |
| print->count += copy; |
| data += copy; |
| count -= copy; |
| |
| // if we don't need to flush or can't flush there's nothing else to do |
| if (count == 0 || print->callback == NULL) |
| return; |
| |
| // flush the buffer |
| print->callback(print->context, print->buffer, print->count); |
| |
| if (count > print->size / 2) { |
| // flush the rest of the data |
| print->count = 0; |
| print->callback(print->context, data, count); |
| } else { |
| // copy the rest of the data into the buffer |
| mpack_memcpy(print->buffer, data, count); |
| print->count = count; |
| } |
| |
| } |
| |
| void mpack_print_flush(mpack_print_t* print) { |
| if (print->count > 0 && print->callback != NULL) { |
| print->callback(print->context, print->buffer, print->count); |
| print->count = 0; |
| } |
| } |
| |
| void mpack_print_file_callback(void* context, const char* data, size_t count) { |
| FILE* file = (FILE*)context; |
| fwrite(data, 1, count, file); |
| } |
| #endif |
| |
| MPACK_SILENCE_WARNINGS_END |
| |
| /* mpack/mpack-writer.c.c */ |
| |
| #define MPACK_INTERNAL 1 |
| |
| /* #include "mpack-writer.h" */ |
| |
| MPACK_SILENCE_WARNINGS_BEGIN |
| |
| #if MPACK_WRITER |
| |
| #if MPACK_BUILDER |
| static void mpack_builder_flush(mpack_writer_t* writer); |
| #endif |
| |
| #if MPACK_WRITE_TRACKING |
| static void mpack_writer_flag_if_error(mpack_writer_t* writer, mpack_error_t error) { |
| if (error != mpack_ok) |
| mpack_writer_flag_error(writer, error); |
| } |
| |
| void mpack_writer_track_push(mpack_writer_t* writer, mpack_type_t type, uint32_t count) { |
| if (writer->error == mpack_ok) |
| mpack_writer_flag_if_error(writer, mpack_track_push(&writer->track, type, count)); |
| } |
| |
| void mpack_writer_track_push_builder(mpack_writer_t* writer, mpack_type_t type) { |
| if (writer->error == mpack_ok) |
| mpack_writer_flag_if_error(writer, mpack_track_push_builder(&writer->track, type)); |
| } |
| |
| void mpack_writer_track_pop(mpack_writer_t* writer, mpack_type_t type) { |
| if (writer->error == mpack_ok) |
| mpack_writer_flag_if_error(writer, mpack_track_pop(&writer->track, type)); |
| } |
| |
| void mpack_writer_track_pop_builder(mpack_writer_t* writer, mpack_type_t type) { |
| if (writer->error == mpack_ok) |
| mpack_writer_flag_if_error(writer, mpack_track_pop_builder(&writer->track, type)); |
| } |
| |
| void mpack_writer_track_bytes(mpack_writer_t* writer, size_t count) { |
| if (writer->error == mpack_ok) |
| mpack_writer_flag_if_error(writer, mpack_track_bytes(&writer->track, false, count)); |
| } |
| #endif |
| |
| // This should probably be renamed. It's not solely used for tracking. |
| static inline void mpack_writer_track_element(mpack_writer_t* writer) { |
| (void)writer; |
| |
| #if MPACK_WRITE_TRACKING |
| if (writer->error == mpack_ok) |
| mpack_writer_flag_if_error(writer, mpack_track_element(&writer->track, false)); |
| #endif |
| |
| #if MPACK_BUILDER |
| if (writer->builder.current_build != NULL) { |
| mpack_build_t* build = writer->builder.current_build; |
| // We only track this write if it's not nested within another non-build |
| // map or array. |
| if (build->nested_compound_elements == 0) { |
| if (build->type != mpack_type_map) { |
| ++build->count; |
| mpack_log("adding element to build %p, now %u elements\n", (void*)build, build->count); |
| } else if (build->key_needs_value) { |
| build->key_needs_value = false; |
| ++build->count; |
| } else { |
| build->key_needs_value = true; |
| } |
| } |
| } |
| #endif |
| } |
| |
| static void mpack_writer_clear(mpack_writer_t* writer) { |
| #if MPACK_COMPATIBILITY |
| writer->version = mpack_version_current; |
| #endif |
| writer->flush = NULL; |
| writer->error_fn = NULL; |
| writer->teardown = NULL; |
| writer->context = NULL; |
| |
| writer->buffer = NULL; |
| writer->position = NULL; |
| writer->end = NULL; |
| writer->error = mpack_ok; |
| |
| #if MPACK_WRITE_TRACKING |
| mpack_memset(&writer->track, 0, sizeof(writer->track)); |
| #endif |
| |
| #if MPACK_BUILDER |
| writer->builder.current_build = NULL; |
| writer->builder.latest_build = NULL; |
| writer->builder.current_page = NULL; |
| writer->builder.pages = NULL; |
| writer->builder.stash_buffer = NULL; |
| writer->builder.stash_position = NULL; |
| writer->builder.stash_end = NULL; |
| #endif |
| } |
| |
| void mpack_writer_init(mpack_writer_t* writer, char* buffer, size_t size) { |
| mpack_assert(buffer != NULL, "cannot initialize writer with empty buffer"); |
| mpack_writer_clear(writer); |
| writer->buffer = buffer; |
| writer->position = buffer; |
| writer->end = writer->buffer + size; |
| |
| #if MPACK_WRITE_TRACKING |
| mpack_writer_flag_if_error(writer, mpack_track_init(&writer->track)); |
| #endif |
| |
| mpack_log("===========================\n"); |
| mpack_log("initializing writer with buffer size %i\n", (int)size); |
| } |
| |
| void mpack_writer_init_error(mpack_writer_t* writer, mpack_error_t error) { |
| mpack_writer_clear(writer); |
| writer->error = error; |
| |
| mpack_log("===========================\n"); |
| mpack_log("initializing writer in error state %i\n", (int)error); |
| } |
| |
| void mpack_writer_set_flush(mpack_writer_t* writer, mpack_writer_flush_t flush) { |
| MPACK_STATIC_ASSERT(MPACK_WRITER_MINIMUM_BUFFER_SIZE >= MPACK_MAXIMUM_TAG_SIZE, |
| "minimum buffer size must fit any tag!"); |
| MPACK_STATIC_ASSERT(31 + MPACK_TAG_SIZE_FIXSTR >= MPACK_WRITER_MINIMUM_BUFFER_SIZE, |
| "minimum buffer size must fit the largest possible fixstr!"); |
| |
| if (mpack_writer_buffer_size(writer) < MPACK_WRITER_MINIMUM_BUFFER_SIZE) { |
| mpack_break("buffer size is %i, but minimum buffer size for flush is %i", |
| (int)mpack_writer_buffer_size(writer), MPACK_WRITER_MINIMUM_BUFFER_SIZE); |
| mpack_writer_flag_error(writer, mpack_error_bug); |
| return; |
| } |
| |
| writer->flush = flush; |
| } |
| |
| #ifdef MPACK_MALLOC |
| typedef struct mpack_growable_writer_t { |
| char** target_data; |
| size_t* target_size; |
| } mpack_growable_writer_t; |
| |
| static char* mpack_writer_get_reserved(mpack_writer_t* writer) { |
| // This is in a separate function in order to avoid false strict aliasing |
| // warnings. We aren't actually violating strict aliasing (the reserved |
| // space is only ever dereferenced as an mpack_growable_writer_t.) |
| return (char*)writer->reserved; |
| } |
| |
| static void mpack_growable_writer_flush(mpack_writer_t* writer, const char* data, size_t count) { |
| |
| // This is an intrusive flush function which modifies the writer's buffer |
| // in response to a flush instead of emptying it in order to add more |
| // capacity for data. This removes the need to copy data from a fixed buffer |
| // into a growable one, improving performance. |
| // |
| // There are three ways flush can be called: |
| // - flushing the buffer during writing (used is zero, count is all data, data is buffer) |
| // - flushing extra data during writing (used is all flushed data, count is extra data, data is not buffer) |
| // - flushing during teardown (used and count are both all flushed data, data is buffer) |
| // |
| // In the first two cases, we grow the buffer by at least double, enough |
| // to ensure that new data will fit. We ignore the teardown flush. |
| |
| if (data == writer->buffer) { |
| |
| // teardown, do nothing |
| if (mpack_writer_buffer_used(writer) == count) |
| return; |
| |
| // otherwise leave the data in the buffer and just grow |
| writer->position = writer->buffer + count; |
| count = 0; |
| } |
| |
| size_t used = mpack_writer_buffer_used(writer); |
| size_t size = mpack_writer_buffer_size(writer); |
| |
| mpack_log("flush size %i used %i data %p buffer %p\n", |
| (int)count, (int)used, data, writer->buffer); |
| |
| mpack_assert(data == writer->buffer || used + count > size, |
| "extra flush for %i but there is %i space left in the buffer! (%i/%i)", |
| (int)count, (int)mpack_writer_buffer_left(writer), (int)used, (int)size); |
| |
| // grow to fit the data |
| // TODO: this really needs to correctly test for overflow |
| size_t new_size = size * 2; |
| while (new_size < used + count) |
| new_size *= 2; |
| |
| mpack_log("flush growing buffer size from %i to %i\n", (int)size, (int)new_size); |
| |
| // grow the buffer |
| char* new_buffer = (char*)mpack_realloc(writer->buffer, used, new_size); |
| if (new_buffer == NULL) { |
| mpack_writer_flag_error(writer, mpack_error_memory); |
| return; |
| } |
| writer->position = new_buffer + used; |
| writer->buffer = new_buffer; |
| writer->end = writer->buffer + new_size; |
| |
| // append the extra data |
| if (count > 0) { |
| mpack_memcpy(writer->position, data, count); |
| writer->position += count; |
| } |
| |
| mpack_log("new buffer %p, used %i\n", new_buffer, (int)mpack_writer_buffer_used(writer)); |
| } |
| |
| static void mpack_growable_writer_teardown(mpack_writer_t* writer) { |
| mpack_growable_writer_t* growable_writer = (mpack_growable_writer_t*)mpack_writer_get_reserved(writer); |
| |
| if (mpack_writer_error(writer) == mpack_ok) { |
| |
| // shrink the buffer to an appropriate size if the data is |
| // much smaller than the buffer |
| if (mpack_writer_buffer_used(writer) < mpack_writer_buffer_size(writer) / 2) { |
| size_t used = mpack_writer_buffer_used(writer); |
| |
| // We always return a non-null pointer that must be freed, even if |
| // nothing was written. malloc() and realloc() do not necessarily |
| // do this so we enforce it ourselves. |
| size_t size = (used != 0) ? used : 1; |
| |
| char* buffer = (char*)mpack_realloc(writer->buffer, used, size); |
| if (!buffer) { |
| MPACK_FREE(writer->buffer); |
| mpack_writer_flag_error(writer, mpack_error_memory); |
| return; |
| } |
| writer->buffer = buffer; |
| writer->end = (writer->position = writer->buffer + used); |
| } |
| |
| *growable_writer->target_data = writer->buffer; |
| *growable_writer->target_size = mpack_writer_buffer_used(writer); |
| writer->buffer = NULL; |
| |
| } else if (writer->buffer) { |
| MPACK_FREE(writer->buffer); |
| writer->buffer = NULL; |
| } |
| |
| writer->context = NULL; |
| } |
| |
| void mpack_writer_init_growable(mpack_writer_t* writer, char** target_data, size_t* target_size) { |
| mpack_assert(target_data != NULL, "cannot initialize writer without a destination for the data"); |
| mpack_assert(target_size != NULL, "cannot initialize writer without a destination for the size"); |
| |
| *target_data = NULL; |
| *target_size = 0; |
| |
| MPACK_STATIC_ASSERT(sizeof(mpack_growable_writer_t) <= sizeof(writer->reserved), |
| "not enough reserved space for growable writer!"); |
| mpack_growable_writer_t* growable_writer = (mpack_growable_writer_t*)mpack_writer_get_reserved(writer); |
| |
| growable_writer->target_data = target_data; |
| growable_writer->target_size = target_size; |
| |
| size_t capacity = MPACK_BUFFER_SIZE; |
| char* buffer = (char*)MPACK_MALLOC(capacity); |
| if (buffer == NULL) { |
| mpack_writer_init_error(writer, mpack_error_memory); |
| return; |
| } |
| |
| mpack_writer_init(writer, buffer, capacity); |
| mpack_writer_set_flush(writer, mpack_growable_writer_flush); |
| mpack_writer_set_teardown(writer, mpack_growable_writer_teardown); |
| } |
| #endif |
| |
| #if MPACK_STDIO |
| static void mpack_file_writer_flush(mpack_writer_t* writer, const char* buffer, size_t count) { |
| FILE* file = (FILE*)writer->context; |
| size_t written = fwrite((const void*)buffer, 1, count, file); |
| if (written != count) |
| mpack_writer_flag_error(writer, mpack_error_io); |
| } |
| |
| static void mpack_file_writer_teardown(mpack_writer_t* writer) { |
| MPACK_FREE(writer->buffer); |
| writer->buffer = NULL; |
| writer->context = NULL; |
| } |
| |
| static void mpack_file_writer_teardown_close(mpack_writer_t* writer) { |
| FILE* file = (FILE*)writer->context; |
| |
| if (file) { |
| int ret = fclose(file); |
| if (ret != 0) |
| mpack_writer_flag_error(writer, mpack_error_io); |
| } |
| |
| mpack_file_writer_teardown(writer); |
| } |
| |
| void mpack_writer_init_stdfile(mpack_writer_t* writer, FILE* file, bool close_when_done) { |
| mpack_assert(file != NULL, "file is NULL"); |
| |
| size_t capacity = MPACK_BUFFER_SIZE; |
| char* buffer = (char*)MPACK_MALLOC(capacity); |
| if (buffer == NULL) { |
| mpack_writer_init_error(writer, mpack_error_memory); |
| if (close_when_done) { |
| fclose(file); |
| } |
| return; |
| } |
| |
| mpack_writer_init(writer, buffer, capacity); |
| mpack_writer_set_context(writer, file); |
| mpack_writer_set_flush(writer, mpack_file_writer_flush); |
| mpack_writer_set_teardown(writer, close_when_done ? |
| mpack_file_writer_teardown_close : |
| mpack_file_writer_teardown); |
| } |
| |
| void mpack_writer_init_filename(mpack_writer_t* writer, const char* filename) { |
| mpack_assert(filename != NULL, "filename is NULL"); |
| |
| FILE* file = fopen(filename, "wb"); |
| if (file == NULL) { |
| mpack_writer_init_error(writer, mpack_error_io); |
| return; |
| } |
| |
| mpack_writer_init_stdfile(writer, file, true); |
| } |
| #endif |
| |
| void mpack_writer_flag_error(mpack_writer_t* writer, mpack_error_t error) { |
| mpack_log("writer %p setting error %i: %s\n", (void*)writer, (int)error, mpack_error_to_string(error)); |
| |
| if (writer->error == mpack_ok) { |
| writer->error = error; |
| if (writer->error_fn) |
| writer->error_fn(writer, writer->error); |
| } |
| } |
| |
| MPACK_STATIC_INLINE void mpack_writer_flush_unchecked(mpack_writer_t* writer) { |
| // This is a bit ugly; we reset used before calling flush so that |
| // a flush function can distinguish between flushing the buffer |
| // versus flushing external data. see mpack_growable_writer_flush() |
| size_t used = mpack_writer_buffer_used(writer); |
| writer->position = writer->buffer; |
| writer->flush(writer, writer->buffer, used); |
| } |
| |
| void mpack_writer_flush_message(mpack_writer_t* writer) { |
| if (writer->error != mpack_ok) |
| return; |
| |
| #if MPACK_WRITE_TRACKING |
| // You cannot flush while there are elements open. |
| mpack_writer_flag_if_error(writer, mpack_track_check_empty(&writer->track)); |
| if (writer->error != mpack_ok) |
| return; |
| #endif |
| |
| #if MPACK_BUILDER |
| if (writer->builder.current_build != NULL) { |
| mpack_break("cannot call mpack_writer_flush_message() while there are elements open!"); |
| mpack_writer_flag_error(writer, mpack_error_bug); |
| return; |
| } |
| #endif |
| |
| if (writer->flush == NULL) { |
| mpack_break("cannot call mpack_writer_flush_message() without a flush function!"); |
| mpack_writer_flag_error(writer, mpack_error_bug); |
| return; |
| } |
| |
| if (mpack_writer_buffer_used(writer) > 0) |
| mpack_writer_flush_unchecked(writer); |
| } |
| |
| // Ensures there are at least count bytes free in the buffer. This |
| // will flag an error if the flush function fails to make enough |
| // room in the buffer. |
| MPACK_NOINLINE static bool mpack_writer_ensure(mpack_writer_t* writer, size_t count) { |
| mpack_assert(count != 0, "cannot ensure zero bytes!"); |
| mpack_assert(count <= MPACK_WRITER_MINIMUM_BUFFER_SIZE, |
| "cannot ensure %i bytes, this is more than the minimum buffer size %i!", |
| (int)count, (int)MPACK_WRITER_MINIMUM_BUFFER_SIZE); |
| mpack_assert(count > mpack_writer_buffer_left(writer), |
| "request to ensure %i bytes but there are already %i left in the buffer!", |
| (int)count, (int)mpack_writer_buffer_left(writer)); |
| |
| mpack_log("ensuring %i bytes, %i left\n", (int)count, (int)mpack_writer_buffer_left(writer)); |
| |
| if (mpack_writer_error(writer) != mpack_ok) |
| return false; |
| |
| #if MPACK_BUILDER |
| // if we have a build in progress, we just ask the builder for a page. |
| // either it will have space for a tag, or it will flag a memory error. |
| if (writer->builder.current_build != NULL) { |
| mpack_builder_flush(writer); |
| return mpack_writer_error(writer) == mpack_ok; |
| } |
| #endif |
| |
| if (writer->flush == NULL) { |
| mpack_writer_flag_error(writer, mpack_error_too_big); |
| return false; |
| } |
| |
| mpack_writer_flush_unchecked(writer); |
| if (mpack_writer_error(writer) != mpack_ok) |
| return false; |
| |
| if (mpack_writer_buffer_left(writer) >= count) |
| return true; |
| |
| mpack_writer_flag_error(writer, mpack_error_io); |
| return false; |
| } |
| |
| // Writes encoded bytes to the buffer when we already know the data |
| // does not fit in the buffer (i.e. it straddles the edge of the |
| // buffer.) If there is a flush function, it is guaranteed to be |
| // called; otherwise mpack_error_too_big is raised. |
| MPACK_NOINLINE static void mpack_write_native_straddle(mpack_writer_t* writer, const char* p, size_t count) { |
| mpack_assert(count == 0 || p != NULL, "data pointer for %i bytes is NULL", (int)count); |
| |
| if (mpack_writer_error(writer) != mpack_ok) |
| return; |
| mpack_log("big write for %i bytes from %p, %i space left in buffer\n", |
| (int)count, p, (int)mpack_writer_buffer_left(writer)); |
| mpack_assert(count > mpack_writer_buffer_left(writer), |
| "big write requested for %i bytes, but there is %i available " |
| "space in buffer. should have called mpack_write_native() instead", |
| (int)count, (int)(mpack_writer_buffer_left(writer))); |
| |
| #if MPACK_BUILDER |
| // if we have a build in progress, we can't flush. we need to copy all |
| // bytes into as many build buffer pages as it takes. |
| if (writer->builder.current_build != NULL) { |
| while (true) { |
| size_t step = (size_t)(writer->end - writer->position); |
| if (step > count) |
| step = count; |
| mpack_memcpy(writer->position, p, step); |
| writer->position += step; |
| p += step; |
| count -= step; |
| |
| if (count == 0) |
| return; |
| |
| mpack_builder_flush(writer); |
| if (mpack_writer_error(writer) != mpack_ok) |
| return; |
| mpack_assert(writer->position != writer->end); |
| } |
| } |
| #endif |
| |
| // we'll need a flush function |
| if (!writer->flush) { |
| mpack_writer_flag_error(writer, mpack_error_too_big); |
| return; |
| } |
| |
| // flush the buffer |
| mpack_writer_flush_unchecked(writer); |
| if (mpack_writer_error(writer) != mpack_ok) |
| return; |
| |
| // note that an intrusive flush function (such as mpack_growable_writer_flush()) |
| // may have changed size and/or reset used to a non-zero value. we treat both as |
| // though they may have changed, and there may still be data in the buffer. |
| |
| // flush the extra data directly if it doesn't fit in the buffer |
| if (count > mpack_writer_buffer_left(writer)) { |
| writer->flush(writer, p, count); |
| if (mpack_writer_error(writer) != mpack_ok) |
| return; |
| } else { |
| mpack_memcpy(writer->position, p, count); |
| writer->position += count; |
| } |
| } |
| |
| // Writes encoded bytes to the buffer, flushing if necessary. |
| MPACK_STATIC_INLINE void mpack_write_native(mpack_writer_t* writer, const char* p, size_t count) { |
| mpack_assert(count == 0 || p != NULL, "data pointer for %i bytes is NULL", (int)count); |
| |
| if (mpack_writer_buffer_left(writer) < count) { |
| mpack_write_native_straddle(writer, p, count); |
| } else { |
| mpack_memcpy(writer->position, p, count); |
| writer->position += count; |
| } |
| } |
| |
| mpack_error_t mpack_writer_destroy(mpack_writer_t* writer) { |
| |
| // clean up tracking, asserting if we're not already in an error state |
| #if MPACK_WRITE_TRACKING |
| mpack_track_destroy(&writer->track, writer->error != mpack_ok); |
| #endif |
| |
| // flush any outstanding data |
| if (mpack_writer_error(writer) == mpack_ok && mpack_writer_buffer_used(writer) != 0 && writer->flush != NULL) { |
| writer->flush(writer, writer->buffer, mpack_writer_buffer_used(writer)); |
| writer->flush = NULL; |
| } |
| |
| if (writer->teardown) { |
| writer->teardown(writer); |
| writer->teardown = NULL; |
| } |
| |
| return writer->error; |
| } |
| |
| void mpack_write_tag(mpack_writer_t* writer, mpack_tag_t value) { |
| switch (value.type) { |
| case mpack_type_missing: |
| mpack_break("cannot write a missing value!"); |
| mpack_writer_flag_error(writer, mpack_error_bug); |
| return; |
| |
| case mpack_type_nil: mpack_write_nil (writer); return; |
| case mpack_type_bool: mpack_write_bool (writer, value.v.b); return; |
| case mpack_type_int: mpack_write_int (writer, value.v.i); return; |
| case mpack_type_uint: mpack_write_uint (writer, value.v.u); return; |
| |
| case mpack_type_float: |
| #if MPACK_FLOAT |
| mpack_write_float |
| #else |
| mpack_write_raw_float |
| #endif |
| (writer, value.v.f); |
| return; |
| case mpack_type_double: |
| #if MPACK_DOUBLE |
| mpack_write_double |
| #else |
| mpack_write_raw_double |
| #endif |
| (writer, value.v.d); |
| return; |
| |
| case mpack_type_str: mpack_start_str(writer, value.v.l); return; |
| case mpack_type_bin: mpack_start_bin(writer, value.v.l); return; |
| |
| #if MPACK_EXTENSIONS |
| case mpack_type_ext: |
| mpack_start_ext(writer, mpack_tag_ext_exttype(&value), mpack_tag_ext_length(&value)); |
| return; |
| #endif |
| |
| case mpack_type_array: mpack_start_array(writer, value.v.n); return; |
| case mpack_type_map: mpack_start_map(writer, value.v.n); return; |
| } |
| |
| mpack_break("unrecognized type %i", (int)value.type); |
| mpack_writer_flag_error(writer, mpack_error_bug); |
| } |
| |
| MPACK_STATIC_INLINE void mpack_write_byte_element(mpack_writer_t* writer, char value) { |
| mpack_writer_track_element(writer); |
| if (MPACK_LIKELY(mpack_writer_buffer_left(writer) >= 1) || mpack_writer_ensure(writer, 1)) |
| *(writer->position++) = value; |
| } |
| |
| void mpack_write_nil(mpack_writer_t* writer) { |
| mpack_write_byte_element(writer, (char)0xc0); |
| } |
| |
| void mpack_write_bool(mpack_writer_t* writer, bool value) { |
| mpack_write_byte_element(writer, (char)(0xc2 | (value ? 1 : 0))); |
| } |
| |
| void mpack_write_true(mpack_writer_t* writer) { |
| mpack_write_byte_element(writer, (char)0xc3); |
| } |
| |
| void mpack_write_false(mpack_writer_t* writer) { |
| mpack_write_byte_element(writer, (char)0xc2); |
| } |
| |
| void mpack_write_object_bytes(mpack_writer_t* writer, const char* data, size_t bytes) { |
| mpack_writer_track_element(writer); |
| mpack_write_native(writer, data, bytes); |
| } |
| |
| /* |
| * Encode functions |
| */ |
| |
| MPACK_STATIC_INLINE void mpack_encode_fixuint(char* p, uint8_t value) { |
| mpack_assert(value <= 127); |
| mpack_store_u8(p, value); |
| } |
| |
| MPACK_STATIC_INLINE void mpack_encode_u8(char* p, uint8_t value) { |
| mpack_assert(value > 127); |
| mpack_store_u8(p, 0xcc); |
| mpack_store_u8(p + 1, value); |
| } |
| |
| MPACK_STATIC_INLINE void mpack_encode_u16(char* p, uint16_t value) { |
| mpack_assert(value > MPACK_UINT8_MAX); |
| mpack_store_u8(p, 0xcd); |
| mpack_store_u16(p + 1, value); |
| } |
| |
| MPACK_STATIC_INLINE void mpack_encode_u32(char* p, uint32_t value) { |
| mpack_assert(value > MPACK_UINT16_MAX); |
| mpack_store_u8(p, 0xce); |
| mpack_store_u32(p + 1, value); |
| } |
| |
| MPACK_STATIC_INLINE void mpack_encode_u64(char* p, uint64_t value) { |
| mpack_assert(value > MPACK_UINT32_MAX); |
| mpack_store_u8(p, 0xcf); |
| mpack_store_u64(p + 1, value); |
| } |
| |
| MPACK_STATIC_INLINE void mpack_encode_fixint(char* p, int8_t value) { |
| // this can encode positive or negative fixints |
| mpack_assert(value >= -32); |
| mpack_store_i8(p, value); |
| } |
| |
| MPACK_STATIC_INLINE void mpack_encode_i8(char* p, int8_t value) { |
| mpack_assert(value < -32); |
| mpack_store_u8(p, 0xd0); |
| mpack_store_i8(p + 1, value); |
| } |
| |
| MPACK_STATIC_INLINE void mpack_encode_i16(char* p, int16_t value) { |
| mpack_assert(value < MPACK_INT8_MIN); |
| mpack_store_u8(p, 0xd1); |
| mpack_store_i16(p + 1, value); |
| } |
| |
| MPACK_STATIC_INLINE void mpack_encode_i32(char* p, int32_t value) { |
| mpack_assert(value < MPACK_INT16_MIN); |
| mpack_store_u8(p, 0xd2); |
| mpack_store_i32(p + 1, value); |
| } |
| |
| MPACK_STATIC_INLINE void mpack_encode_i64(char* p, int64_t value) { |
| mpack_assert(value < MPACK_INT32_MIN); |
| mpack_store_u8(p, 0xd3); |
| mpack_store_i64(p + 1, value); |
| } |
| |
| #if MPACK_FLOAT |
| MPACK_STATIC_INLINE void mpack_encode_float(char* p, float value) { |
| mpack_store_u8(p, 0xca); |
| mpack_store_float(p + 1, value); |
| } |
| #else |
| MPACK_STATIC_INLINE void mpack_encode_raw_float(char* p, uint32_t value) { |
| mpack_store_u8(p, 0xca); |
| mpack_store_u32(p + 1, value); |
| } |
| #endif |
| |
| #if MPACK_DOUBLE |
| MPACK_STATIC_INLINE void mpack_encode_double(char* p, double value) { |
| mpack_store_u8(p, 0xcb); |
| mpack_store_double(p + 1, value); |
| } |
| #else |
| MPACK_STATIC_INLINE void mpack_encode_raw_double(char* p, uint64_t value) { |
| mpack_store_u8(p, 0xcb); |
| mpack_store_u64(p + 1, value); |
| } |
| #endif |
| |
| MPACK_STATIC_INLINE void mpack_encode_fixarray(char* p, uint8_t count) { |
| mpack_assert(count <= 15); |
| mpack_store_u8(p, (uint8_t)(0x90 | count)); |
| } |
| |
| MPACK_STATIC_INLINE void mpack_encode_array16(char* p, uint16_t count) { |
| mpack_assert(count > 15); |
| mpack_store_u8(p, 0xdc); |
| mpack_store_u16(p + 1, count); |
| } |
| |
| MPACK_STATIC_INLINE void mpack_encode_array32(char* p, uint32_t count) { |
| mpack_assert(count > MPACK_UINT16_MAX); |
| mpack_store_u8(p, 0xdd); |
| mpack_store_u32(p + 1, count); |
| } |
| |
| MPACK_STATIC_INLINE void mpack_encode_fixmap(char* p, uint8_t count) { |
| mpack_assert(count <= 15); |
| mpack_store_u8(p, (uint8_t)(0x80 | count)); |
| } |
| |
| MPACK_STATIC_INLINE void mpack_encode_map16(char* p, uint16_t count) { |
| mpack_assert(count > 15); |
| mpack_store_u8(p, 0xde); |
| mpack_store_u16(p + 1, count); |
| } |
| |
| MPACK_STATIC_INLINE void mpack_encode_map32(char* p, uint32_t count) { |
| mpack_assert(count > MPACK_UINT16_MAX); |
| mpack_store_u8(p, 0xdf); |
| mpack_store_u32(p + 1, count); |
| } |
| |
| MPACK_STATIC_INLINE void mpack_encode_fixstr(char* p, uint8_t count) { |
| mpack_assert(count <= 31); |
| mpack_store_u8(p, (uint8_t)(0xa0 | count)); |
| } |
| |
| MPACK_STATIC_INLINE void mpack_encode_str8(char* p, uint8_t count) { |
| mpack_assert(count > 31); |
| mpack_store_u8(p, 0xd9); |
| mpack_store_u8(p + 1, count); |
| } |
| |
| MPACK_STATIC_INLINE void mpack_encode_str16(char* p, uint16_t count) { |
| // we might be encoding a raw in compatibility mode, so we |
| // allow count to be in the range [32, MPACK_UINT8_MAX]. |
| mpack_assert(count > 31); |
| mpack_store_u8(p, 0xda); |
| mpack_store_u16(p + 1, count); |
| } |
| |
| MPACK_STATIC_INLINE void mpack_encode_str32(char* p, uint32_t count) { |
| mpack_assert(count > MPACK_UINT16_MAX); |
| mpack_store_u8(p, 0xdb); |
| mpack_store_u32(p + 1, count); |
| } |
| |
| MPACK_STATIC_INLINE void mpack_encode_bin8(char* p, uint8_t count) { |
| mpack_store_u8(p, 0xc4); |
| mpack_store_u8(p + 1, count); |
| } |
| |
| MPACK_STATIC_INLINE void mpack_encode_bin16(char* p, uint16_t count) { |
| mpack_assert(count > MPACK_UINT8_MAX); |
| mpack_store_u8(p, 0xc5); |
| mpack_store_u16(p + 1, count); |
| } |
| |
| MPACK_STATIC_INLINE void mpack_encode_bin32(char* p, uint32_t count) { |
| mpack_assert(count > MPACK_UINT16_MAX); |
| mpack_store_u8(p, 0xc6); |
| mpack_store_u32(p + 1, count); |
| } |
| |
| #if MPACK_EXTENSIONS |
| MPACK_STATIC_INLINE void mpack_encode_fixext1(char* p, int8_t exttype) { |
| mpack_store_u8(p, 0xd4); |
| mpack_store_i8(p + 1, exttype); |
| } |
| |
| MPACK_STATIC_INLINE void mpack_encode_fixext2(char* p, int8_t exttype) { |
| mpack_store_u8(p, 0xd5); |
| mpack_store_i8(p + 1, exttype); |
| } |
| |
| MPACK_STATIC_INLINE void mpack_encode_fixext4(char* p, int8_t exttype) { |
| mpack_store_u8(p, 0xd6); |
| mpack_store_i8(p + 1, exttype); |
| } |
| |
| MPACK_STATIC_INLINE void mpack_encode_fixext8(char* p, int8_t exttype) { |
| mpack_store_u8(p, 0xd7); |
| mpack_store_i8(p + 1, exttype); |
| } |
| |
| MPACK_STATIC_INLINE void mpack_encode_fixext16(char* p, int8_t exttype) { |
| mpack_store_u8(p, 0xd8); |
| mpack_store_i8(p + 1, exttype); |
| } |
| |
| MPACK_STATIC_INLINE void mpack_encode_ext8(char* p, int8_t exttype, uint8_t count) { |
| mpack_assert(count != 1 && count != 2 && count != 4 && count != 8 && count != 16); |
| mpack_store_u8(p, 0xc7); |
| mpack_store_u8(p + 1, count); |
| mpack_store_i8(p + 2, exttype); |
| } |
| |
| MPACK_STATIC_INLINE void mpack_encode_ext16(char* p, int8_t exttype, uint16_t count) { |
| mpack_assert(count > MPACK_UINT8_MAX); |
| mpack_store_u8(p, 0xc8); |
| mpack_store_u16(p + 1, count); |
| mpack_store_i8(p + 3, exttype); |
| } |
| |
| MPACK_STATIC_INLINE void mpack_encode_ext32(char* p, int8_t exttype, uint32_t count) { |
| mpack_assert(count > MPACK_UINT16_MAX); |
| mpack_store_u8(p, 0xc9); |
| mpack_store_u32(p + 1, count); |
| mpack_store_i8(p + 5, exttype); |
| } |
| |
| MPACK_STATIC_INLINE void mpack_encode_timestamp_4(char* p, uint32_t seconds) { |
| mpack_encode_fixext4(p, MPACK_EXTTYPE_TIMESTAMP); |
| mpack_store_u32(p + MPACK_TAG_SIZE_FIXEXT4, seconds); |
| } |
| |
| MPACK_STATIC_INLINE void mpack_encode_timestamp_8(char* p, int64_t seconds, uint32_t nanoseconds) { |
| mpack_assert(nanoseconds <= MPACK_TIMESTAMP_NANOSECONDS_MAX); |
| mpack_encode_fixext8(p, MPACK_EXTTYPE_TIMESTAMP); |
| uint64_t encoded = ((uint64_t)nanoseconds << 34) | (uint64_t)seconds; |
| mpack_store_u64(p + MPACK_TAG_SIZE_FIXEXT8, encoded); |
| } |
| |
| MPACK_STATIC_INLINE void mpack_encode_timestamp_12(char* p, int64_t seconds, uint32_t nanoseconds) { |
| mpack_assert(nanoseconds <= MPACK_TIMESTAMP_NANOSECONDS_MAX); |
| mpack_encode_ext8(p, MPACK_EXTTYPE_TIMESTAMP, 12); |
| mpack_store_u32(p + MPACK_TAG_SIZE_EXT8, nanoseconds); |
| mpack_store_i64(p + MPACK_TAG_SIZE_EXT8 + 4, seconds); |
| } |
| #endif |
| |
| |
| |
| /* |
| * Write functions |
| */ |
| |
| // This is a macro wrapper to the encode functions to encode |
| // directly into the buffer. If mpack_writer_ensure() fails |
| // it will flag an error so we don't have to do anything. |
| #define MPACK_WRITE_ENCODED(encode_fn, size, ...) do { \ |
| if (MPACK_LIKELY(mpack_writer_buffer_left(writer) >= size) || mpack_writer_ensure(writer, size)) { \ |
| MPACK_EXPAND(encode_fn(writer->position, __VA_ARGS__)); \ |
| writer->position += size; \ |
| } \ |
| } while (0) |
| |
| void mpack_write_u8(mpack_writer_t* writer, uint8_t value) { |
| #if MPACK_OPTIMIZE_FOR_SIZE |
| mpack_write_u64(writer, value); |
| #else |
| mpack_writer_track_element(writer); |
| if (value <= 127) { |
| MPACK_WRITE_ENCODED(mpack_encode_fixuint, MPACK_TAG_SIZE_FIXUINT, value); |
| } else { |
| MPACK_WRITE_ENCODED(mpack_encode_u8, MPACK_TAG_SIZE_U8, value); |
| } |
| #endif |
| } |
| |
| void mpack_write_u16(mpack_writer_t* writer, uint16_t value) { |
| #if MPACK_OPTIMIZE_FOR_SIZE |
| mpack_write_u64(writer, value); |
| #else |
| mpack_writer_track_element(writer); |
| if (value <= 127) { |
| MPACK_WRITE_ENCODED(mpack_encode_fixuint, MPACK_TAG_SIZE_FIXUINT, (uint8_t)value); |
| } else if (value <= MPACK_UINT8_MAX) { |
| MPACK_WRITE_ENCODED(mpack_encode_u8, MPACK_TAG_SIZE_U8, (uint8_t)value); |
| } else { |
| MPACK_WRITE_ENCODED(mpack_encode_u16, MPACK_TAG_SIZE_U16, value); |
| } |
| #endif |
| } |
| |
| void mpack_write_u32(mpack_writer_t* writer, uint32_t value) { |
| #if MPACK_OPTIMIZE_FOR_SIZE |
| mpack_write_u64(writer, value); |
| #else |
| mpack_writer_track_element(writer); |
| if (value <= 127) { |
| MPACK_WRITE_ENCODED(mpack_encode_fixuint, MPACK_TAG_SIZE_FIXUINT, (uint8_t)value); |
| } else if (value <= MPACK_UINT8_MAX) { |
| MPACK_WRITE_ENCODED(mpack_encode_u8, MPACK_TAG_SIZE_U8, (uint8_t)value); |
| } else if (value <= MPACK_UINT16_MAX) { |
| MPACK_WRITE_ENCODED(mpack_encode_u16, MPACK_TAG_SIZE_U16, (uint16_t)value); |
| } else { |
| MPACK_WRITE_ENCODED(mpack_encode_u32, MPACK_TAG_SIZE_U32, value); |
| } |
| #endif |
| } |
| |
| void mpack_write_u64(mpack_writer_t* writer, uint64_t value) { |
| mpack_writer_track_element(writer); |
| |
| if (value <= 127) { |
| MPACK_WRITE_ENCODED(mpack_encode_fixuint, MPACK_TAG_SIZE_FIXUINT, (uint8_t)value); |
| } else if (value <= MPACK_UINT8_MAX) { |
| MPACK_WRITE_ENCODED(mpack_encode_u8, MPACK_TAG_SIZE_U8, (uint8_t)value); |
| } else if (value <= MPACK_UINT16_MAX) { |
| MPACK_WRITE_ENCODED(mpack_encode_u16, MPACK_TAG_SIZE_U16, (uint16_t)value); |
| } else if (value <= MPACK_UINT32_MAX) { |
| MPACK_WRITE_ENCODED(mpack_encode_u32, MPACK_TAG_SIZE_U32, (uint32_t)value); |
| } else { |
| MPACK_WRITE_ENCODED(mpack_encode_u64, MPACK_TAG_SIZE_U64, value); |
| } |
| } |
| |
| void mpack_write_i8(mpack_writer_t* writer, int8_t value) { |
| #if MPACK_OPTIMIZE_FOR_SIZE |
| mpack_write_i64(writer, value); |
| #else |
| mpack_writer_track_element(writer); |
| if (value >= -32) { |
| // we encode positive and negative fixints together |
| MPACK_WRITE_ENCODED(mpack_encode_fixint, MPACK_TAG_SIZE_FIXINT, (int8_t)value); |
| } else { |
| MPACK_WRITE_ENCODED(mpack_encode_i8, MPACK_TAG_SIZE_I8, (int8_t)value); |
| } |
| #endif |
| } |
| |
| void mpack_write_i16(mpack_writer_t* writer, int16_t value) { |
| #if MPACK_OPTIMIZE_FOR_SIZE |
| mpack_write_i64(writer, value); |
| #else |
| mpack_writer_track_element(writer); |
| if (value >= -32) { |
| if (value <= 127) { |
| // we encode positive and negative fixints together |
| MPACK_WRITE_ENCODED(mpack_encode_fixint, MPACK_TAG_SIZE_FIXINT, (int8_t)value); |
| } else if (value <= MPACK_UINT8_MAX) { |
| MPACK_WRITE_ENCODED(mpack_encode_u8, MPACK_TAG_SIZE_U8, (uint8_t)value); |
| } else { |
| MPACK_WRITE_ENCODED(mpack_encode_u16, MPACK_TAG_SIZE_U16, (uint16_t)value); |
| } |
| } else if (value >= MPACK_INT8_MIN) { |
| MPACK_WRITE_ENCODED(mpack_encode_i8, MPACK_TAG_SIZE_I8, (int8_t)value); |
| } else { |
| MPACK_WRITE_ENCODED(mpack_encode_i16, MPACK_TAG_SIZE_I16, (int16_t)value); |
| } |
| #endif |
| } |
| |
| void mpack_write_i32(mpack_writer_t* writer, int32_t value) { |
| #if MPACK_OPTIMIZE_FOR_SIZE |
| mpack_write_i64(writer, value); |
| #else |
| mpack_writer_track_element(writer); |
| if (value >= -32) { |
| if (value <= 127) { |
| // we encode positive and negative fixints together |
| MPACK_WRITE_ENCODED(mpack_encode_fixint, MPACK_TAG_SIZE_FIXINT, (int8_t)value); |
| } else if (value <= MPACK_UINT8_MAX) { |
| MPACK_WRITE_ENCODED(mpack_encode_u8, MPACK_TAG_SIZE_U8, (uint8_t)value); |
| } else if (value <= MPACK_UINT16_MAX) { |
| MPACK_WRITE_ENCODED(mpack_encode_u16, MPACK_TAG_SIZE_U16, (uint16_t)value); |
| } else { |
| MPACK_WRITE_ENCODED(mpack_encode_u32, MPACK_TAG_SIZE_U32, (uint32_t)value); |
| } |
| } else if (value >= MPACK_INT8_MIN) { |
| MPACK_WRITE_ENCODED(mpack_encode_i8, MPACK_TAG_SIZE_I8, (int8_t)value); |
| } else if (value >= MPACK_INT16_MIN) { |
| MPACK_WRITE_ENCODED(mpack_encode_i16, MPACK_TAG_SIZE_I16, (int16_t)value); |
| } else { |
| MPACK_WRITE_ENCODED(mpack_encode_i32, MPACK_TAG_SIZE_I32, value); |
| } |
| #endif |
| } |
| |
| void mpack_write_i64(mpack_writer_t* writer, int64_t value) { |
| #if MPACK_OPTIMIZE_FOR_SIZE |
| if (value > 127) { |
| // for non-fix positive ints we call the u64 writer to save space |
| mpack_write_u64(writer, (uint64_t)value); |
| return; |
| } |
| #endif |
| |
| mpack_writer_track_element(writer); |
| if (value >= -32) { |
| #if MPACK_OPTIMIZE_FOR_SIZE |
| MPACK_WRITE_ENCODED(mpack_encode_fixint, MPACK_TAG_SIZE_FIXINT, (int8_t)value); |
| #else |
| if (value <= 127) { |
| MPACK_WRITE_ENCODED(mpack_encode_fixint, MPACK_TAG_SIZE_FIXINT, (int8_t)value); |
| } else if (value <= MPACK_UINT8_MAX) { |
| MPACK_WRITE_ENCODED(mpack_encode_u8, MPACK_TAG_SIZE_U8, (uint8_t)value); |
| } else if (value <= MPACK_UINT16_MAX) { |
| MPACK_WRITE_ENCODED(mpack_encode_u16, MPACK_TAG_SIZE_U16, (uint16_t)value); |
| } else if (value <= MPACK_UINT32_MAX) { |
| MPACK_WRITE_ENCODED(mpack_encode_u32, MPACK_TAG_SIZE_U32, (uint32_t)value); |
| } else { |
| MPACK_WRITE_ENCODED(mpack_encode_u64, MPACK_TAG_SIZE_U64, (uint64_t)value); |
| } |
| #endif |
| } else if (value >= MPACK_INT8_MIN) { |
| MPACK_WRITE_ENCODED(mpack_encode_i8, MPACK_TAG_SIZE_I8, (int8_t)value); |
| } else if (value >= MPACK_INT16_MIN) { |
| MPACK_WRITE_ENCODED(mpack_encode_i16, MPACK_TAG_SIZE_I16, (int16_t)value); |
| } else if (value >= MPACK_INT32_MIN) { |
| MPACK_WRITE_ENCODED(mpack_encode_i32, MPACK_TAG_SIZE_I32, (int32_t)value); |
| } else { |
| MPACK_WRITE_ENCODED(mpack_encode_i64, MPACK_TAG_SIZE_I64, value); |
| } |
| } |
| |
| #if MPACK_FLOAT |
| void mpack_write_float(mpack_writer_t* writer, float value) { |
| mpack_writer_track_element(writer); |
| MPACK_WRITE_ENCODED(mpack_encode_float, MPACK_TAG_SIZE_FLOAT, value); |
| } |
| #else |
| void mpack_write_raw_float(mpack_writer_t* writer, uint32_t value) { |
| mpack_writer_track_element(writer); |
| MPACK_WRITE_ENCODED(mpack_encode_raw_float, MPACK_TAG_SIZE_FLOAT, value); |
| } |
| #endif |
| |
| #if MPACK_DOUBLE |
| void mpack_write_double(mpack_writer_t* writer, double value) { |
| mpack_writer_track_element(writer); |
| MPACK_WRITE_ENCODED(mpack_encode_double, MPACK_TAG_SIZE_DOUBLE, value); |
| } |
| #else |
| void mpack_write_raw_double(mpack_writer_t* writer, uint64_t value) { |
| mpack_writer_track_element(writer); |
| MPACK_WRITE_ENCODED(mpack_encode_raw_double, MPACK_TAG_SIZE_DOUBLE, value); |
| } |
| #endif |
| |
| #if MPACK_EXTENSIONS |
| void mpack_write_timestamp(mpack_writer_t* writer, int64_t seconds, uint32_t nanoseconds) { |
| #if MPACK_COMPATIBILITY |
| if (writer->version <= mpack_version_v4) { |
| mpack_break("Timestamps require spec version v5 or later. This writer is in v%i mode.", (int)writer->version); |
| mpack_writer_flag_error(writer, mpack_error_bug); |
| return; |
| } |
| #endif |
| |
| if (nanoseconds > MPACK_TIMESTAMP_NANOSECONDS_MAX) { |
| mpack_break("timestamp nanoseconds out of bounds: %u", nanoseconds); |
| mpack_writer_flag_error(writer, mpack_error_bug); |
| return; |
| } |
| |
| mpack_writer_track_element(writer); |
| |
| if (seconds < 0 || seconds >= (MPACK_INT64_C(1) << 34)) { |
| MPACK_WRITE_ENCODED(mpack_encode_timestamp_12, MPACK_EXT_SIZE_TIMESTAMP12, seconds, nanoseconds); |
| } else if (seconds > MPACK_UINT32_MAX || nanoseconds > 0) { |
| MPACK_WRITE_ENCODED(mpack_encode_timestamp_8, MPACK_EXT_SIZE_TIMESTAMP8, seconds, nanoseconds); |
| } else { |
| MPACK_WRITE_ENCODED(mpack_encode_timestamp_4, MPACK_EXT_SIZE_TIMESTAMP4, (uint32_t)seconds); |
| } |
| } |
| #endif |
| |
| static void mpack_write_array_notrack(mpack_writer_t* writer, uint32_t count) { |
| if (count <= 15) { |
| MPACK_WRITE_ENCODED(mpack_encode_fixarray, MPACK_TAG_SIZE_FIXARRAY, (uint8_t)count); |
| } else if (count <= MPACK_UINT16_MAX) { |
| MPACK_WRITE_ENCODED(mpack_encode_array16, MPACK_TAG_SIZE_ARRAY16, (uint16_t)count); |
| } else { |
| MPACK_WRITE_ENCODED(mpack_encode_array32, MPACK_TAG_SIZE_ARRAY32, (uint32_t)count); |
| } |
| } |
| |
| static void mpack_write_map_notrack(mpack_writer_t* writer, uint32_t count) { |
| if (count <= 15) { |
| MPACK_WRITE_ENCODED(mpack_encode_fixmap, MPACK_TAG_SIZE_FIXMAP, (uint8_t)count); |
| } else if (count <= MPACK_UINT16_MAX) { |
| MPACK_WRITE_ENCODED(mpack_encode_map16, MPACK_TAG_SIZE_MAP16, (uint16_t)count); |
| } else { |
| MPACK_WRITE_ENCODED(mpack_encode_map32, MPACK_TAG_SIZE_MAP32, (uint32_t)count); |
| } |
| } |
| |
| void mpack_start_array(mpack_writer_t* writer, uint32_t count) { |
| mpack_writer_track_element(writer); |
| mpack_write_array_notrack(writer, count); |
| mpack_writer_track_push(writer, mpack_type_array, count); |
| mpack_builder_compound_push(writer); |
| } |
| |
| void mpack_start_map(mpack_writer_t* writer, uint32_t count) { |
| mpack_writer_track_element(writer); |
| mpack_write_map_notrack(writer, count); |
| mpack_writer_track_push(writer, mpack_type_map, count); |
| mpack_builder_compound_push(writer); |
| } |
| |
| static void mpack_start_str_notrack(mpack_writer_t* writer, uint32_t count) { |
| if (count <= 31) { |
| MPACK_WRITE_ENCODED(mpack_encode_fixstr, MPACK_TAG_SIZE_FIXSTR, (uint8_t)count); |
| |
| // str8 is only supported in v5 or later. |
| } else if (count <= MPACK_UINT8_MAX |
| #if MPACK_COMPATIBILITY |
| && writer->version >= mpack_version_v5 |
| #endif |
| ) { |
| MPACK_WRITE_ENCODED(mpack_encode_str8, MPACK_TAG_SIZE_STR8, (uint8_t)count); |
| |
| } else if (count <= MPACK_UINT16_MAX) { |
| MPACK_WRITE_ENCODED(mpack_encode_str16, MPACK_TAG_SIZE_STR16, (uint16_t)count); |
| } else { |
| MPACK_WRITE_ENCODED(mpack_encode_str32, MPACK_TAG_SIZE_STR32, (uint32_t)count); |
| } |
| } |
| |
| static void mpack_start_bin_notrack(mpack_writer_t* writer, uint32_t count) { |
| #if MPACK_COMPATIBILITY |
| // In the v4 spec, there was only the raw type for any kind of |
| // variable-length data. In v4 mode, we support the bin functions, |
| // but we produce an old-style raw. |
| if (writer->version <= mpack_version_v4) { |
| mpack_start_str_notrack(writer, count); |
| return; |
| } |
| #endif |
| |
| if (count <= MPACK_UINT8_MAX) { |
| MPACK_WRITE_ENCODED(mpack_encode_bin8, MPACK_TAG_SIZE_BIN8, (uint8_t)count); |
| } else if (count <= MPACK_UINT16_MAX) { |
| MPACK_WRITE_ENCODED(mpack_encode_bin16, MPACK_TAG_SIZE_BIN16, (uint16_t)count); |
| } else { |
| MPACK_WRITE_ENCODED(mpack_encode_bin32, MPACK_TAG_SIZE_BIN32, (uint32_t)count); |
| } |
| } |
| |
| void mpack_start_str(mpack_writer_t* writer, uint32_t count) { |
| mpack_writer_track_element(writer); |
| mpack_start_str_notrack(writer, count); |
| mpack_writer_track_push(writer, mpack_type_str, count); |
| } |
| |
| void mpack_start_bin(mpack_writer_t* writer, uint32_t count) { |
| mpack_writer_track_element(writer); |
| mpack_start_bin_notrack(writer, count); |
| mpack_writer_track_push(writer, mpack_type_bin, count); |
| } |
| |
| #if MPACK_EXTENSIONS |
| void mpack_start_ext(mpack_writer_t* writer, int8_t exttype, uint32_t count) { |
| #if MPACK_COMPATIBILITY |
| if (writer->version <= mpack_version_v4) { |
| mpack_break("Ext types require spec version v5 or later. This writer is in v%i mode.", (int)writer->version); |
| mpack_writer_flag_error(writer, mpack_error_bug); |
| return; |
| } |
| #endif |
| |
| mpack_writer_track_element(writer); |
| |
| if (count == 1) { |
| MPACK_WRITE_ENCODED(mpack_encode_fixext1, MPACK_TAG_SIZE_FIXEXT1, exttype); |
| } else if (count == 2) { |
| MPACK_WRITE_ENCODED(mpack_encode_fixext2, MPACK_TAG_SIZE_FIXEXT2, exttype); |
| } else if (count == 4) { |
| MPACK_WRITE_ENCODED(mpack_encode_fixext4, MPACK_TAG_SIZE_FIXEXT4, exttype); |
| } else if (count == 8) { |
| MPACK_WRITE_ENCODED(mpack_encode_fixext8, MPACK_TAG_SIZE_FIXEXT8, exttype); |
| } else if (count == 16) { |
| MPACK_WRITE_ENCODED(mpack_encode_fixext16, MPACK_TAG_SIZE_FIXEXT16, exttype); |
| } else if (count <= MPACK_UINT8_MAX) { |
| MPACK_WRITE_ENCODED(mpack_encode_ext8, MPACK_TAG_SIZE_EXT8, exttype, (uint8_t)count); |
| } else if (count <= MPACK_UINT16_MAX) { |
| MPACK_WRITE_ENCODED(mpack_encode_ext16, MPACK_TAG_SIZE_EXT16, exttype, (uint16_t)count); |
| } else { |
| MPACK_WRITE_ENCODED(mpack_encode_ext32, MPACK_TAG_SIZE_EXT32, exttype, (uint32_t)count); |
| } |
| |
| mpack_writer_track_push(writer, mpack_type_ext, count); |
| } |
| #endif |
| |
| |
| |
| /* |
| * Compound helpers and other functions |
| */ |
| |
| void mpack_write_str(mpack_writer_t* writer, const char* data, uint32_t count) { |
| mpack_assert(data != NULL, "data for string of length %i is NULL", (int)count); |
| |
| #if MPACK_OPTIMIZE_FOR_SIZE |
| mpack_writer_track_element(writer); |
| mpack_start_str_notrack(writer, count); |
| mpack_write_native(writer, data, count); |
| #else |
| |
| mpack_writer_track_element(writer); |
| |
| if (count <= 31) { |
| // The minimum buffer size when using a flush function is guaranteed to |
| // fit the largest possible fixstr. |
| size_t size = count + MPACK_TAG_SIZE_FIXSTR; |
| if (MPACK_LIKELY(mpack_writer_buffer_left(writer) >= size) || mpack_writer_ensure(writer, size)) { |
| char* MPACK_RESTRICT p = writer->position; |
| mpack_encode_fixstr(p, (uint8_t)count); |
| mpack_memcpy(p + MPACK_TAG_SIZE_FIXSTR, data, count); |
| writer->position += count + MPACK_TAG_SIZE_FIXSTR; |
| } |
| return; |
| } |
| |
| if (count <= MPACK_UINT8_MAX |
| #if MPACK_COMPATIBILITY |
| && writer->version >= mpack_version_v5 |
| #endif |
| ) { |
| if (count + MPACK_TAG_SIZE_STR8 <= mpack_writer_buffer_left(writer)) { |
| char* MPACK_RESTRICT p = writer->position; |
| mpack_encode_str8(p, (uint8_t)count); |
| mpack_memcpy(p + MPACK_TAG_SIZE_STR8, data, count); |
| writer->position += count + MPACK_TAG_SIZE_STR8; |
| } else { |
| MPACK_WRITE_ENCODED(mpack_encode_str8, MPACK_TAG_SIZE_STR8, (uint8_t)count); |
| mpack_write_native(writer, data, count); |
| } |
| return; |
| } |
| |
| // str16 and str32 are likely to be a significant fraction of the buffer |
| // size, so we don't bother with a combined space check in order to |
| // minimize code size. |
| if (count <= MPACK_UINT16_MAX) { |
| MPACK_WRITE_ENCODED(mpack_encode_str16, MPACK_TAG_SIZE_STR16, (uint16_t)count); |
| mpack_write_native(writer, data, count); |
| } else { |
| MPACK_WRITE_ENCODED(mpack_encode_str32, MPACK_TAG_SIZE_STR32, (uint32_t)count); |
| mpack_write_native(writer, data, count); |
| } |
| |
| #endif |
| } |
| |
| void mpack_write_bin(mpack_writer_t* writer, const char* data, uint32_t count) { |
| mpack_assert(data != NULL, "data pointer for bin of %i bytes is NULL", (int)count); |
| mpack_start_bin(writer, count); |
| mpack_write_bytes(writer, data, count); |
| mpack_finish_bin(writer); |
| } |
| |
| #if MPACK_EXTENSIONS |
| void mpack_write_ext(mpack_writer_t* writer, int8_t exttype, const char* data, uint32_t count) { |
| mpack_assert(data != NULL, "data pointer for ext of type %i and %i bytes is NULL", exttype, (int)count); |
| mpack_start_ext(writer, exttype, count); |
| mpack_write_bytes(writer, data, count); |
| mpack_finish_ext(writer); |
| } |
| #endif |
| |
| void mpack_write_bytes(mpack_writer_t* writer, const char* data, size_t count) { |
| mpack_assert(data != NULL, "data pointer for %i bytes is NULL", (int)count); |
| mpack_writer_track_bytes(writer, count); |
| mpack_write_native(writer, data, count); |
| } |
| |
| void mpack_write_cstr(mpack_writer_t* writer, const char* cstr) { |
| mpack_assert(cstr != NULL, "cstr pointer is NULL"); |
| size_t length = mpack_strlen(cstr); |
| if (length > MPACK_UINT32_MAX) |
| mpack_writer_flag_error(writer, mpack_error_invalid); |
| mpack_write_str(writer, cstr, (uint32_t)length); |
| } |
| |
| void mpack_write_cstr_or_nil(mpack_writer_t* writer, const char* cstr) { |
| if (cstr) |
| mpack_write_cstr(writer, cstr); |
| else |
| mpack_write_nil(writer); |
| } |
| |
| void mpack_write_utf8(mpack_writer_t* writer, const char* str, uint32_t length) { |
| mpack_assert(str != NULL, "data for string of length %i is NULL", (int)length); |
| if (!mpack_utf8_check(str, length)) { |
| mpack_writer_flag_error(writer, mpack_error_invalid); |
| return; |
| } |
| mpack_write_str(writer, str, length); |
| } |
| |
| void mpack_write_utf8_cstr(mpack_writer_t* writer, const char* cstr) { |
| mpack_assert(cstr != NULL, "cstr pointer is NULL"); |
| size_t length = mpack_strlen(cstr); |
| if (length > MPACK_UINT32_MAX) { |
| mpack_writer_flag_error(writer, mpack_error_invalid); |
| return; |
| } |
| mpack_write_utf8(writer, cstr, (uint32_t)length); |
| } |
| |
| void mpack_write_utf8_cstr_or_nil(mpack_writer_t* writer, const char* cstr) { |
| if (cstr) |
| mpack_write_utf8_cstr(writer, cstr); |
| else |
| mpack_write_nil(writer); |
| } |
| |
| /* |
| * Builder implementation |
| * |
| * When a writer is in build mode, it diverts writes to an internal growable |
| * buffer. All elements other than builder start tags are encoded as normal |
| * into the builder buffer (even nested maps and arrays of known size, e.g. |
| * `mpack_start_array()`.) But for compound elements of unknown size, an |
| * mpack_build_t is written to the buffer instead. |
| * |
| * The mpack_build_t tracks everything needed to re-constitute the final |
| * message once all sizes are known. When the last build element is completed, |
| * the builder resolves the build by walking through the builds, outputting the |
| * final encoded tag, and copying everything in between to the writer's true |
| * buffer. |
| * |
| * To make things extra complicated, the builder buffer is not contiguous. It's |
| * allocated in pages, where the first page may be an internal page in the |
| * writer. But, each mpack_build_t must itself be contiguous and aligned |
| * properly within the buffer. This means bytes can be skipped (and wasted) |
| * before the builds or at the end of pages. |
| * |
| * To keep track of this, builds store both their element count and the number |
| * of encoded bytes that follow, and pages store the number of bytes used. As |
| * elements are written, each element adds to the count in the current open |
| * build, and the number of bytes written adds to the current page and the byte |
| * count in the last started build (whether or not it is completed.) |
| */ |
| |
| #if MPACK_BUILDER |
| |
| #ifdef MPACK_ALIGNOF |
| #define MPACK_BUILD_ALIGNMENT MPACK_ALIGNOF(mpack_build_t) |
| #else |
| // without alignof, we just align to the greater of size_t, void* and uint64_t. |
| // (we do this even though we don't have uint64_t in it in case we add it later.) |
| #define MPACK_BUILD_ALIGNMENT_MAX(x, y) ((x) > (y) ? (x) : (y)) |
| #define MPACK_BUILD_ALIGNMENT (MPACK_BUILD_ALIGNMENT_MAX(sizeof(void*), \ |
| MPACK_BUILD_ALIGNMENT_MAX(sizeof(size_t), sizeof(uint64_t)))) |
| #endif |
| |
| static inline void mpack_builder_check_sizes(mpack_writer_t* writer) { |
| |
| // We check internal and page sizes here so that we don't have to check |
| // them again. A new page with a build in it will have a page header, |
| // build, and minimum space for a tag. This will perform horribly and waste |
| // tons of memory if the page size is small, so you're best off just |
| // sticking with the defaults. |
| // |
| // These are all known at compile time, so if they are large |
| // enough this function should trivially optimize to a no-op. |
| |
| #if MPACK_BUILDER_INTERNAL_STORAGE |
| // make sure the internal storage is big enough to be useful |
| MPACK_STATIC_ASSERT(MPACK_BUILDER_INTERNAL_STORAGE_SIZE >= (sizeof(mpack_builder_page_t) + |
| sizeof(mpack_build_t) + MPACK_WRITER_MINIMUM_BUFFER_SIZE), |
| "MPACK_BUILDER_INTERNAL_STORAGE_SIZE is too small to be useful!"); |
| if (MPACK_BUILDER_INTERNAL_STORAGE_SIZE < (sizeof(mpack_builder_page_t) + |
| sizeof(mpack_build_t) + MPACK_WRITER_MINIMUM_BUFFER_SIZE)) |
| { |
| mpack_break("MPACK_BUILDER_INTERNAL_STORAGE_SIZE is too small to be useful!"); |
| mpack_writer_flag_error(writer, mpack_error_bug); |
| } |
| #endif |
| |
| // make sure the builder page size is big enough to be useful |
| MPACK_STATIC_ASSERT(MPACK_BUILDER_PAGE_SIZE >= (sizeof(mpack_builder_page_t) + |
| sizeof(mpack_build_t) + MPACK_WRITER_MINIMUM_BUFFER_SIZE), |
| "MPACK_BUILDER_PAGE_SIZE is too small to be useful!"); |
| if (MPACK_BUILDER_PAGE_SIZE < (sizeof(mpack_builder_page_t) + |
| sizeof(mpack_build_t) + MPACK_WRITER_MINIMUM_BUFFER_SIZE)) |
| { |
| mpack_break("MPACK_BUILDER_PAGE_SIZE is too small to be useful!"); |
| mpack_writer_flag_error(writer, mpack_error_bug); |
| } |
| } |
| |
| static inline size_t mpack_builder_page_size(mpack_writer_t* writer, mpack_builder_page_t* page) { |
| #if MPACK_BUILDER_INTERNAL_STORAGE |
| if ((char*)page == writer->builder.internal) |
| return sizeof(writer->builder.internal); |
| #else |
| (void)writer; |
| (void)page; |
| #endif |
| return MPACK_BUILDER_PAGE_SIZE; |
| } |
| |
| static inline size_t mpack_builder_align_build(size_t bytes_used) { |
| size_t offset = bytes_used; |
| offset += MPACK_BUILD_ALIGNMENT - 1; |
| offset -= offset % MPACK_BUILD_ALIGNMENT; |
| mpack_log("aligned %zi to %zi\n", bytes_used, offset); |
| return offset; |
| } |
| |
| static inline void mpack_builder_free_page(mpack_writer_t* writer, mpack_builder_page_t* page) { |
| mpack_log("freeing page %p\n", (void*)page); |
| #if MPACK_BUILDER_INTERNAL_STORAGE |
| if ((char*)page == writer->builder.internal) |
| return; |
| #else |
| (void)writer; |
| #endif |
| MPACK_FREE(page); |
| } |
| |
| static inline size_t mpack_builder_page_remaining(mpack_writer_t* writer, mpack_builder_page_t* page) { |
| return mpack_builder_page_size(writer, page) - page->bytes_used; |
| } |
| |
| static void mpack_builder_configure_buffer(mpack_writer_t* writer) { |
| if (mpack_writer_error(writer) != mpack_ok) |
| return; |
| mpack_builder_t* builder = &writer->builder; |
| |
| mpack_builder_page_t* page = builder->current_page; |
| mpack_assert(page != NULL, "page is null??"); |
| |
| // This diverts the writer into the remainder of the current page of our |
| // build buffer. |
| writer->buffer = (char*)page + page->bytes_used; |
| writer->position = (char*)page + page->bytes_used; |
| writer->end = (char*)page + mpack_builder_page_size(writer, page); |
| mpack_log("configuring buffer from %p to %p\n", (void*)writer->position, (void*)writer->end); |
| } |
| |
| static void mpack_builder_add_page(mpack_writer_t* writer) { |
| mpack_builder_t* builder = &writer->builder; |
| mpack_assert(writer->error == mpack_ok); |
| |
| mpack_log("adding a page.\n"); |
| mpack_builder_page_t* page = (mpack_builder_page_t*)MPACK_MALLOC(MPACK_BUILDER_PAGE_SIZE); |
| if (page == NULL) { |
| mpack_writer_flag_error(writer, mpack_error_memory); |
| return; |
| } |
| |
| page->next = NULL; |
| page->bytes_used = sizeof(mpack_builder_page_t); |
| builder->current_page->next = page; |
| builder->current_page = page; |
| } |
| |
| // Checks how many bytes the writer wrote to the page, adding it to the page's |
| // bytes_used. This must be followed up with mpack_builder_configure_buffer() |
| // (after adding a new page, build, etc) to reset the writer's buffer pointers. |
| static void mpack_builder_apply_writes(mpack_writer_t* writer) { |
| mpack_assert(writer->error == mpack_ok); |
| mpack_builder_t* builder = &writer->builder; |
| mpack_log("latest build is %p\n", (void*)builder->latest_build); |
| |
| // The difference between buffer and current is the number of bytes that |
| // were written to the page. |
| size_t bytes_written = (size_t)(writer->position - writer->buffer); |
| mpack_log("applying write of %zi bytes to build %p\n", bytes_written, (void*)builder->latest_build); |
| |
| mpack_assert(builder->current_page != NULL); |
| mpack_assert(builder->latest_build != NULL); |
| builder->current_page->bytes_used += bytes_written; |
| builder->latest_build->bytes += bytes_written; |
| mpack_log("latest build %p now has %zi bytes\n", (void*)builder->latest_build, builder->latest_build->bytes); |
| } |
| |
| static void mpack_builder_flush(mpack_writer_t* writer) { |
| mpack_assert(writer->error == mpack_ok); |
| mpack_builder_apply_writes(writer); |
| mpack_builder_add_page(writer); |
| mpack_builder_configure_buffer(writer); |
| } |
| |
| MPACK_NOINLINE static void mpack_builder_begin(mpack_writer_t* writer) { |
| mpack_builder_t* builder = &writer->builder; |
| mpack_assert(writer->error == mpack_ok); |
| mpack_assert(builder->current_build == NULL); |
| mpack_assert(builder->latest_build == NULL); |
| mpack_assert(builder->pages == NULL); |
| |
| // If this is the first build, we need to stash the real buffer backing our |
| // writer. We'll be diverting the writer to our build buffer. |
| builder->stash_buffer = writer->buffer; |
| builder->stash_position = writer->position; |
| builder->stash_end = writer->end; |
| |
| mpack_builder_page_t* page; |
| |
| // we've checked that both these sizes are large enough above. |
| #if MPACK_BUILDER_INTERNAL_STORAGE |
| page = (mpack_builder_page_t*)builder->internal; |
| mpack_log("beginning builder with internal storage %p\n", (void*)page); |
| #else |
| page = (mpack_builder_page_t*)MPACK_MALLOC(MPACK_BUILDER_PAGE_SIZE); |
| if (page == NULL) { |
| mpack_writer_flag_error(writer, mpack_error_memory); |
| return; |
| } |
| mpack_log("beginning builder with allocated page %p\n", (void*)page); |
| #endif |
| |
| page->next = NULL; |
| page->bytes_used = sizeof(mpack_builder_page_t); |
| builder->pages = page; |
| builder->current_page = page; |
| } |
| |
| static void mpack_builder_build(mpack_writer_t* writer, mpack_type_t type) { |
| mpack_builder_check_sizes(writer); |
| if (mpack_writer_error(writer) != mpack_ok) |
| return; |
| |
| mpack_writer_track_element(writer); |
| mpack_writer_track_push_builder(writer, type); |
| |
| mpack_builder_t* builder = &writer->builder; |
| |
| if (builder->current_build == NULL) { |
| mpack_builder_begin(writer); |
| } else { |
| mpack_builder_apply_writes(writer); |
| } |
| if (mpack_writer_error(writer) != mpack_ok) |
| return; |
| |
| // find aligned space for a new build. if there isn't enough space in the |
| // current page, we discard the remaining space in it and allocate a new |
| // page. |
| size_t offset = mpack_builder_align_build(builder->current_page->bytes_used); |
| if (offset + sizeof(mpack_build_t) > mpack_builder_page_size(writer, builder->current_page)) { |
| mpack_log("not enough space for a build. %zi bytes used of %zi in this page\n", |
| builder->current_page->bytes_used, mpack_builder_page_size(writer, builder->current_page)); |
| mpack_builder_add_page(writer); |
| // there is always enough space in a fresh page. |
| offset = mpack_builder_align_build(builder->current_page->bytes_used); |
| } |
| |
| // allocate the build within the page. note that we don't keep track of the |
| // space wasted due to the offset. instead the previous build has stored |
| // how many bytes follow it, and we'll redo this offset calculation to find |
| // this build after it. |
| mpack_builder_page_t* page = builder->current_page; |
| page->bytes_used = offset + sizeof(mpack_build_t); |
| mpack_assert(page->bytes_used <= mpack_builder_page_size(writer, page)); |
| mpack_build_t* build = (mpack_build_t*)((char*)page + offset); |
| mpack_log("created new build %p within page %p, which now has %zi bytes used\n", |
| (void*)build, (void*)page, page->bytes_used); |
| |
| // configure the new build |
| build->parent = builder->current_build; |
| build->bytes = 0; |
| build->count = 0; |
| build->type = type; |
| build->key_needs_value = false; |
| build->nested_compound_elements = 0; |
| |
| mpack_log("setting current and latest build to new build %p\n", (void*)build); |
| builder->current_build = build; |
| builder->latest_build = build; |
| |
| // we always need to provide a buffer that meets the minimum buffer size. |
| // if there isn't enough space, we discard the remaining space in the |
| // current page and allocate a new one. |
| if (mpack_builder_page_remaining(writer, page) < MPACK_WRITER_MINIMUM_BUFFER_SIZE) { |
| mpack_log("less than minimum buffer size in current page. %zi bytes used of %zi in this page\n", |
| builder->current_page->bytes_used, mpack_builder_page_size(writer, builder->current_page)); |
| mpack_builder_add_page(writer); |
| if (mpack_writer_error(writer) != mpack_ok) |
| return; |
| } |
| mpack_assert(mpack_builder_page_remaining(writer, builder->current_page) >= MPACK_WRITER_MINIMUM_BUFFER_SIZE); |
| mpack_builder_configure_buffer(writer); |
| } |
| |
| MPACK_NOINLINE |
| static void mpack_builder_resolve(mpack_writer_t* writer) { |
| mpack_builder_t* builder = &writer->builder; |
| |
| // The starting page is the internal storage (if we have it), otherwise |
| // it's the first page in the array |
| mpack_builder_page_t* page = |
| #if MPACK_BUILDER_INTERNAL_STORAGE |
| (mpack_builder_page_t*)builder->internal |
| #else |
| builder->pages |
| #endif |
| ; |
| |
| // We start by restoring the writer's original buffer so we can write the |
| // data for real. |
| writer->buffer = builder->stash_buffer; |
| writer->position = builder->stash_position; |
| writer->end = builder->stash_end; |
| |
| // We can also close out the build now. |
| builder->current_build = NULL; |
| builder->latest_build = NULL; |
| builder->current_page = NULL; |
| builder->pages = NULL; |
| |
| // the starting page always starts with the first build |
| size_t offset = mpack_builder_align_build(sizeof(mpack_builder_page_t)); |
| mpack_build_t* build = (mpack_build_t*)((char*)page + offset); |
| mpack_log("starting resolve with build %p in page %p\n", (void*)build, (void*)page); |
| |
| // encoded data immediately follows the build |
| offset += sizeof(mpack_build_t); |
| |
| // Walk the list of builds, writing everything out in the buffer. Note that |
| // we don't check for errors anywhere. The lower-level write functions will |
| // all check for errors. We need to walk all pages anyway to free them, so |
| // there's not much point in optimizing an error path at the expense of the |
| // normal path. |
| while (true) { |
| |
| // write out the container tag |
| mpack_log("writing out an %s with count %u followed by %zi bytes\n", |
| mpack_type_to_string(build->type), build->count, build->bytes); |
| switch (build->type) { |
| case mpack_type_map: |
| mpack_write_map_notrack(writer, build->count); |
| break; |
| case mpack_type_array: |
| mpack_write_array_notrack(writer, build->count); |
| break; |
| default: |
| mpack_break("invalid type in builder?"); |
| mpack_writer_flag_error(writer, mpack_error_bug); |
| return; |
| } |
| |
| // figure out how many bytes follow this container. we're going to be |
| // freeing pages as we write, so we need to be done with this build. |
| size_t left = build->bytes; |
| build = NULL; |
| |
| // write out all bytes following this container |
| while (left > 0) { |
| size_t bytes_used = page->bytes_used; |
| if (offset < bytes_used) { |
| size_t step = bytes_used - offset; |
| if (step > left) |
| step = left; |
| mpack_log("writing out %zi bytes starting at %p in page %p\n", |
| step, (void*)((char*)page + offset), (void*)page); |
| mpack_write_native(writer, (char*)page + offset, step); |
| offset += step; |
| left -= step; |
| } |
| |
| if (left == 0) { |
| mpack_log("done writing bytes for this build\n"); |
| break; |
| } |
| |
| // still need to write more bytes. free this page and jump to the |
| // next one. |
| mpack_builder_page_t* next_page = page->next; |
| mpack_builder_free_page(writer, page); |
| page = next_page; |
| // bytes on the next page immediately follow the header. |
| offset = sizeof(mpack_builder_page_t); |
| } |
| |
| // now see if we can find another build. |
| offset = mpack_builder_align_build(offset); |
| if (offset + sizeof(mpack_build_t) >= mpack_builder_page_size(writer, page)) { |
| mpack_log("not enough room in this page for another build\n"); |
| mpack_builder_page_t* next_page = page->next; |
| mpack_builder_free_page(writer, page); |
| page = next_page; |
| if (page == NULL) { |
| mpack_log("no more pages\n"); |
| // there are no more pages. we're done. |
| break; |
| } |
| offset = mpack_builder_align_build(sizeof(mpack_builder_page_t)); |
| } |
| if (offset + sizeof(mpack_build_t) > page->bytes_used) { |
| // there is no more data. we're done. |
| mpack_log("no more data\n"); |
| mpack_builder_free_page(writer, page); |
| break; |
| } |
| |
| // we've found another build. loop around! |
| build = (mpack_build_t*)((char*)page + offset); |
| offset += sizeof(mpack_build_t); |
| mpack_log("found build %p\n", (void*)build); |
| } |
| |
| mpack_log("done resolve.\n"); |
| } |
| |
| static void mpack_builder_complete(mpack_writer_t* writer, mpack_type_t type) { |
| if (mpack_writer_error(writer) != mpack_ok) |
| return; |
| |
| mpack_writer_track_pop_builder(writer, type); |
| mpack_builder_t* builder = &writer->builder; |
| mpack_assert(builder->current_build != NULL, "no build in progress!"); |
| mpack_assert(builder->latest_build != NULL, "missing latest build!"); |
| mpack_assert(builder->current_build->type == type, "completing wrong type!"); |
| mpack_log("completing build %p\n", (void*)builder->current_build); |
| |
| if (builder->current_build->key_needs_value) { |
| mpack_break("an odd number of elements were written in a map!"); |
| mpack_writer_flag_error(writer, mpack_error_bug); |
| return; |
| } |
| |
| if (builder->current_build->nested_compound_elements != 0) { |
| mpack_break("there is a nested unfinished non-build map or array in this build."); |
| mpack_writer_flag_error(writer, mpack_error_bug); |
| return; |
| } |
| |
| // We need to apply whatever writes have been made to the current build |
| // before popping it. |
| mpack_builder_apply_writes(writer); |
| |
| // For a nested build, we just switch the current build back to its parent. |
| if (builder->current_build->parent != NULL) { |
| mpack_log("setting current build to parent build %p. latest is still %p.\n", |
| (void*)builder->current_build->parent, (void*)builder->latest_build); |
| builder->current_build = builder->current_build->parent; |
| mpack_builder_configure_buffer(writer); |
| } else { |
| // We're completing the final build. |
| mpack_builder_resolve(writer); |
| } |
| } |
| |
| void mpack_build_map(mpack_writer_t* writer) { |
| mpack_builder_build(writer, mpack_type_map); |
| } |
| |
| void mpack_build_array(mpack_writer_t* writer) { |
| mpack_builder_build(writer, mpack_type_array); |
| } |
| |
| void mpack_complete_map(mpack_writer_t* writer) { |
| mpack_builder_complete(writer, mpack_type_map); |
| } |
| |
| void mpack_complete_array(mpack_writer_t* writer) { |
| mpack_builder_complete(writer, mpack_type_array); |
| } |
| |
| #endif // MPACK_BUILDER |
| #endif // MPACK_WRITER |
| |
| MPACK_SILENCE_WARNINGS_END |
| |
| /* mpack/mpack-reader.c.c */ |
| |
| #define MPACK_INTERNAL 1 |
| |
| /* #include "mpack-reader.h" */ |
| |
| MPACK_SILENCE_WARNINGS_BEGIN |
| |
| #if MPACK_READER |
| |
| static void mpack_reader_skip_using_fill(mpack_reader_t* reader, size_t count); |
| |
| void mpack_reader_init(mpack_reader_t* reader, char* buffer, size_t size, size_t count) { |
| mpack_assert(buffer != NULL, "buffer is NULL"); |
| |
| mpack_memset(reader, 0, sizeof(*reader)); |
| reader->buffer = buffer; |
| reader->size = size; |
| reader->data = buffer; |
| reader->end = buffer + count; |
| |
| #if MPACK_READ_TRACKING |
| mpack_reader_flag_if_error(reader, mpack_track_init(&reader->track)); |
| #endif |
| |
| mpack_log("===========================\n"); |
| mpack_log("initializing reader with buffer size %i\n", (int)size); |
| } |
| |
| void mpack_reader_init_error(mpack_reader_t* reader, mpack_error_t error) { |
| mpack_memset(reader, 0, sizeof(*reader)); |
| reader->error = error; |
| |
| mpack_log("===========================\n"); |
| mpack_log("initializing reader error state %i\n", (int)error); |
| } |
| |
| void mpack_reader_init_data(mpack_reader_t* reader, const char* data, size_t count) { |
| mpack_assert(data != NULL, "data is NULL"); |
| |
| mpack_memset(reader, 0, sizeof(*reader)); |
| reader->data = data; |
| reader->end = data + count; |
| |
| #if MPACK_READ_TRACKING |
| mpack_reader_flag_if_error(reader, mpack_track_init(&reader->track)); |
| #endif |
| |
| mpack_log("===========================\n"); |
| mpack_log("initializing reader with data size %i\n", (int)count); |
| } |
| |
| void mpack_reader_set_fill(mpack_reader_t* reader, mpack_reader_fill_t fill) { |
| MPACK_STATIC_ASSERT(MPACK_READER_MINIMUM_BUFFER_SIZE >= MPACK_MAXIMUM_TAG_SIZE, |
| "minimum buffer size must fit any tag!"); |
| |
| if (reader->size == 0) { |
| mpack_break("cannot use fill function without a writeable buffer!"); |
| mpack_reader_flag_error(reader, mpack_error_bug); |
| return; |
| } |
| |
| if (reader->size < MPACK_READER_MINIMUM_BUFFER_SIZE) { |
| mpack_break("buffer size is %i, but minimum buffer size for fill is %i", |
| (int)reader->size, MPACK_READER_MINIMUM_BUFFER_SIZE); |
| mpack_reader_flag_error(reader, mpack_error_bug); |
| return; |
| } |
| |
| reader->fill = fill; |
| } |
| |
| void mpack_reader_set_skip(mpack_reader_t* reader, mpack_reader_skip_t skip) { |
| mpack_assert(reader->size != 0, "cannot use skip function without a writeable buffer!"); |
| reader->skip = skip; |
| } |
| |
| #if MPACK_STDIO |
| static size_t mpack_file_reader_fill(mpack_reader_t* reader, char* buffer, size_t count) { |
| if (feof((FILE *)reader->context)) { |
| mpack_reader_flag_error(reader, mpack_error_eof); |
| return 0; |
| } |
| return fread((void*)buffer, 1, count, (FILE*)reader->context); |
| } |
| |
| static void mpack_file_reader_skip(mpack_reader_t* reader, size_t count) { |
| if (mpack_reader_error(reader) != mpack_ok) |
| return; |
| FILE* file = (FILE*)reader->context; |
| |
| // We call ftell() to test whether the stream is seekable |
| // without causing a file error. |
| if (ftell(file) >= 0) { |
| mpack_log("seeking forward %i bytes\n", (int)count); |
| if (fseek(file, (long int)count, SEEK_CUR) == 0) |
| return; |
| mpack_log("fseek() didn't return zero!\n"); |
| if (ferror(file)) { |
| mpack_reader_flag_error(reader, mpack_error_io); |
| return; |
| } |
| } |
| |
| // If the stream is not seekable, fall back to the fill function. |
| mpack_reader_skip_using_fill(reader, count); |
| } |
| |
| static void mpack_file_reader_teardown(mpack_reader_t* reader) { |
| MPACK_FREE(reader->buffer); |
| reader->buffer = NULL; |
| reader->context = NULL; |
| reader->size = 0; |
| reader->fill = NULL; |
| reader->skip = NULL; |
| reader->teardown = NULL; |
| } |
| |
| static void mpack_file_reader_teardown_close(mpack_reader_t* reader) { |
| FILE* file = (FILE*)reader->context; |
| |
| if (file) { |
| int ret = fclose(file); |
| if (ret != 0) |
| mpack_reader_flag_error(reader, mpack_error_io); |
| } |
| |
| mpack_file_reader_teardown(reader); |
| } |
| |
| void mpack_reader_init_stdfile(mpack_reader_t* reader, FILE* file, bool close_when_done) { |
| mpack_assert(file != NULL, "file is NULL"); |
| |
| size_t capacity = MPACK_BUFFER_SIZE; |
| char* buffer = (char*)MPACK_MALLOC(capacity); |
| if (buffer == NULL) { |
| mpack_reader_init_error(reader, mpack_error_memory); |
| if (close_when_done) { |
| fclose(file); |
| } |
| return; |
| } |
| |
| mpack_reader_init(reader, buffer, capacity, 0); |
| mpack_reader_set_context(reader, file); |
| mpack_reader_set_fill(reader, mpack_file_reader_fill); |
| mpack_reader_set_skip(reader, mpack_file_reader_skip); |
| mpack_reader_set_teardown(reader, close_when_done ? |
| mpack_file_reader_teardown_close : |
| mpack_file_reader_teardown); |
| } |
| |
| void mpack_reader_init_filename(mpack_reader_t* reader, const char* filename) { |
| mpack_assert(filename != NULL, "filename is NULL"); |
| |
| FILE* file = fopen(filename, "rb"); |
| if (file == NULL) { |
| mpack_reader_init_error(reader, mpack_error_io); |
| return; |
| } |
| |
| mpack_reader_init_stdfile(reader, file, true); |
| } |
| #endif |
| |
| mpack_error_t mpack_reader_destroy(mpack_reader_t* reader) { |
| |
| // clean up tracking, asserting if we're not already in an error state |
| #if MPACK_READ_TRACKING |
| mpack_reader_flag_if_error(reader, mpack_track_destroy(&reader->track, mpack_reader_error(reader) != mpack_ok)); |
| #endif |
| |
| if (reader->teardown) |
| reader->teardown(reader); |
| reader->teardown = NULL; |
| |
| return reader->error; |
| } |
| |
| size_t mpack_reader_remaining(mpack_reader_t* reader, const char** data) { |
| if (mpack_reader_error(reader) != mpack_ok) |
| return 0; |
| |
| #if MPACK_READ_TRACKING |
| if (mpack_reader_flag_if_error(reader, mpack_track_check_empty(&reader->track)) != mpack_ok) |
| return 0; |
| #endif |
| |
| if (data) |
| *data = reader->data; |
| return (size_t)(reader->end - reader->data); |
| } |
| |
| void mpack_reader_flag_error(mpack_reader_t* reader, mpack_error_t error) { |
| mpack_log("reader %p setting error %i: %s\n", (void*)reader, (int)error, mpack_error_to_string(error)); |
| |
| if (reader->error == mpack_ok) { |
| reader->error = error; |
| reader->end = reader->data; |
| if (reader->error_fn) |
| reader->error_fn(reader, error); |
| } |
| } |
| |
| // Loops on the fill function, reading between the minimum and |
| // maximum number of bytes and flagging an error if it fails. |
| MPACK_NOINLINE static size_t mpack_fill_range(mpack_reader_t* reader, char* p, size_t min_bytes, size_t max_bytes) { |
| mpack_assert(reader->fill != NULL, "mpack_fill_range() called with no fill function?"); |
| mpack_assert(min_bytes > 0, "cannot fill zero bytes!"); |
| mpack_assert(max_bytes >= min_bytes, "min_bytes %i cannot be larger than max_bytes %i!", |
| (int)min_bytes, (int)max_bytes); |
| |
| size_t count = 0; |
| while (count < min_bytes) { |
| size_t read = reader->fill(reader, p + count, max_bytes - count); |
| |
| // Reader fill functions can flag an error or return 0 on failure. We |
| // also guard against functions that return -1 just in case. |
| if (mpack_reader_error(reader) != mpack_ok) |
| return 0; |
| if (read == 0 || read == ((size_t)(-1))) { |
| mpack_reader_flag_error(reader, mpack_error_io); |
| return 0; |
| } |
| |
| count += read; |
| } |
| return count; |
| } |
| |
| MPACK_NOINLINE bool mpack_reader_ensure_straddle(mpack_reader_t* reader, size_t count) { |
| mpack_assert(count != 0, "cannot ensure zero bytes!"); |
| mpack_assert(reader->error == mpack_ok, "reader cannot be in an error state!"); |
| |
| mpack_assert(count > (size_t)(reader->end - reader->data), |
| "straddling ensure requested for %i bytes, but there are %i bytes " |
| "left in buffer. call mpack_reader_ensure() instead", |
| (int)count, (int)(reader->end - reader->data)); |
| |
| // we'll need a fill function to get more data. if there's no |
| // fill function, the buffer should contain an entire MessagePack |
| // object, so we raise mpack_error_invalid instead of mpack_error_io |
| // on truncated data. |
| if (reader->fill == NULL) { |
| mpack_reader_flag_error(reader, mpack_error_invalid); |
| return false; |
| } |
| |
| // we need enough space in the buffer. if the buffer is not |
| // big enough, we return mpack_error_too_big (since this is |
| // for an in-place read larger than the buffer size.) |
| if (count > reader->size) { |
| mpack_reader_flag_error(reader, mpack_error_too_big); |
| return false; |
| } |
| |
| // move the existing data to the start of the buffer |
| size_t left = (size_t)(reader->end - reader->data); |
| mpack_memmove(reader->buffer, reader->data, left); |
| reader->end -= reader->data - reader->buffer; |
| reader->data = reader->buffer; |
| |
| // read at least the necessary number of bytes, accepting up to the |
| // buffer size |
| size_t read = mpack_fill_range(reader, reader->buffer + left, |
| count - left, reader->size - left); |
| if (mpack_reader_error(reader) != mpack_ok) |
| return false; |
| reader->end += read; |
| return true; |
| } |
| |
| // Reads count bytes into p. Used when there are not enough bytes |
| // left in the buffer to satisfy a read. |
| MPACK_NOINLINE void mpack_read_native_straddle(mpack_reader_t* reader, char* p, size_t count) { |
| mpack_assert(count == 0 || p != NULL, "data pointer for %i bytes is NULL", (int)count); |
| |
| if (mpack_reader_error(reader) != mpack_ok) { |
| mpack_memset(p, 0, count); |
| return; |
| } |
| |
| size_t left = (size_t)(reader->end - reader->data); |
| mpack_log("big read for %i bytes into %p, %i left in buffer, buffer size %i\n", |
| (int)count, p, (int)left, (int)reader->size); |
| |
| if (count <= left) { |
| mpack_assert(0, |
| "big read requested for %i bytes, but there are %i bytes " |
| "left in buffer. call mpack_read_native() instead", |
| (int)count, (int)left); |
| mpack_reader_flag_error(reader, mpack_error_bug); |
| mpack_memset(p, 0, count); |
| return; |
| } |
| |
| // we'll need a fill function to get more data. if there's no |
| // fill function, the buffer should contain an entire MessagePack |
| // object, so we raise mpack_error_invalid instead of mpack_error_io |
| // on truncated data. |
| if (reader->fill == NULL) { |
| mpack_reader_flag_error(reader, mpack_error_invalid); |
| mpack_memset(p, 0, count); |
| return; |
| } |
| |
| if (reader->size == 0) { |
| // somewhat debatable what error should be returned here. when |
| // initializing a reader with an in-memory buffer it's not |
| // necessarily a bug if the data is blank; it might just have |
| // been truncated to zero. for this reason we return the same |
| // error as if the data was truncated. |
| mpack_reader_flag_error(reader, mpack_error_io); |
| mpack_memset(p, 0, count); |
| return; |
| } |
| |
| // flush what's left of the buffer |
| if (left > 0) { |
| mpack_log("flushing %i bytes remaining in buffer\n", (int)left); |
| mpack_memcpy(p, reader->data, left); |
| count -= left; |
| p += left; |
| reader->data += left; |
| } |
| |
| // if the remaining data needed is some small fraction of the |
| // buffer size, we'll try to fill the buffer as much as possible |
| // and copy the needed data out. |
| if (count <= reader->size / MPACK_READER_SMALL_FRACTION_DENOMINATOR) { |
| size_t read = mpack_fill_range(reader, reader->buffer, count, reader->size); |
| if (mpack_reader_error(reader) != mpack_ok) |
| return; |
| mpack_memcpy(p, reader->buffer, count); |
| reader->data = reader->buffer + count; |
| reader->end = reader->buffer + read; |
| |
| // otherwise we read the remaining data directly into the target. |
| } else { |
| mpack_log("reading %i additional bytes\n", (int)count); |
| mpack_fill_range(reader, p, count, count); |
| } |
| } |
| |
| MPACK_NOINLINE static void mpack_skip_bytes_straddle(mpack_reader_t* reader, size_t count) { |
| |
| // we'll need at least a fill function to skip more data. if there's |
| // no fill function, the buffer should contain an entire MessagePack |
| // object, so we raise mpack_error_invalid instead of mpack_error_io |
| // on truncated data. (see mpack_read_native_straddle()) |
| if (reader->fill == NULL) { |
| mpack_log("reader has no fill function!\n"); |
| mpack_reader_flag_error(reader, mpack_error_invalid); |
| return; |
| } |
| |
| // discard whatever's left in the buffer |
| size_t left = (size_t)(reader->end - reader->data); |
| mpack_log("discarding %i bytes still in buffer\n", (int)left); |
| count -= left; |
| reader->data = reader->end; |
| |
| // use the skip function if we've got one, and if we're trying |
| // to skip a lot of data. if we only need to skip some tiny |
| // fraction of the buffer size, it's probably better to just |
| // fill the buffer and skip from it instead of trying to seek. |
| if (reader->skip && count > reader->size / 16) { |
| mpack_log("calling skip function for %i bytes\n", (int)count); |
| reader->skip(reader, count); |
| return; |
| } |
| |
| mpack_reader_skip_using_fill(reader, count); |
| } |
| |
| void mpack_skip_bytes(mpack_reader_t* reader, size_t count) { |
| if (mpack_reader_error(reader) != mpack_ok) |
| return; |
| mpack_log("skip requested for %i bytes\n", (int)count); |
| |
| mpack_reader_track_bytes(reader, count); |
| |
| // check if we have enough in the buffer already |
| size_t left = (size_t)(reader->end - reader->data); |
| if (left >= count) { |
| mpack_log("skipping %u bytes still in buffer\n", (uint32_t)count); |
| reader->data += count; |
| return; |
| } |
| |
| mpack_skip_bytes_straddle(reader, count); |
| } |
| |
| MPACK_NOINLINE static void mpack_reader_skip_using_fill(mpack_reader_t* reader, size_t count) { |
| mpack_assert(reader->fill != NULL, "missing fill function!"); |
| mpack_assert(reader->data == reader->end, "there are bytes left in the buffer!"); |
| mpack_assert(reader->error == mpack_ok, "should not have called this in an error state (%i)", reader->error); |
| mpack_log("skip using fill for %i bytes\n", (int)count); |
| |
| // fill and discard multiples of the buffer size |
| while (count > reader->size) { |
| mpack_log("filling and discarding buffer of %i bytes\n", (int)reader->size); |
| if (mpack_fill_range(reader, reader->buffer, reader->size, reader->size) < reader->size) { |
| mpack_reader_flag_error(reader, mpack_error_io); |
| return; |
| } |
| count -= reader->size; |
| } |
| |
| // fill the buffer as much as possible |
| reader->data = reader->buffer; |
| size_t read = mpack_fill_range(reader, reader->buffer, count, reader->size); |
| if (read < count) { |
| mpack_reader_flag_error(reader, mpack_error_io); |
| return; |
| } |
| reader->end = reader->data + read; |
| mpack_log("filled %i bytes into buffer; discarding %i bytes\n", (int)read, (int)count); |
| reader->data += count; |
| } |
| |
| void mpack_read_bytes(mpack_reader_t* reader, char* p, size_t count) { |
| mpack_assert(p != NULL, "destination for read of %i bytes is NULL", (int)count); |
| mpack_reader_track_bytes(reader, count); |
| mpack_read_native(reader, p, count); |
| } |
| |
| void mpack_read_utf8(mpack_reader_t* reader, char* p, size_t byte_count) { |
| mpack_assert(p != NULL, "destination for read of %i bytes is NULL", (int)byte_count); |
| mpack_reader_track_str_bytes_all(reader, byte_count); |
| mpack_read_native(reader, p, byte_count); |
| |
| if (mpack_reader_error(reader) == mpack_ok && !mpack_utf8_check(p, byte_count)) |
| mpack_reader_flag_error(reader, mpack_error_type); |
| } |
| |
| static void mpack_read_cstr_unchecked(mpack_reader_t* reader, char* buf, size_t buffer_size, size_t byte_count) { |
| mpack_assert(buf != NULL, "destination for read of %i bytes is NULL", (int)byte_count); |
| mpack_assert(buffer_size >= 1, "buffer size is zero; you must have room for at least a null-terminator"); |
| |
| if (mpack_reader_error(reader)) { |
| buf[0] = 0; |
| return; |
| } |
| |
| if (byte_count > buffer_size - 1) { |
| mpack_reader_flag_error(reader, mpack_error_too_big); |
| buf[0] = 0; |
| return; |
| } |
| |
| mpack_reader_track_str_bytes_all(reader, byte_count); |
| mpack_read_native(reader, buf, byte_count); |
| buf[byte_count] = 0; |
| } |
| |
| void mpack_read_cstr(mpack_reader_t* reader, char* buf, size_t buffer_size, size_t byte_count) { |
| mpack_read_cstr_unchecked(reader, buf, buffer_size, byte_count); |
| |
| // check for null bytes |
| if (mpack_reader_error(reader) == mpack_ok && !mpack_str_check_no_null(buf, byte_count)) { |
| buf[0] = 0; |
| mpack_reader_flag_error(reader, mpack_error_type); |
| } |
| } |
| |
| void mpack_read_utf8_cstr(mpack_reader_t* reader, char* buf, size_t buffer_size, size_t byte_count) { |
| mpack_read_cstr_unchecked(reader, buf, buffer_size, byte_count); |
| |
| // check encoding |
| if (mpack_reader_error(reader) == mpack_ok && !mpack_utf8_check_no_null(buf, byte_count)) { |
| buf[0] = 0; |
| mpack_reader_flag_error(reader, mpack_error_type); |
| } |
| } |
| |
| #ifdef MPACK_MALLOC |
| // Reads native bytes with error callback disabled. This allows MPack reader functions |
| // to hold an allocated buffer and read native data into it without leaking it in |
| // case of a non-local jump (longjmp, throw) out of an error handler. |
| static void mpack_read_native_noerrorfn(mpack_reader_t* reader, char* p, size_t count) { |
| mpack_assert(reader->error == mpack_ok, "cannot call if an error is already flagged!"); |
| mpack_reader_error_t error_fn = reader->error_fn; |
| reader->error_fn = NULL; |
| mpack_read_native(reader, p, count); |
| reader->error_fn = error_fn; |
| } |
| |
| char* mpack_read_bytes_alloc_impl(mpack_reader_t* reader, size_t count, bool null_terminated) { |
| |
| // track the bytes first in case it jumps |
| mpack_reader_track_bytes(reader, count); |
| if (mpack_reader_error(reader) != mpack_ok) |
| return NULL; |
| |
| // cannot allocate zero bytes. this is not an error. |
| if (count == 0 && null_terminated == false) |
| return NULL; |
| |
| // allocate data |
| char* data = (char*)MPACK_MALLOC(count + (null_terminated ? 1 : 0)); // TODO: can this overflow? |
| if (data == NULL) { |
| mpack_reader_flag_error(reader, mpack_error_memory); |
| return NULL; |
| } |
| |
| // read with error callback disabled so we don't leak our buffer |
| mpack_read_native_noerrorfn(reader, data, count); |
| |
| // report flagged errors |
| if (mpack_reader_error(reader) != mpack_ok) { |
| MPACK_FREE(data); |
| if (reader->error_fn) |
| reader->error_fn(reader, mpack_reader_error(reader)); |
| return NULL; |
| } |
| |
| if (null_terminated) |
| data[count] = '\0'; |
| return data; |
| } |
| #endif |
| |
| // read inplace without tracking (since there are different |
| // tracking modes for different inplace readers) |
| static const char* mpack_read_bytes_inplace_notrack(mpack_reader_t* reader, size_t count) { |
| if (mpack_reader_error(reader) != mpack_ok) |
| return NULL; |
| |
| // if we have enough bytes already in the buffer, we can return it directly. |
| if ((size_t)(reader->end - reader->data) >= count) { |
| const char* bytes = reader->data; |
| reader->data += count; |
| return bytes; |
| } |
| |
| if (!mpack_reader_ensure(reader, count)) |
| return NULL; |
| |
| const char* bytes = reader->data; |
| reader->data += count; |
| return bytes; |
| } |
| |
| const char* mpack_read_bytes_inplace(mpack_reader_t* reader, size_t count) { |
| mpack_reader_track_bytes(reader, count); |
| return mpack_read_bytes_inplace_notrack(reader, count); |
| } |
| |
| const char* mpack_read_utf8_inplace(mpack_reader_t* reader, size_t count) { |
| mpack_reader_track_str_bytes_all(reader, count); |
| const char* str = mpack_read_bytes_inplace_notrack(reader, count); |
| |
| if (mpack_reader_error(reader) == mpack_ok && !mpack_utf8_check(str, count)) { |
| mpack_reader_flag_error(reader, mpack_error_type); |
| return NULL; |
| } |
| |
| return str; |
| } |
| |
| static size_t mpack_parse_tag(mpack_reader_t* reader, mpack_tag_t* tag) { |
| mpack_assert(reader->error == mpack_ok, "reader cannot be in an error state!"); |
| |
| if (!mpack_reader_ensure(reader, 1)) |
| return 0; |
| uint8_t type = mpack_load_u8(reader->data); |
| |
| // unfortunately, by far the fastest way to parse a tag is to switch |
| // on the first byte, and to explicitly list every possible byte. so for |
| // infix types, the list of cases is quite large. |
| // |
| // in size-optimized builds, we switch on the top four bits first to |
| // handle most infix types with a smaller jump table to save space. |
| |
| #if MPACK_OPTIMIZE_FOR_SIZE |
| switch (type >> 4) { |
| |
| // positive fixnum |
| case 0x0: case 0x1: case 0x2: case 0x3: |
| case 0x4: case 0x5: case 0x6: case 0x7: |
| *tag = mpack_tag_make_uint(type); |
| return 1; |
| |
| // negative fixnum |
| case 0xe: case 0xf: |
| *tag = mpack_tag_make_int((int8_t)type); |
| return 1; |
| |
| // fixmap |
| case 0x8: |
| *tag = mpack_tag_make_map(type & ~0xf0u); |
| return 1; |
| |
| // fixarray |
| case 0x9: |
| *tag = mpack_tag_make_array(type & ~0xf0u); |
| return 1; |
| |
| // fixstr |
| case 0xa: case 0xb: |
| *tag = mpack_tag_make_str(type & ~0xe0u); |
| return 1; |
| |
| // not one of the common infix types |
| default: |
| break; |
| |
| } |
| #endif |
| |
| // handle individual type tags |
| switch (type) { |
| |
| #if !MPACK_OPTIMIZE_FOR_SIZE |
| // positive fixnum |
| case 0x00: case 0x01: case 0x02: case 0x03: case 0x04: case 0x05: case 0x06: case 0x07: |
| case 0x08: case 0x09: case 0x0a: case 0x0b: case 0x0c: case 0x0d: case 0x0e: case 0x0f: |
| case 0x10: case 0x11: case 0x12: case 0x13: case 0x14: case 0x15: case 0x16: case 0x17: |
| case 0x18: case 0x19: case 0x1a: case 0x1b: case 0x1c: case 0x1d: case 0x1e: case 0x1f: |
| case 0x20: case 0x21: case 0x22: case 0x23: case 0x24: case 0x25: case 0x26: case 0x27: |
| case 0x28: case 0x29: case 0x2a: case 0x2b: case 0x2c: case 0x2d: case 0x2e: case 0x2f: |
| case 0x30: case 0x31: case 0x32: case 0x33: case 0x34: case 0x35: case 0x36: case 0x37: |
| case 0x38: case 0x39: case 0x3a: case 0x3b: case 0x3c: case 0x3d: case 0x3e: case 0x3f: |
| case 0x40: case 0x41: case 0x42: case 0x43: case 0x44: case 0x45: case 0x46: case 0x47: |
| case 0x48: case 0x49: case 0x4a: case 0x4b: case 0x4c: case 0x4d: case 0x4e: case 0x4f: |
| case 0x50: case 0x51: case 0x52: case 0x53: case 0x54: case 0x55: case 0x56: case 0x57: |
| case 0x58: case 0x59: case 0x5a: case 0x5b: case 0x5c: case 0x5d: case 0x5e: case 0x5f: |
| case 0x60: case 0x61: case 0x62: case 0x63: case 0x64: case 0x65: case 0x66: case 0x67: |
| case 0x68: case 0x69: case 0x6a: case 0x6b: case 0x6c: case 0x6d: case 0x6e: case 0x6f: |
| case 0x70: case 0x71: case 0x72: case 0x73: case 0x74: case 0x75: case 0x76: case 0x77: |
| case 0x78: case 0x79: case 0x7a: case 0x7b: case 0x7c: case 0x7d: case 0x7e: case 0x7f: |
| *tag = mpack_tag_make_uint(type); |
| return 1; |
| |
| // negative fixnum |
| case 0xe0: case 0xe1: case 0xe2: case 0xe3: case 0xe4: case 0xe5: case 0xe6: case 0xe7: |
| case 0xe8: case 0xe9: case 0xea: case 0xeb: case 0xec: case 0xed: case 0xee: case 0xef: |
| case 0xf0: case 0xf1: case 0xf2: case 0xf3: case 0xf4: case 0xf5: case 0xf6: case 0xf7: |
| case 0xf8: case 0xf9: case 0xfa: case 0xfb: case 0xfc: case 0xfd: case 0xfe: case 0xff: |
| *tag = mpack_tag_make_int((int8_t)type); |
| return 1; |
| |
| // fixmap |
| case 0x80: case 0x81: case 0x82: case 0x83: case 0x84: case 0x85: case 0x86: case 0x87: |
| case 0x88: case 0x89: case 0x8a: case 0x8b: case 0x8c: case 0x8d: case 0x8e: case 0x8f: |
| *tag = mpack_tag_make_map(type & ~0xf0u); |
| return 1; |
| |
| // fixarray |
| case 0x90: case 0x91: case 0x92: case 0x93: case 0x94: case 0x95: case 0x96: case 0x97: |
| case 0x98: case 0x99: case 0x9a: case 0x9b: case 0x9c: case 0x9d: case 0x9e: case 0x9f: |
| *tag = mpack_tag_make_array(type & ~0xf0u); |
| return 1; |
| |
| // fixstr |
| case 0xa0: case 0xa1: case 0xa2: case 0xa3: case 0xa4: case 0xa5: case 0xa6: case 0xa7: |
| case 0xa8: case 0xa9: case 0xaa: case 0xab: case 0xac: case 0xad: case 0xae: case 0xaf: |
| case 0xb0: case 0xb1: case 0xb2: case 0xb3: case 0xb4: case 0xb5: case 0xb6: case 0xb7: |
| case 0xb8: case 0xb9: case 0xba: case 0xbb: case 0xbc: case 0xbd: case 0xbe: case 0xbf: |
| *tag = mpack_tag_make_str(type & ~0xe0u); |
| return 1; |
| #endif |
| |
| // nil |
| case 0xc0: |
| *tag = mpack_tag_make_nil(); |
| return 1; |
| |
| // bool |
| case 0xc2: case 0xc3: |
| *tag = mpack_tag_make_bool((bool)(type & 1)); |
| return 1; |
| |
| // bin8 |
| case 0xc4: |
| if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_BIN8)) |
| return 0; |
| *tag = mpack_tag_make_bin(mpack_load_u8(reader->data + 1)); |
| return MPACK_TAG_SIZE_BIN8; |
| |
| // bin16 |
| case 0xc5: |
| if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_BIN16)) |
| return 0; |
| *tag = mpack_tag_make_bin(mpack_load_u16(reader->data + 1)); |
| return MPACK_TAG_SIZE_BIN16; |
| |
| // bin32 |
| case 0xc6: |
| if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_BIN32)) |
| return 0; |
| *tag = mpack_tag_make_bin(mpack_load_u32(reader->data + 1)); |
| return MPACK_TAG_SIZE_BIN32; |
| |
| #if MPACK_EXTENSIONS |
| // ext8 |
| case 0xc7: |
| if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_EXT8)) |
| return 0; |
| *tag = mpack_tag_make_ext(mpack_load_i8(reader->data + 2), mpack_load_u8(reader->data + 1)); |
| return MPACK_TAG_SIZE_EXT8; |
| |
| // ext16 |
| case 0xc8: |
| if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_EXT16)) |
| return 0; |
| *tag = mpack_tag_make_ext(mpack_load_i8(reader->data + 3), mpack_load_u16(reader->data + 1)); |
| return MPACK_TAG_SIZE_EXT16; |
| |
| // ext32 |
| case 0xc9: |
| if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_EXT32)) |
| return 0; |
| *tag = mpack_tag_make_ext(mpack_load_i8(reader->data + 5), mpack_load_u32(reader->data + 1)); |
| return MPACK_TAG_SIZE_EXT32; |
| #endif |
| |
| // float |
| case 0xca: |
| if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_FLOAT)) |
| return 0; |
| #if MPACK_FLOAT |
| *tag = mpack_tag_make_float(mpack_load_float(reader->data + 1)); |
| #else |
| *tag = mpack_tag_make_raw_float(mpack_load_u32(reader->data + 1)); |
| #endif |
| return MPACK_TAG_SIZE_FLOAT; |
| |
| // double |
| case 0xcb: |
| if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_DOUBLE)) |
| return 0; |
| #if MPACK_DOUBLE |
| *tag = mpack_tag_make_double(mpack_load_double(reader->data + 1)); |
| #else |
| *tag = mpack_tag_make_raw_double(mpack_load_u64(reader->data + 1)); |
| #endif |
| return MPACK_TAG_SIZE_DOUBLE; |
| |
| // uint8 |
| case 0xcc: |
| if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_U8)) |
| return 0; |
| *tag = mpack_tag_make_uint(mpack_load_u8(reader->data + 1)); |
| return MPACK_TAG_SIZE_U8; |
| |
| // uint16 |
| case 0xcd: |
| if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_U16)) |
| return 0; |
| *tag = mpack_tag_make_uint(mpack_load_u16(reader->data + 1)); |
| return MPACK_TAG_SIZE_U16; |
| |
| // uint32 |
| case 0xce: |
| if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_U32)) |
| return 0; |
| *tag = mpack_tag_make_uint(mpack_load_u32(reader->data + 1)); |
| return MPACK_TAG_SIZE_U32; |
| |
| // uint64 |
| case 0xcf: |
| if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_U64)) |
| return 0; |
| *tag = mpack_tag_make_uint(mpack_load_u64(reader->data + 1)); |
| return MPACK_TAG_SIZE_U64; |
| |
| // int8 |
| case 0xd0: |
| if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_I8)) |
| return 0; |
| *tag = mpack_tag_make_int(mpack_load_i8(reader->data + 1)); |
| return MPACK_TAG_SIZE_I8; |
| |
| // int16 |
| case 0xd1: |
| if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_I16)) |
| return 0; |
| *tag = mpack_tag_make_int(mpack_load_i16(reader->data + 1)); |
| return MPACK_TAG_SIZE_I16; |
| |
| // int32 |
| case 0xd2: |
| if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_I32)) |
| return 0; |
| *tag = mpack_tag_make_int(mpack_load_i32(reader->data + 1)); |
| return MPACK_TAG_SIZE_I32; |
| |
| // int64 |
| case 0xd3: |
| if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_I64)) |
| return 0; |
| *tag = mpack_tag_make_int(mpack_load_i64(reader->data + 1)); |
| return MPACK_TAG_SIZE_I64; |
| |
| #if MPACK_EXTENSIONS |
| // fixext1 |
| case 0xd4: |
| if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_FIXEXT1)) |
| return 0; |
| *tag = mpack_tag_make_ext(mpack_load_i8(reader->data + 1), 1); |
| return MPACK_TAG_SIZE_FIXEXT1; |
| |
| // fixext2 |
| case 0xd5: |
| if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_FIXEXT2)) |
| return 0; |
| *tag = mpack_tag_make_ext(mpack_load_i8(reader->data + 1), 2); |
| return MPACK_TAG_SIZE_FIXEXT2; |
| |
| // fixext4 |
| case 0xd6: |
| if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_FIXEXT4)) |
| return 0; |
| *tag = mpack_tag_make_ext(mpack_load_i8(reader->data + 1), 4); |
| return 2; |
| |
| // fixext8 |
| case 0xd7: |
| if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_FIXEXT8)) |
| return 0; |
| *tag = mpack_tag_make_ext(mpack_load_i8(reader->data + 1), 8); |
| return MPACK_TAG_SIZE_FIXEXT8; |
| |
| // fixext16 |
| case 0xd8: |
| if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_FIXEXT16)) |
| return 0; |
| *tag = mpack_tag_make_ext(mpack_load_i8(reader->data + 1), 16); |
| return MPACK_TAG_SIZE_FIXEXT16; |
| #endif |
| |
| // str8 |
| case 0xd9: |
| if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_STR8)) |
| return 0; |
| *tag = mpack_tag_make_str(mpack_load_u8(reader->data + 1)); |
| return MPACK_TAG_SIZE_STR8; |
| |
| // str16 |
| case 0xda: |
| if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_STR16)) |
| return 0; |
| *tag = mpack_tag_make_str(mpack_load_u16(reader->data + 1)); |
| return MPACK_TAG_SIZE_STR16; |
| |
| // str32 |
| case 0xdb: |
| if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_STR32)) |
| return 0; |
| *tag = mpack_tag_make_str(mpack_load_u32(reader->data + 1)); |
| return MPACK_TAG_SIZE_STR32; |
| |
| // array16 |
| case 0xdc: |
| if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_ARRAY16)) |
| return 0; |
| *tag = mpack_tag_make_array(mpack_load_u16(reader->data + 1)); |
| return MPACK_TAG_SIZE_ARRAY16; |
| |
| // array32 |
| case 0xdd: |
| if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_ARRAY32)) |
| return 0; |
| *tag = mpack_tag_make_array(mpack_load_u32(reader->data + 1)); |
| return MPACK_TAG_SIZE_ARRAY32; |
| |
| // map16 |
| case 0xde: |
| if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_MAP16)) |
| return 0; |
| *tag = mpack_tag_make_map(mpack_load_u16(reader->data + 1)); |
| return MPACK_TAG_SIZE_MAP16; |
| |
| // map32 |
| case 0xdf: |
| if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_MAP32)) |
| return 0; |
| *tag = mpack_tag_make_map(mpack_load_u32(reader->data + 1)); |
| return MPACK_TAG_SIZE_MAP32; |
| |
| // reserved |
| case 0xc1: |
| mpack_reader_flag_error(reader, mpack_error_invalid); |
| return 0; |
| |
| #if !MPACK_EXTENSIONS |
| // ext |
| case 0xc7: // fallthrough |
| case 0xc8: // fallthrough |
| case 0xc9: // fallthrough |
| // fixext |
| case 0xd4: // fallthrough |
| case 0xd5: // fallthrough |
| case 0xd6: // fallthrough |
| case 0xd7: // fallthrough |
| case 0xd8: |
| mpack_reader_flag_error(reader, mpack_error_unsupported); |
| return 0; |
| #endif |
| |
| #if MPACK_OPTIMIZE_FOR_SIZE |
| // any other bytes should have been handled by the infix switch |
| default: |
| break; |
| #endif |
| } |
| |
| mpack_assert(0, "unreachable"); |
| return 0; |
| } |
| |
| mpack_tag_t mpack_read_tag(mpack_reader_t* reader) { |
| mpack_log("reading tag\n"); |
| |
| // make sure we can read a tag |
| if (mpack_reader_error(reader) != mpack_ok) |
| return mpack_tag_nil(); |
| if (mpack_reader_track_element(reader) != mpack_ok) |
| return mpack_tag_nil(); |
| |
| mpack_tag_t tag = MPACK_TAG_ZERO; |
| size_t count = mpack_parse_tag(reader, &tag); |
| if (count == 0) |
| return mpack_tag_nil(); |
| |
| #if MPACK_READ_TRACKING |
| mpack_error_t track_error = mpack_ok; |
| |
| switch (tag.type) { |
| case mpack_type_map: |
| case mpack_type_array: |
| track_error = mpack_track_push(&reader->track, tag.type, tag.v.n); |
| break; |
| #if MPACK_EXTENSIONS |
| case mpack_type_ext: |
| #endif |
| case mpack_type_str: |
| case mpack_type_bin: |
| track_error = mpack_track_push(&reader->track, tag.type, tag.v.l); |
| break; |
| default: |
| break; |
| } |
| |
| if (track_error != mpack_ok) { |
| mpack_reader_flag_error(reader, track_error); |
| return mpack_tag_nil(); |
| } |
| #endif |
| |
| reader->data += count; |
| return tag; |
| } |
| |
| mpack_tag_t mpack_peek_tag(mpack_reader_t* reader) { |
| mpack_log("peeking tag\n"); |
| |
| // make sure we can peek a tag |
| if (mpack_reader_error(reader) != mpack_ok) |
| return mpack_tag_nil(); |
| if (mpack_reader_track_peek_element(reader) != mpack_ok) |
| return mpack_tag_nil(); |
| |
| mpack_tag_t tag = MPACK_TAG_ZERO; |
| if (mpack_parse_tag(reader, &tag) == 0) |
| return mpack_tag_nil(); |
| return tag; |
| } |
| |
| void mpack_discard(mpack_reader_t* reader) { |
| mpack_tag_t var = mpack_read_tag(reader); |
| if (mpack_reader_error(reader)) |
| return; |
| switch (var.type) { |
| case mpack_type_str: |
| mpack_skip_bytes(reader, var.v.l); |
| mpack_done_str(reader); |
| break; |
| case mpack_type_bin: |
| mpack_skip_bytes(reader, var.v.l); |
| mpack_done_bin(reader); |
| break; |
| #if MPACK_EXTENSIONS |
| case mpack_type_ext: |
| mpack_skip_bytes(reader, var.v.l); |
| mpack_done_ext(reader); |
| break; |
| #endif |
| case mpack_type_array: { |
| for (; var.v.n > 0; --var.v.n) { |
| mpack_discard(reader); |
| if (mpack_reader_error(reader)) |
| break; |
| } |
| mpack_done_array(reader); |
| break; |
| } |
| case mpack_type_map: { |
| for (; var.v.n > 0; --var.v.n) { |
| mpack_discard(reader); |
| mpack_discard(reader); |
| if (mpack_reader_error(reader)) |
| break; |
| } |
| mpack_done_map(reader); |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| |
| #if MPACK_EXTENSIONS |
| mpack_timestamp_t mpack_read_timestamp(mpack_reader_t* reader, size_t size) { |
| mpack_timestamp_t timestamp = {0, 0}; |
| |
| if (size != 4 && size != 8 && size != 12) { |
| mpack_reader_flag_error(reader, mpack_error_invalid); |
| return timestamp; |
| } |
| |
| char buf[12]; |
| mpack_read_bytes(reader, buf, size); |
| mpack_done_ext(reader); |
| if (mpack_reader_error(reader) != mpack_ok) |
| return timestamp; |
| |
| switch (size) { |
| case 4: |
| timestamp.seconds = (int64_t)(uint64_t)mpack_load_u32(buf); |
| break; |
| |
| case 8: { |
| uint64_t packed = mpack_load_u64(buf); |
| timestamp.seconds = (int64_t)(packed & ((MPACK_UINT64_C(1) << 34) - 1)); |
| timestamp.nanoseconds = (uint32_t)(packed >> 34); |
| break; |
| } |
| |
| case 12: |
| timestamp.nanoseconds = mpack_load_u32(buf); |
| timestamp.seconds = mpack_load_i64(buf + 4); |
| break; |
| |
| default: |
| mpack_assert(false, "unreachable"); |
| break; |
| } |
| |
| if (timestamp.nanoseconds > MPACK_TIMESTAMP_NANOSECONDS_MAX) { |
| mpack_reader_flag_error(reader, mpack_error_invalid); |
| mpack_timestamp_t zero = {0, 0}; |
| return zero; |
| } |
| |
| return timestamp; |
| } |
| #endif |
| |
| #if MPACK_READ_TRACKING |
| void mpack_done_type(mpack_reader_t* reader, mpack_type_t type) { |
| if (mpack_reader_error(reader) == mpack_ok) |
| mpack_reader_flag_if_error(reader, mpack_track_pop(&reader->track, type)); |
| } |
| #endif |
| |
| #if MPACK_DEBUG && MPACK_STDIO |
| static size_t mpack_print_read_prefix(mpack_reader_t* reader, size_t length, char* buffer, size_t buffer_size) { |
| if (length == 0) |
| return 0; |
| |
| size_t read = (length < buffer_size) ? length : buffer_size; |
| mpack_read_bytes(reader, buffer, read); |
| if (mpack_reader_error(reader) != mpack_ok) |
| return 0; |
| |
| mpack_skip_bytes(reader, length - read); |
| return read; |
| } |
| |
| static void mpack_print_element(mpack_reader_t* reader, mpack_print_t* print, size_t depth) { |
| mpack_tag_t val = mpack_read_tag(reader); |
| if (mpack_reader_error(reader) != mpack_ok) |
| return; |
| |
| // We read some bytes from bin and ext so we can print its prefix in hex. |
| char buffer[MPACK_PRINT_BYTE_COUNT]; |
| size_t count = 0; |
| size_t i, j; |
| |
| switch (val.type) { |
| case mpack_type_str: |
| mpack_print_append_cstr(print, "\""); |
| for (i = 0; i < val.v.l; ++i) { |
| char c; |
| mpack_read_bytes(reader, &c, 1); |
| if (mpack_reader_error(reader) != mpack_ok) |
| return; |
| switch (c) { |
| case '\n': mpack_print_append_cstr(print, "\\n"); break; |
| case '\\': mpack_print_append_cstr(print, "\\\\"); break; |
| case '"': mpack_print_append_cstr(print, "\\\""); break; |
| default: mpack_print_append(print, &c, 1); break; |
| } |
| } |
| mpack_print_append_cstr(print, "\""); |
| mpack_done_str(reader); |
| return; |
| |
| case mpack_type_array: |
| mpack_print_append_cstr(print, "[\n"); |
| for (i = 0; i < val.v.n; ++i) { |
| for (j = 0; j < depth + 1; ++j) |
| mpack_print_append_cstr(print, " "); |
| mpack_print_element(reader, print, depth + 1); |
| if (mpack_reader_error(reader) != mpack_ok) |
| return; |
| if (i != val.v.n - 1) |
| mpack_print_append_cstr(print, ","); |
| mpack_print_append_cstr(print, "\n"); |
| } |
| for (i = 0; i < depth; ++i) |
| mpack_print_append_cstr(print, " "); |
| mpack_print_append_cstr(print, "]"); |
| mpack_done_array(reader); |
| return; |
| |
| case mpack_type_map: |
| mpack_print_append_cstr(print, "{\n"); |
| for (i = 0; i < val.v.n; ++i) { |
| for (j = 0; j < depth + 1; ++j) |
| mpack_print_append_cstr(print, " "); |
| mpack_print_element(reader, print, depth + 1); |
| if (mpack_reader_error(reader) != mpack_ok) |
| return; |
| mpack_print_append_cstr(print, ": "); |
| mpack_print_element(reader, print, depth + 1); |
| if (mpack_reader_error(reader) != mpack_ok) |
| return; |
| if (i != val.v.n - 1) |
| mpack_print_append_cstr(print, ","); |
| mpack_print_append_cstr(print, "\n"); |
| } |
| for (i = 0; i < depth; ++i) |
| mpack_print_append_cstr(print, " "); |
| mpack_print_append_cstr(print, "}"); |
| mpack_done_map(reader); |
| return; |
| |
| // The above cases return so as not to print a pseudo-json value. The |
| // below cases break and print pseudo-json. |
| |
| case mpack_type_bin: |
| count = mpack_print_read_prefix(reader, mpack_tag_bin_length(&val), buffer, sizeof(buffer)); |
| mpack_done_bin(reader); |
| break; |
| |
| #if MPACK_EXTENSIONS |
| case mpack_type_ext: |
| count = mpack_print_read_prefix(reader, mpack_tag_ext_length(&val), buffer, sizeof(buffer)); |
| mpack_done_ext(reader); |
| break; |
| #endif |
| |
| default: |
| break; |
| } |
| |
| char buf[256]; |
| mpack_tag_debug_pseudo_json(val, buf, sizeof(buf), buffer, count); |
| mpack_print_append_cstr(print, buf); |
| } |
| |
| static void mpack_print_and_destroy(mpack_reader_t* reader, mpack_print_t* print, size_t depth) { |
| size_t i; |
| for (i = 0; i < depth; ++i) |
| mpack_print_append_cstr(print, " "); |
| mpack_print_element(reader, print, depth); |
| |
| size_t remaining = mpack_reader_remaining(reader, NULL); |
| |
| char buf[256]; |
| if (mpack_reader_destroy(reader) != mpack_ok) { |
| mpack_snprintf(buf, sizeof(buf), "\n<mpack parsing error %s>", mpack_error_to_string(mpack_reader_error(reader))); |
| buf[sizeof(buf) - 1] = '\0'; |
| mpack_print_append_cstr(print, buf); |
| } else if (remaining > 0) { |
| mpack_snprintf(buf, sizeof(buf), "\n<%i extra bytes at end of message>", (int)remaining); |
| buf[sizeof(buf) - 1] = '\0'; |
| mpack_print_append_cstr(print, buf); |
| } |
| } |
| |
| static void mpack_print_data(const char* data, size_t len, mpack_print_t* print, size_t depth) { |
| mpack_reader_t reader; |
| mpack_reader_init_data(&reader, data, len); |
| mpack_print_and_destroy(&reader, print, depth); |
| } |
| |
| void mpack_print_data_to_buffer(const char* data, size_t data_size, char* buffer, size_t buffer_size) { |
| if (buffer_size == 0) { |
| mpack_assert(false, "buffer size is zero!"); |
| return; |
| } |
| |
| mpack_print_t print; |
| mpack_memset(&print, 0, sizeof(print)); |
| print.buffer = buffer; |
| print.size = buffer_size; |
| mpack_print_data(data, data_size, &print, 0); |
| mpack_print_append(&print, "", 1); // null-terminator |
| mpack_print_flush(&print); |
| |
| // we always make sure there's a null-terminator at the end of the buffer |
| // in case we ran out of space. |
| print.buffer[print.size - 1] = '\0'; |
| } |
| |
| void mpack_print_data_to_callback(const char* data, size_t size, mpack_print_callback_t callback, void* context) { |
| char buffer[1024]; |
| mpack_print_t print; |
| mpack_memset(&print, 0, sizeof(print)); |
| print.buffer = buffer; |
| print.size = sizeof(buffer); |
| print.callback = callback; |
| print.context = context; |
| mpack_print_data(data, size, &print, 0); |
| mpack_print_flush(&print); |
| } |
| |
| void mpack_print_data_to_file(const char* data, size_t len, FILE* file) { |
| mpack_assert(data != NULL, "data is NULL"); |
| mpack_assert(file != NULL, "file is NULL"); |
| |
| char buffer[1024]; |
| mpack_print_t print; |
| mpack_memset(&print, 0, sizeof(print)); |
| print.buffer = buffer; |
| print.size = sizeof(buffer); |
| print.callback = &mpack_print_file_callback; |
| print.context = file; |
| |
| mpack_print_data(data, len, &print, 2); |
| mpack_print_append_cstr(&print, "\n"); |
| mpack_print_flush(&print); |
| } |
| |
| void mpack_print_stdfile_to_callback(FILE* file, mpack_print_callback_t callback, void* context) { |
| char buffer[1024]; |
| mpack_print_t print; |
| mpack_memset(&print, 0, sizeof(print)); |
| print.buffer = buffer; |
| print.size = sizeof(buffer); |
| print.callback = callback; |
| print.context = context; |
| |
| mpack_reader_t reader; |
| mpack_reader_init_stdfile(&reader, file, false); |
| mpack_print_and_destroy(&reader, &print, 0); |
| mpack_print_flush(&print); |
| } |
| #endif |
| |
| #endif |
| |
| MPACK_SILENCE_WARNINGS_END |
| |
| /* mpack/mpack-expect.c.c */ |
| |
| #define MPACK_INTERNAL 1 |
| |
| /* #include "mpack-expect.h" */ |
| |
| MPACK_SILENCE_WARNINGS_BEGIN |
| |
| #if MPACK_EXPECT |
| |
| |
| // Helpers |
| |
| MPACK_STATIC_INLINE uint8_t mpack_expect_native_u8(mpack_reader_t* reader) { |
| if (mpack_reader_error(reader) != mpack_ok) |
| return 0; |
| uint8_t type; |
| if (!mpack_reader_ensure(reader, sizeof(type))) |
| return 0; |
| type = mpack_load_u8(reader->data); |
| reader->data += sizeof(type); |
| return type; |
| } |
| |
| #if !MPACK_OPTIMIZE_FOR_SIZE |
| MPACK_STATIC_INLINE uint16_t mpack_expect_native_u16(mpack_reader_t* reader) { |
| if (mpack_reader_error(reader) != mpack_ok) |
| return 0; |
| uint16_t type; |
| if (!mpack_reader_ensure(reader, sizeof(type))) |
| return 0; |
| type = mpack_load_u16(reader->data); |
| reader->data += sizeof(type); |
| return type; |
| } |
| |
| MPACK_STATIC_INLINE uint32_t mpack_expect_native_u32(mpack_reader_t* reader) { |
| if (mpack_reader_error(reader) != mpack_ok) |
| return 0; |
| uint32_t type; |
| if (!mpack_reader_ensure(reader, sizeof(type))) |
| return 0; |
| type = mpack_load_u32(reader->data); |
| reader->data += sizeof(type); |
| return type; |
| } |
| #endif |
| |
| MPACK_STATIC_INLINE uint8_t mpack_expect_type_byte(mpack_reader_t* reader) { |
| mpack_reader_track_element(reader); |
| return mpack_expect_native_u8(reader); |
| } |
| |
| |
| // Basic Number Functions |
| |
| uint8_t mpack_expect_u8(mpack_reader_t* reader) { |
| mpack_tag_t var = mpack_read_tag(reader); |
| if (var.type == mpack_type_uint) { |
| if (var.v.u <= MPACK_UINT8_MAX) |
| return (uint8_t)var.v.u; |
| } else if (var.type == mpack_type_int) { |
| if (var.v.i >= 0 && var.v.i <= MPACK_UINT8_MAX) |
| return (uint8_t)var.v.i; |
| } |
| mpack_reader_flag_error(reader, mpack_error_type); |
| return 0; |
| } |
| |
| uint16_t mpack_expect_u16(mpack_reader_t* reader) { |
| mpack_tag_t var = mpack_read_tag(reader); |
| if (var.type == mpack_type_uint) { |
| if (var.v.u <= MPACK_UINT16_MAX) |
| return (uint16_t)var.v.u; |
| } else if (var.type == mpack_type_int) { |
| if (var.v.i >= 0 && var.v.i <= MPACK_UINT16_MAX) |
| return (uint16_t)var.v.i; |
| } |
| mpack_reader_flag_error(reader, mpack_error_type); |
| return 0; |
| } |
| |
| uint32_t mpack_expect_u32(mpack_reader_t* reader) { |
| mpack_tag_t var = mpack_read_tag(reader); |
| if (var.type == mpack_type_uint) { |
| if (var.v.u <= MPACK_UINT32_MAX) |
| return (uint32_t)var.v.u; |
| } else if (var.type == mpack_type_int) { |
| if (var.v.i >= 0 && var.v.i <= MPACK_UINT32_MAX) |
| return (uint32_t)var.v.i; |
| } |
| mpack_reader_flag_error(reader, mpack_error_type); |
| return 0; |
| } |
| |
| uint64_t mpack_expect_u64(mpack_reader_t* reader) { |
| mpack_tag_t var = mpack_read_tag(reader); |
| if (var.type == mpack_type_uint) { |
| return var.v.u; |
| } else if (var.type == mpack_type_int) { |
| if (var.v.i >= 0) |
| return (uint64_t)var.v.i; |
| } |
| mpack_reader_flag_error(reader, mpack_error_type); |
| return 0; |
| } |
| |
| int8_t mpack_expect_i8(mpack_reader_t* reader) { |
| mpack_tag_t var = mpack_read_tag(reader); |
| if (var.type == mpack_type_uint) { |
| if (var.v.u <= MPACK_INT8_MAX) |
| return (int8_t)var.v.u; |
| } else if (var.type == mpack_type_int) { |
| if (var.v.i >= MPACK_INT8_MIN && var.v.i <= MPACK_INT8_MAX) |
| return (int8_t)var.v.i; |
| } |
| mpack_reader_flag_error(reader, mpack_error_type); |
| return 0; |
| } |
| |
| int16_t mpack_expect_i16(mpack_reader_t* reader) { |
| mpack_tag_t var = mpack_read_tag(reader); |
| if (var.type == mpack_type_uint) { |
| if (var.v.u <= MPACK_INT16_MAX) |
| return (int16_t)var.v.u; |
| } else if (var.type == mpack_type_int) { |
| if (var.v.i >= MPACK_INT16_MIN && var.v.i <= MPACK_INT16_MAX) |
| return (int16_t)var.v.i; |
| } |
| mpack_reader_flag_error(reader, mpack_error_type); |
| return 0; |
| } |
| |
| int32_t mpack_expect_i32(mpack_reader_t* reader) { |
| mpack_tag_t var = mpack_read_tag(reader); |
| if (var.type == mpack_type_uint) { |
| if (var.v.u <= MPACK_INT32_MAX) |
| return (int32_t)var.v.u; |
| } else if (var.type == mpack_type_int) { |
| if (var.v.i >= MPACK_INT32_MIN && var.v.i <= MPACK_INT32_MAX) |
| return (int32_t)var.v.i; |
| } |
| mpack_reader_flag_error(reader, mpack_error_type); |
| return 0; |
| } |
| |
| int64_t mpack_expect_i64(mpack_reader_t* reader) { |
| mpack_tag_t var = mpack_read_tag(reader); |
| if (var.type == mpack_type_uint) { |
| if (var.v.u <= MPACK_INT64_MAX) |
| return (int64_t)var.v.u; |
| } else if (var.type == mpack_type_int) { |
| return var.v.i; |
| } |
| mpack_reader_flag_error(reader, mpack_error_type); |
| return 0; |
| } |
| |
| #if MPACK_FLOAT |
| float mpack_expect_float(mpack_reader_t* reader) { |
| mpack_tag_t var = mpack_read_tag(reader); |
| if (var.type == mpack_type_uint) |
| return (float)var.v.u; |
| if (var.type == mpack_type_int) |
| return (float)var.v.i; |
| if (var.type == mpack_type_float) |
| return var.v.f; |
| |
| if (var.type == mpack_type_double) { |
| #if MPACK_DOUBLE |
| return (float)var.v.d; |
| #else |
| return mpack_shorten_raw_double_to_float(var.v.d); |
| #endif |
| } |
| |
| mpack_reader_flag_error(reader, mpack_error_type); |
| return 0.0f; |
| } |
| #endif |
| |
| #if MPACK_DOUBLE |
| double mpack_expect_double(mpack_reader_t* reader) { |
| mpack_tag_t var = mpack_read_tag(reader); |
| if (var.type == mpack_type_uint) |
| return (double)var.v.u; |
| else if (var.type == mpack_type_int) |
| return (double)var.v.i; |
| else if (var.type == mpack_type_float) |
| return (double)var.v.f; |
| else if (var.type == mpack_type_double) |
| return var.v.d; |
| mpack_reader_flag_error(reader, mpack_error_type); |
| return 0.0; |
| } |
| #endif |
| |
| #if MPACK_FLOAT |
| float mpack_expect_float_strict(mpack_reader_t* reader) { |
| mpack_tag_t var = mpack_read_tag(reader); |
| if (var.type == mpack_type_float) |
| return var.v.f; |
| mpack_reader_flag_error(reader, mpack_error_type); |
| return 0.0f; |
| } |
| #endif |
| |
| #if MPACK_DOUBLE |
| double mpack_expect_double_strict(mpack_reader_t* reader) { |
| mpack_tag_t var = mpack_read_tag(reader); |
| if (var.type == mpack_type_float) |
| return (double)var.v.f; |
| else if (var.type == mpack_type_double) |
| return var.v.d; |
| mpack_reader_flag_error(reader, mpack_error_type); |
| return 0.0; |
| } |
| #endif |
| |
| #if !MPACK_FLOAT |
| uint32_t mpack_expect_raw_float(mpack_reader_t* reader) { |
| mpack_tag_t var = mpack_read_tag(reader); |
| if (var.type == mpack_type_float) |
| return var.v.f; |
| mpack_reader_flag_error(reader, mpack_error_type); |
| return 0; |
| } |
| #endif |
| |
| #if !MPACK_DOUBLE |
| uint64_t mpack_expect_raw_double(mpack_reader_t* reader) { |
| mpack_tag_t var = mpack_read_tag(reader); |
| if (var.type == mpack_type_double) |
| return var.v.d; |
| mpack_reader_flag_error(reader, mpack_error_type); |
| return 0; |
| } |
| #endif |
| |
| |
| // Ranged Number Functions |
| // |
| // All ranged functions are identical other than the type, so we |
| // define their content with a macro. The prototypes are still written |
| // out in full to support ctags/IDE tools. |
| |
| #define MPACK_EXPECT_RANGE_IMPL(name, type_t) \ |
| \ |
| /* make sure the range is sensible */ \ |
| mpack_assert(min_value <= max_value, \ |
| "min_value %i must be less than or equal to max_value %i", \ |
| min_value, max_value); \ |
| \ |
| /* read the value */ \ |
| type_t val = mpack_expect_##name(reader); \ |
| if (mpack_reader_error(reader) != mpack_ok) \ |
| return min_value; \ |
| \ |
| /* make sure it fits */ \ |
| if (val < min_value || val > max_value) { \ |
| mpack_reader_flag_error(reader, mpack_error_type); \ |
| return min_value; \ |
| } \ |
| \ |
| return val; |
| |
| uint8_t mpack_expect_u8_range(mpack_reader_t* reader, uint8_t min_value, uint8_t max_value) {MPACK_EXPECT_RANGE_IMPL(u8, uint8_t)} |
| uint16_t mpack_expect_u16_range(mpack_reader_t* reader, uint16_t min_value, uint16_t max_value) {MPACK_EXPECT_RANGE_IMPL(u16, uint16_t)} |
| uint32_t mpack_expect_u32_range(mpack_reader_t* reader, uint32_t min_value, uint32_t max_value) {MPACK_EXPECT_RANGE_IMPL(u32, uint32_t)} |
| uint64_t mpack_expect_u64_range(mpack_reader_t* reader, uint64_t min_value, uint64_t max_value) {MPACK_EXPECT_RANGE_IMPL(u64, uint64_t)} |
| |
| int8_t mpack_expect_i8_range(mpack_reader_t* reader, int8_t min_value, int8_t max_value) {MPACK_EXPECT_RANGE_IMPL(i8, int8_t)} |
| int16_t mpack_expect_i16_range(mpack_reader_t* reader, int16_t min_value, int16_t max_value) {MPACK_EXPECT_RANGE_IMPL(i16, int16_t)} |
| int32_t mpack_expect_i32_range(mpack_reader_t* reader, int32_t min_value, int32_t max_value) {MPACK_EXPECT_RANGE_IMPL(i32, int32_t)} |
| int64_t mpack_expect_i64_range(mpack_reader_t* reader, int64_t min_value, int64_t max_value) {MPACK_EXPECT_RANGE_IMPL(i64, int64_t)} |
| |
| #if MPACK_FLOAT |
| float mpack_expect_float_range(mpack_reader_t* reader, float min_value, float max_value) {MPACK_EXPECT_RANGE_IMPL(float, float)} |
| #endif |
| #if MPACK_DOUBLE |
| double mpack_expect_double_range(mpack_reader_t* reader, double min_value, double max_value) {MPACK_EXPECT_RANGE_IMPL(double, double)} |
| #endif |
| |
| uint32_t mpack_expect_map_range(mpack_reader_t* reader, uint32_t min_value, uint32_t max_value) {MPACK_EXPECT_RANGE_IMPL(map, uint32_t)} |
| uint32_t mpack_expect_array_range(mpack_reader_t* reader, uint32_t min_value, uint32_t max_value) {MPACK_EXPECT_RANGE_IMPL(array, uint32_t)} |
| |
| |
| // Matching Number Functions |
| |
| void mpack_expect_uint_match(mpack_reader_t* reader, uint64_t value) { |
| if (mpack_expect_u64(reader) != value) |
| mpack_reader_flag_error(reader, mpack_error_type); |
| } |
| |
| void mpack_expect_int_match(mpack_reader_t* reader, int64_t value) { |
| if (mpack_expect_i64(reader) != value) |
| mpack_reader_flag_error(reader, mpack_error_type); |
| } |
| |
| |
| // Other Basic Types |
| |
| void mpack_expect_nil(mpack_reader_t* reader) { |
| if (mpack_expect_type_byte(reader) != 0xc0) |
| mpack_reader_flag_error(reader, mpack_error_type); |
| } |
| |
| bool mpack_expect_bool(mpack_reader_t* reader) { |
| uint8_t type = mpack_expect_type_byte(reader); |
| if ((type & ~1) != 0xc2) |
| mpack_reader_flag_error(reader, mpack_error_type); |
| return (bool)(type & 1); |
| } |
| |
| void mpack_expect_true(mpack_reader_t* reader) { |
| if (mpack_expect_bool(reader) != true) |
| mpack_reader_flag_error(reader, mpack_error_type); |
| } |
| |
| void mpack_expect_false(mpack_reader_t* reader) { |
| if (mpack_expect_bool(reader) != false) |
| mpack_reader_flag_error(reader, mpack_error_type); |
| } |
| |
| #if MPACK_EXTENSIONS |
| mpack_timestamp_t mpack_expect_timestamp(mpack_reader_t* reader) { |
| mpack_timestamp_t zero = {0, 0}; |
| |
| mpack_tag_t tag = mpack_read_tag(reader); |
| if (tag.type != mpack_type_ext) { |
| mpack_reader_flag_error(reader, mpack_error_type); |
| return zero; |
| } |
| if (mpack_tag_ext_exttype(&tag) != MPACK_EXTTYPE_TIMESTAMP) { |
| mpack_reader_flag_error(reader, mpack_error_type); |
| return zero; |
| } |
| |
| return mpack_read_timestamp(reader, mpack_tag_ext_length(&tag)); |
| } |
| |
| int64_t mpack_expect_timestamp_truncate(mpack_reader_t* reader) { |
| return mpack_expect_timestamp(reader).seconds; |
| } |
| #endif |
| |
| |
| // Compound Types |
| |
| uint32_t mpack_expect_map(mpack_reader_t* reader) { |
| mpack_tag_t var = mpack_read_tag(reader); |
| if (var.type == mpack_type_map) |
| return var.v.n; |
| mpack_reader_flag_error(reader, mpack_error_type); |
| return 0; |
| } |
| |
| void mpack_expect_map_match(mpack_reader_t* reader, uint32_t count) { |
| if (mpack_expect_map(reader) != count) |
| mpack_reader_flag_error(reader, mpack_error_type); |
| } |
| |
| bool mpack_expect_map_or_nil(mpack_reader_t* reader, uint32_t* count) { |
| mpack_assert(count != NULL, "count cannot be NULL"); |
| |
| mpack_tag_t var = mpack_read_tag(reader); |
| if (var.type == mpack_type_nil) { |
| *count = 0; |
| return false; |
| } |
| if (var.type == mpack_type_map) { |
| *count = var.v.n; |
| return true; |
| } |
| mpack_reader_flag_error(reader, mpack_error_type); |
| *count = 0; |
| return false; |
| } |
| |
| bool mpack_expect_map_max_or_nil(mpack_reader_t* reader, uint32_t max_count, uint32_t* count) { |
| mpack_assert(count != NULL, "count cannot be NULL"); |
| |
| bool has_map = mpack_expect_map_or_nil(reader, count); |
| if (has_map && *count > max_count) { |
| *count = 0; |
| mpack_reader_flag_error(reader, mpack_error_type); |
| return false; |
| } |
| return has_map; |
| } |
| |
| uint32_t mpack_expect_array(mpack_reader_t* reader) { |
| mpack_tag_t var = mpack_read_tag(reader); |
| if (var.type == mpack_type_array) |
| return var.v.n; |
| mpack_reader_flag_error(reader, mpack_error_type); |
| return 0; |
| } |
| |
| void mpack_expect_array_match(mpack_reader_t* reader, uint32_t count) { |
| if (mpack_expect_array(reader) != count) |
| mpack_reader_flag_error(reader, mpack_error_type); |
| } |
| |
| bool mpack_expect_array_or_nil(mpack_reader_t* reader, uint32_t* count) { |
| mpack_assert(count != NULL, "count cannot be NULL"); |
| |
| mpack_tag_t var = mpack_read_tag(reader); |
| if (var.type == mpack_type_nil) { |
| *count = 0; |
| return false; |
| } |
| if (var.type == mpack_type_array) { |
| *count = var.v.n; |
| return true; |
| } |
| mpack_reader_flag_error(reader, mpack_error_type); |
| *count = 0; |
| return false; |
| } |
| |
| bool mpack_expect_array_max_or_nil(mpack_reader_t* reader, uint32_t max_count, uint32_t* count) { |
| mpack_assert(count != NULL, "count cannot be NULL"); |
| |
| bool has_array = mpack_expect_array_or_nil(reader, count); |
| if (has_array && *count > max_count) { |
| *count = 0; |
| mpack_reader_flag_error(reader, mpack_error_type); |
| return false; |
| } |
| return has_array; |
| } |
| |
| #ifdef MPACK_MALLOC |
| void* mpack_expect_array_alloc_impl(mpack_reader_t* reader, size_t element_size, uint32_t max_count, uint32_t* out_count, bool allow_nil) { |
| mpack_assert(out_count != NULL, "out_count cannot be NULL"); |
| *out_count = 0; |
| |
| uint32_t count; |
| bool has_array = true; |
| if (allow_nil) |
| has_array = mpack_expect_array_max_or_nil(reader, max_count, &count); |
| else |
| count = mpack_expect_array_max(reader, max_count); |
| if (mpack_reader_error(reader)) |
| return NULL; |
| |
| // size 0 is not an error; we return NULL for no elements. |
| if (count == 0) { |
| // we call mpack_done_array() automatically ONLY if we are using |
| // the _or_nil variant. this is the only way to allow nil and empty |
| // to work the same way. |
| if (allow_nil && has_array) |
| mpack_done_array(reader); |
| return NULL; |
| } |
| |
| void* p = MPACK_MALLOC(element_size * count); |
| if (p == NULL) { |
| mpack_reader_flag_error(reader, mpack_error_memory); |
| return NULL; |
| } |
| |
| *out_count = count; |
| return p; |
| } |
| #endif |
| |
| |
| // Str, Bin and Ext Functions |
| |
| uint32_t mpack_expect_str(mpack_reader_t* reader) { |
| #if MPACK_OPTIMIZE_FOR_SIZE |
| mpack_tag_t var = mpack_read_tag(reader); |
| if (var.type == mpack_type_str) |
| return var.v.l; |
| mpack_reader_flag_error(reader, mpack_error_type); |
| return 0; |
| #else |
| uint8_t type = mpack_expect_type_byte(reader); |
| uint32_t count; |
| |
| if ((type >> 5) == 5) { |
| count = type & (uint8_t)~0xe0; |
| } else if (type == 0xd9) { |
| count = mpack_expect_native_u8(reader); |
| } else if (type == 0xda) { |
| count = mpack_expect_native_u16(reader); |
| } else if (type == 0xdb) { |
| count = mpack_expect_native_u32(reader); |
| } else { |
| mpack_reader_flag_error(reader, mpack_error_type); |
| return 0; |
| } |
| |
| #if MPACK_READ_TRACKING |
| mpack_reader_flag_if_error(reader, mpack_track_push(&reader->track, mpack_type_str, count)); |
| #endif |
| return count; |
| #endif |
| } |
| |
| size_t mpack_expect_str_buf(mpack_reader_t* reader, char* buf, size_t bufsize) { |
| mpack_assert(buf != NULL, "buf cannot be NULL"); |
| |
| size_t length = mpack_expect_str(reader); |
| if (mpack_reader_error(reader)) |
| return 0; |
| |
| if (length > bufsize) { |
| mpack_reader_flag_error(reader, mpack_error_too_big); |
| return 0; |
| } |
| |
| mpack_read_bytes(reader, buf, length); |
| if (mpack_reader_error(reader)) |
| return 0; |
| |
| mpack_done_str(reader); |
| return length; |
| } |
| |
| size_t mpack_expect_utf8(mpack_reader_t* reader, char* buf, size_t size) { |
| mpack_assert(buf != NULL, "buf cannot be NULL"); |
| |
| size_t length = mpack_expect_str_buf(reader, buf, size); |
| |
| if (!mpack_utf8_check(buf, length)) { |
| mpack_reader_flag_error(reader, mpack_error_type); |
| return 0; |
| } |
| |
| return length; |
| } |
| |
| uint32_t mpack_expect_bin(mpack_reader_t* reader) { |
| mpack_tag_t var = mpack_read_tag(reader); |
| if (var.type == mpack_type_bin) |
| return var.v.l; |
| mpack_reader_flag_error(reader, mpack_error_type); |
| return 0; |
| } |
| |
| size_t mpack_expect_bin_buf(mpack_reader_t* reader, char* buf, size_t bufsize) { |
| mpack_assert(buf != NULL, "buf cannot be NULL"); |
| |
| size_t binsize = mpack_expect_bin(reader); |
| if (mpack_reader_error(reader)) |
| return 0; |
| if (binsize > bufsize) { |
| mpack_reader_flag_error(reader, mpack_error_too_big); |
| return 0; |
| } |
| mpack_read_bytes(reader, buf, binsize); |
| if (mpack_reader_error(reader)) |
| return 0; |
| mpack_done_bin(reader); |
| return binsize; |
| } |
| |
| void mpack_expect_bin_size_buf(mpack_reader_t* reader, char* buf, uint32_t size) { |
| mpack_assert(buf != NULL, "buf cannot be NULL"); |
| mpack_expect_bin_size(reader, size); |
| mpack_read_bytes(reader, buf, size); |
| mpack_done_bin(reader); |
| } |
| |
| #if MPACK_EXTENSIONS |
| uint32_t mpack_expect_ext(mpack_reader_t* reader, int8_t* type) { |
| mpack_tag_t var = mpack_read_tag(reader); |
| if (var.type == mpack_type_ext) { |
| *type = mpack_tag_ext_exttype(&var); |
| return mpack_tag_ext_length(&var); |
| } |
| *type = 0; |
| mpack_reader_flag_error(reader, mpack_error_type); |
| return 0; |
| } |
| |
| size_t mpack_expect_ext_buf(mpack_reader_t* reader, int8_t* type, char* buf, size_t bufsize) { |
| mpack_assert(buf != NULL, "buf cannot be NULL"); |
| |
| size_t extsize = mpack_expect_ext(reader, type); |
| if (mpack_reader_error(reader)) |
| return 0; |
| if (extsize > bufsize) { |
| *type = 0; |
| mpack_reader_flag_error(reader, mpack_error_too_big); |
| return 0; |
| } |
| mpack_read_bytes(reader, buf, extsize); |
| if (mpack_reader_error(reader)) { |
| *type = 0; |
| return 0; |
| } |
| mpack_done_ext(reader); |
| return extsize; |
| } |
| #endif |
| |
| void mpack_expect_cstr(mpack_reader_t* reader, char* buf, size_t bufsize) { |
| uint32_t length = mpack_expect_str(reader); |
| mpack_read_cstr(reader, buf, bufsize, length); |
| mpack_done_str(reader); |
| } |
| |
| void mpack_expect_utf8_cstr(mpack_reader_t* reader, char* buf, size_t bufsize) { |
| uint32_t length = mpack_expect_str(reader); |
| mpack_read_utf8_cstr(reader, buf, bufsize, length); |
| mpack_done_str(reader); |
| } |
| |
| #ifdef MPACK_MALLOC |
| static char* mpack_expect_cstr_alloc_unchecked(mpack_reader_t* reader, size_t maxsize, size_t* out_length) { |
| mpack_assert(out_length != NULL, "out_length cannot be NULL"); |
| *out_length = 0; |
| |
| // make sure argument makes sense |
| if (maxsize < 1) { |
| mpack_break("maxsize is zero; you must have room for at least a null-terminator"); |
| mpack_reader_flag_error(reader, mpack_error_bug); |
| return NULL; |
| } |
| |
| if (SIZE_MAX < MPACK_UINT32_MAX) { |
| if (maxsize > SIZE_MAX) |
| maxsize = SIZE_MAX; |
| } else { |
| if (maxsize > (size_t)MPACK_UINT32_MAX) |
| maxsize = (size_t)MPACK_UINT32_MAX; |
| } |
| |
| size_t length = mpack_expect_str_max(reader, (uint32_t)maxsize - 1); |
| char* str = mpack_read_bytes_alloc_impl(reader, length, true); |
| mpack_done_str(reader); |
| |
| if (str) |
| *out_length = length; |
| return str; |
| } |
| |
| char* mpack_expect_cstr_alloc(mpack_reader_t* reader, size_t maxsize) { |
| size_t length; |
| char* str = mpack_expect_cstr_alloc_unchecked(reader, maxsize, &length); |
| |
| if (str && !mpack_str_check_no_null(str, length)) { |
| MPACK_FREE(str); |
| mpack_reader_flag_error(reader, mpack_error_type); |
| return NULL; |
| } |
| |
| return str; |
| } |
| |
| char* mpack_expect_utf8_cstr_alloc(mpack_reader_t* reader, size_t maxsize) { |
| size_t length; |
| char* str = mpack_expect_cstr_alloc_unchecked(reader, maxsize, &length); |
| |
| if (str && !mpack_utf8_check_no_null(str, length)) { |
| MPACK_FREE(str); |
| mpack_reader_flag_error(reader, mpack_error_type); |
| return NULL; |
| } |
| |
| return str; |
| } |
| #endif |
| |
| void mpack_expect_str_match(mpack_reader_t* reader, const char* str, size_t len) { |
| mpack_assert(str != NULL, "str cannot be NULL"); |
| |
| // expect a str the correct length |
| if (len > MPACK_UINT32_MAX) |
| mpack_reader_flag_error(reader, mpack_error_type); |
| mpack_expect_str_length(reader, (uint32_t)len); |
| if (mpack_reader_error(reader)) |
| return; |
| mpack_reader_track_bytes(reader, (uint32_t)len); |
| |
| // check each byte one by one (matched strings are likely to be very small) |
| for (; len > 0; --len) { |
| if (mpack_expect_native_u8(reader) != *str++) { |
| mpack_reader_flag_error(reader, mpack_error_type); |
| return; |
| } |
| } |
| |
| mpack_done_str(reader); |
| } |
| |
| void mpack_expect_tag(mpack_reader_t* reader, mpack_tag_t expected) { |
| mpack_tag_t actual = mpack_read_tag(reader); |
| if (!mpack_tag_equal(actual, expected)) |
| mpack_reader_flag_error(reader, mpack_error_type); |
| } |
| |
| #ifdef MPACK_MALLOC |
| char* mpack_expect_bin_alloc(mpack_reader_t* reader, size_t maxsize, size_t* size) { |
| mpack_assert(size != NULL, "size cannot be NULL"); |
| *size = 0; |
| |
| if (SIZE_MAX < MPACK_UINT32_MAX) { |
| if (maxsize > SIZE_MAX) |
| maxsize = SIZE_MAX; |
| } else { |
| if (maxsize > (size_t)MPACK_UINT32_MAX) |
| maxsize = (size_t)MPACK_UINT32_MAX; |
| } |
| |
| size_t length = mpack_expect_bin_max(reader, (uint32_t)maxsize); |
| if (mpack_reader_error(reader)) |
| return NULL; |
| |
| char* data = mpack_read_bytes_alloc(reader, length); |
| mpack_done_bin(reader); |
| |
| if (data) |
| *size = length; |
| return data; |
| } |
| #endif |
| |
| #if MPACK_EXTENSIONS && defined(MPACK_MALLOC) |
| char* mpack_expect_ext_alloc(mpack_reader_t* reader, int8_t* type, size_t maxsize, size_t* size) { |
| mpack_assert(size != NULL, "size cannot be NULL"); |
| *size = 0; |
| |
| if (SIZE_MAX < MPACK_UINT32_MAX) { |
| if (maxsize > SIZE_MAX) |
| maxsize = SIZE_MAX; |
| } else { |
| if (maxsize > (size_t)MPACK_UINT32_MAX) |
| maxsize = (size_t)MPACK_UINT32_MAX; |
| } |
| |
| size_t length = mpack_expect_ext_max(reader, type, (uint32_t)maxsize); |
| if (mpack_reader_error(reader)) |
| return NULL; |
| |
| char* data = mpack_read_bytes_alloc(reader, length); |
| mpack_done_ext(reader); |
| |
| if (data) { |
| *size = length; |
| } else { |
| *type = 0; |
| } |
| return data; |
| } |
| #endif |
| |
| size_t mpack_expect_enum(mpack_reader_t* reader, const char* strings[], size_t count) { |
| |
| // read the string in-place |
| size_t keylen = mpack_expect_str(reader); |
| const char* key = mpack_read_bytes_inplace(reader, keylen); |
| mpack_done_str(reader); |
| if (mpack_reader_error(reader) != mpack_ok) |
| return count; |
| |
| // find what key it matches |
| size_t i; |
| for (i = 0; i < count; ++i) { |
| const char* other = strings[i]; |
| size_t otherlen = mpack_strlen(other); |
| if (keylen == otherlen && mpack_memcmp(key, other, keylen) == 0) |
| return i; |
| } |
| |
| // no matches |
| mpack_reader_flag_error(reader, mpack_error_type); |
| return count; |
| } |
| |
| size_t mpack_expect_enum_optional(mpack_reader_t* reader, const char* strings[], size_t count) { |
| if (mpack_reader_error(reader) != mpack_ok) |
| return count; |
| |
| mpack_assert(count != 0, "count cannot be zero; no strings are valid!"); |
| mpack_assert(strings != NULL, "strings cannot be NULL"); |
| |
| // the key is only recognized if it is a string |
| if (mpack_peek_tag(reader).type != mpack_type_str) { |
| mpack_discard(reader); |
| return count; |
| } |
| |
| // read the string in-place |
| size_t keylen = mpack_expect_str(reader); |
| const char* key = mpack_read_bytes_inplace(reader, keylen); |
| mpack_done_str(reader); |
| if (mpack_reader_error(reader) != mpack_ok) |
| return count; |
| |
| // find what key it matches |
| size_t i; |
| for (i = 0; i < count; ++i) { |
| const char* other = strings[i]; |
| size_t otherlen = mpack_strlen(other); |
| if (keylen == otherlen && mpack_memcmp(key, other, keylen) == 0) |
| return i; |
| } |
| |
| // no matches |
| return count; |
| } |
| |
| size_t mpack_expect_key_uint(mpack_reader_t* reader, bool found[], size_t count) { |
| if (mpack_reader_error(reader) != mpack_ok) |
| return count; |
| |
| if (count == 0) { |
| mpack_break("count cannot be zero; no keys are valid!"); |
| mpack_reader_flag_error(reader, mpack_error_bug); |
| return count; |
| } |
| mpack_assert(found != NULL, "found cannot be NULL"); |
| |
| // the key is only recognized if it is an unsigned int |
| if (mpack_peek_tag(reader).type != mpack_type_uint) { |
| mpack_discard(reader); |
| return count; |
| } |
| |
| // read the key |
| uint64_t value = mpack_expect_u64(reader); |
| if (mpack_reader_error(reader) != mpack_ok) |
| return count; |
| |
| // unrecognized keys are fine, we just return count |
| if (value >= count) |
| return count; |
| |
| // check if this key is a duplicate |
| if (found[value]) { |
| mpack_reader_flag_error(reader, mpack_error_invalid); |
| return count; |
| } |
| |
| found[value] = true; |
| return (size_t)value; |
| } |
| |
| size_t mpack_expect_key_cstr(mpack_reader_t* reader, const char* keys[], bool found[], size_t count) { |
| size_t i = mpack_expect_enum_optional(reader, keys, count); |
| |
| // unrecognized keys are fine, we just return count |
| if (i == count) |
| return count; |
| |
| // check if this key is a duplicate |
| mpack_assert(found != NULL, "found cannot be NULL"); |
| if (found[i]) { |
| mpack_reader_flag_error(reader, mpack_error_invalid); |
| return count; |
| } |
| |
| found[i] = true; |
| return i; |
| } |
| |
| #endif |
| |
| MPACK_SILENCE_WARNINGS_END |
| |
| /* mpack/mpack-node.c.c */ |
| |
| #define MPACK_INTERNAL 1 |
| |
| /* #include "mpack-node.h" */ |
| |
| MPACK_SILENCE_WARNINGS_BEGIN |
| |
| #if MPACK_NODE |
| |
| MPACK_STATIC_INLINE const char* mpack_node_data_unchecked(mpack_node_t node) { |
| mpack_assert(mpack_node_error(node) == mpack_ok, "tree is in an error state!"); |
| |
| mpack_type_t type = node.data->type; |
| MPACK_UNUSED(type); |
| #if MPACK_EXTENSIONS |
| mpack_assert(type == mpack_type_str || type == mpack_type_bin || type == mpack_type_ext, |
| "node of type %i (%s) is not a data type!", type, mpack_type_to_string(type)); |
| #else |
| mpack_assert(type == mpack_type_str || type == mpack_type_bin, |
| "node of type %i (%s) is not a data type!", type, mpack_type_to_string(type)); |
| #endif |
| |
| return node.tree->data + node.data->value.offset; |
| } |
| |
| #if MPACK_EXTENSIONS |
| MPACK_STATIC_INLINE int8_t mpack_node_exttype_unchecked(mpack_node_t node) { |
| mpack_assert(mpack_node_error(node) == mpack_ok, "tree is in an error state!"); |
| |
| mpack_type_t type = node.data->type; |
| MPACK_UNUSED(type); |
| mpack_assert(type == mpack_type_ext, "node of type %i (%s) is not an ext type!", |
| type, mpack_type_to_string(type)); |
| |
| // the exttype of an ext node is stored in the byte preceding the data |
| return mpack_load_i8(mpack_node_data_unchecked(node) - 1); |
| } |
| #endif |
| |
| |
| |
| /* |
| * Tree Parsing |
| */ |
| |
| #ifdef MPACK_MALLOC |
| |
| // fix up the alloc size to make sure it exactly fits the |
| // maximum number of nodes it can contain (the allocator will |
| // waste it back anyway, but we round it down just in case) |
| |
| #define MPACK_NODES_PER_PAGE \ |
| ((MPACK_NODE_PAGE_SIZE - sizeof(mpack_tree_page_t)) / sizeof(mpack_node_data_t) + 1) |
| |
| #define MPACK_PAGE_ALLOC_SIZE \ |
| (sizeof(mpack_tree_page_t) + sizeof(mpack_node_data_t) * (MPACK_NODES_PER_PAGE - 1)) |
| |
| #endif |
| |
| #ifdef MPACK_MALLOC |
| /* |
| * Fills the tree until we have at least enough bytes for the current node. |
| */ |
| static bool mpack_tree_reserve_fill(mpack_tree_t* tree) { |
| mpack_assert(tree->parser.state == mpack_tree_parse_state_in_progress); |
| |
| size_t bytes = tree->parser.current_node_reserved; |
| mpack_assert(bytes > tree->parser.possible_nodes_left, |
| "there are already enough bytes! call mpack_tree_ensure() instead."); |
| mpack_log("filling to reserve %i bytes\n", (int)bytes); |
| |
| // if the necessary bytes would put us over the maximum tree |
| // size, fail right away. |
| // TODO: check for overflow? |
| if (tree->data_length + bytes > tree->max_size) { |
| mpack_tree_flag_error(tree, mpack_error_too_big); |
| return false; |
| } |
| |
| // we'll need a read function to fetch more data. if there's |
| // no read function, the data should contain an entire message |
| // (or messages), so we flag it as invalid. |
| if (tree->read_fn == NULL) { |
| mpack_log("tree has no read function!\n"); |
| mpack_tree_flag_error(tree, mpack_error_invalid); |
| return false; |
| } |
| |
| // expand the buffer if needed |
| if (tree->data_length + bytes > tree->buffer_capacity) { |
| |
| // TODO: check for overflow? |
| size_t new_capacity = (tree->buffer_capacity == 0) ? MPACK_BUFFER_SIZE : tree->buffer_capacity; |
| while (new_capacity < tree->data_length + bytes) |
| new_capacity *= 2; |
| if (new_capacity > tree->max_size) |
| new_capacity = tree->max_size; |
| |
| mpack_log("expanding buffer from %i to %i\n", (int)tree->buffer_capacity, (int)new_capacity); |
| |
| char* new_buffer; |
| if (tree->buffer == NULL) |
| new_buffer = (char*)MPACK_MALLOC(new_capacity); |
| else |
| new_buffer = (char*)mpack_realloc(tree->buffer, tree->data_length, new_capacity); |
| |
| if (new_buffer == NULL) { |
| mpack_tree_flag_error(tree, mpack_error_memory); |
| return false; |
| } |
| |
| tree->data = new_buffer; |
| tree->buffer = new_buffer; |
| tree->buffer_capacity = new_capacity; |
| } |
| |
| // request as much data as possible, looping until we have |
| // all the data we need |
| do { |
| size_t read = tree->read_fn(tree, tree->buffer + tree->data_length, tree->buffer_capacity - tree->data_length); |
| |
| // If the fill function encounters an error, it should flag an error on |
| // the tree. |
| if (mpack_tree_error(tree) != mpack_ok) |
| return false; |
| |
| // We guard against fill functions that return -1 just in case. |
| if (read == (size_t)(-1)) { |
| mpack_tree_flag_error(tree, mpack_error_io); |
| return false; |
| } |
| |
| // If the fill function returns 0, the data is not available yet. We |
| // return false to stop parsing the current node. |
| if (read == 0) { |
| mpack_log("not enough data.\n"); |
| return false; |
| } |
| |
| mpack_log("read %u more bytes\n", (uint32_t)read); |
| tree->data_length += read; |
| tree->parser.possible_nodes_left += read; |
| } while (tree->parser.possible_nodes_left < bytes); |
| |
| return true; |
| } |
| #endif |
| |
| /* |
| * Ensures there are enough additional bytes in the tree for the current node |
| * (including reserved bytes for the children of this node, and in addition to |
| * the reserved bytes for children of previous compound nodes), reading more |
| * data if needed. |
| * |
| * extra_bytes is the number of additional bytes to reserve for the current |
| * node beyond the type byte (since one byte is already reserved for each node |
| * by its parent array or map.) |
| * |
| * This may reallocate the tree, which means the tree->data pointer may change! |
| * |
| * Returns false if not enough bytes could be read. |
| */ |
| MPACK_STATIC_INLINE bool mpack_tree_reserve_bytes(mpack_tree_t* tree, size_t extra_bytes) { |
| mpack_assert(tree->parser.state == mpack_tree_parse_state_in_progress); |
| |
| // We guard against overflow here. A compound type could declare more than |
| // MPACK_UINT32_MAX contents which overflows SIZE_MAX on 32-bit platforms. We |
| // flag mpack_error_invalid instead of mpack_error_too_big since it's far |
| // more likely that the message is corrupt than that the data is valid but |
| // not parseable on this architecture (see test_read_node_possible() in |
| // test-node.c .) |
| if ((uint64_t)tree->parser.current_node_reserved + (uint64_t)extra_bytes > SIZE_MAX) { |
| mpack_tree_flag_error(tree, mpack_error_invalid); |
| return false; |
| } |
| |
| tree->parser.current_node_reserved += extra_bytes; |
| |
| // Note that possible_nodes_left already accounts for reserved bytes for |
| // children of previous compound nodes. So even if there are hundreds of |
| // bytes left in the buffer, we might need to read anyway. |
| if (tree->parser.current_node_reserved <= tree->parser.possible_nodes_left) |
| return true; |
| |
| #ifdef MPACK_MALLOC |
| return mpack_tree_reserve_fill(tree); |
| #else |
| return false; |
| #endif |
| } |
| |
| MPACK_STATIC_INLINE size_t mpack_tree_parser_stack_capacity(mpack_tree_t* tree) { |
| #ifdef MPACK_MALLOC |
| return tree->parser.stack_capacity; |
| #else |
| return sizeof(tree->parser.stack) / sizeof(tree->parser.stack[0]); |
| #endif |
| } |
| |
| static bool mpack_tree_push_stack(mpack_tree_t* tree, mpack_node_data_t* first_child, size_t total) { |
| mpack_tree_parser_t* parser = &tree->parser; |
| mpack_assert(parser->state == mpack_tree_parse_state_in_progress); |
| |
| // No need to push empty containers |
| if (total == 0) |
| return true; |
| |
| // Make sure we have enough room in the stack |
| if (parser->level + 1 == mpack_tree_parser_stack_capacity(tree)) { |
| #ifdef MPACK_MALLOC |
| size_t new_capacity = parser->stack_capacity * 2; |
| mpack_log("growing parse stack to capacity %i\n", (int)new_capacity); |
| |
| // Replace the stack-allocated parsing stack |
| if (!parser->stack_owned) { |
| mpack_level_t* new_stack = (mpack_level_t*)MPACK_MALLOC(sizeof(mpack_level_t) * new_capacity); |
| if (!new_stack) { |
| mpack_tree_flag_error(tree, mpack_error_memory); |
| return false; |
| } |
| mpack_memcpy(new_stack, parser->stack, sizeof(mpack_level_t) * parser->stack_capacity); |
| parser->stack = new_stack; |
| parser->stack_owned = true; |
| |
| // Realloc the allocated parsing stack |
| } else { |
| mpack_level_t* new_stack = (mpack_level_t*)mpack_realloc(parser->stack, |
| sizeof(mpack_level_t) * parser->stack_capacity, sizeof(mpack_level_t) * new_capacity); |
| if (!new_stack) { |
| mpack_tree_flag_error(tree, mpack_error_memory); |
| return false; |
| } |
| parser->stack = new_stack; |
| } |
| parser->stack_capacity = new_capacity; |
| #else |
| mpack_tree_flag_error(tree, mpack_error_too_big); |
| return false; |
| #endif |
| } |
| |
| // Push the contents of this node onto the parsing stack |
| ++parser->level; |
| parser->stack[parser->level].child = first_child; |
| parser->stack[parser->level].left = total; |
| return true; |
| } |
| |
| static bool mpack_tree_parse_children(mpack_tree_t* tree, mpack_node_data_t* node) { |
| mpack_tree_parser_t* parser = &tree->parser; |
| mpack_assert(parser->state == mpack_tree_parse_state_in_progress); |
| |
| mpack_type_t type = node->type; |
| size_t total = node->len; |
| |
| // Calculate total elements to read |
| if (type == mpack_type_map) { |
| if ((uint64_t)total * 2 > SIZE_MAX) { |
| mpack_tree_flag_error(tree, mpack_error_too_big); |
| return false; |
| } |
| total *= 2; |
| } |
| |
| // Make sure we are under our total node limit (TODO can this overflow?) |
| tree->node_count += total; |
| if (tree->node_count > tree->max_nodes) { |
| mpack_tree_flag_error(tree, mpack_error_too_big); |
| return false; |
| } |
| |
| // Each node is at least one byte. Count these bytes now to make |
| // sure there is enough data left. |
| if (!mpack_tree_reserve_bytes(tree, total)) |
| return false; |
| |
| // If there are enough nodes left in the current page, no need to grow |
| if (total <= parser->nodes_left) { |
| node->value.children = parser->nodes; |
| parser->nodes += total; |
| parser->nodes_left -= total; |
| |
| } else { |
| |
| #ifdef MPACK_MALLOC |
| |
| // We can't grow if we're using a fixed pool (i.e. we didn't start with a page) |
| if (!tree->next) { |
| mpack_tree_flag_error(tree, mpack_error_too_big); |
| return false; |
| } |
| |
| // Otherwise we need to grow, and the node's children need to be contiguous. |
| // This is a heuristic to decide whether we should waste the remaining space |
| // in the current page and start a new one, or give the children their |
| // own page. With a fraction of 1/8, this causes at most 12% additional |
| // waste. Note that reducing this too much causes less cache coherence and |
| // more malloc() overhead due to smaller allocations, so there's a tradeoff |
| // here. This heuristic could use some improvement, especially with custom |
| // page sizes. |
| |
| mpack_tree_page_t* page; |
| |
| if (total > MPACK_NODES_PER_PAGE || parser->nodes_left > MPACK_NODES_PER_PAGE / 8) { |
| // TODO: this should check for overflow |
| page = (mpack_tree_page_t*)MPACK_MALLOC( |
| sizeof(mpack_tree_page_t) + sizeof(mpack_node_data_t) * (total - 1)); |
| if (page == NULL) { |
| mpack_tree_flag_error(tree, mpack_error_memory); |
| return false; |
| } |
| mpack_log("allocated seperate page %p for %i children, %i left in page of %i total\n", |
| (void*)page, (int)total, (int)parser->nodes_left, (int)MPACK_NODES_PER_PAGE); |
| |
| node->value.children = page->nodes; |
| |
| } else { |
| page = (mpack_tree_page_t*)MPACK_MALLOC(MPACK_PAGE_ALLOC_SIZE); |
| if (page == NULL) { |
| mpack_tree_flag_error(tree, mpack_error_memory); |
| return false; |
| } |
| mpack_log("allocated new page %p for %i children, wasting %i in page of %i total\n", |
| (void*)page, (int)total, (int)parser->nodes_left, (int)MPACK_NODES_PER_PAGE); |
| |
| node->value.children = page->nodes; |
| parser->nodes = page->nodes + total; |
| parser->nodes_left = MPACK_NODES_PER_PAGE - total; |
| } |
| |
| page->next = tree->next; |
| tree->next = page; |
| |
| #else |
| // We can't grow if we don't have an allocator |
| mpack_tree_flag_error(tree, mpack_error_too_big); |
| return false; |
| #endif |
| } |
| |
| return mpack_tree_push_stack(tree, node->value.children, total); |
| } |
| |
| static bool mpack_tree_parse_bytes(mpack_tree_t* tree, mpack_node_data_t* node) { |
| node->value.offset = tree->size + tree->parser.current_node_reserved + 1; |
| return mpack_tree_reserve_bytes(tree, node->len); |
| } |
| |
| #if MPACK_EXTENSIONS |
| static bool mpack_tree_parse_ext(mpack_tree_t* tree, mpack_node_data_t* node) { |
| // reserve space for exttype |
| tree->parser.current_node_reserved += sizeof(int8_t); |
| node->type = mpack_type_ext; |
| return mpack_tree_parse_bytes(tree, node); |
| } |
| #endif |
| |
| static bool mpack_tree_parse_node_contents(mpack_tree_t* tree, mpack_node_data_t* node) { |
| mpack_assert(tree->parser.state == mpack_tree_parse_state_in_progress); |
| mpack_assert(node != NULL, "null node?"); |
| |
| // read the type. we've already accounted for this byte in |
| // possible_nodes_left, so we already know it is in bounds, and we don't |
| // need to reserve it for this node. |
| mpack_assert(tree->data_length > tree->size); |
| uint8_t type = mpack_load_u8(tree->data + tree->size); |
| mpack_log("node type %x\n", type); |
| tree->parser.current_node_reserved = 0; |
| |
| // as with mpack_read_tag(), the fastest way to parse a node is to switch |
| // on the first byte, and to explicitly list every possible byte. we switch |
| // on the first four bits in size-optimized builds. |
| |
| #if MPACK_OPTIMIZE_FOR_SIZE |
| switch (type >> 4) { |
| |
| // positive fixnum |
| case 0x0: case 0x1: case 0x2: case 0x3: |
| case 0x4: case 0x5: case 0x6: case 0x7: |
| node->type = mpack_type_uint; |
| node->value.u = type; |
| return true; |
| |
| // negative fixnum |
| case 0xe: case 0xf: |
| node->type = mpack_type_int; |
| node->value.i = (int8_t)type; |
| return true; |
| |
| // fixmap |
| case 0x8: |
| node->type = mpack_type_map; |
| node->len = (uint32_t)(type & ~0xf0); |
| return mpack_tree_parse_children(tree, node); |
| |
| // fixarray |
| case 0x9: |
| node->type = mpack_type_array; |
| node->len = (uint32_t)(type & ~0xf0); |
| return mpack_tree_parse_children(tree, node); |
| |
| // fixstr |
| case 0xa: case 0xb: |
| node->type = mpack_type_str; |
| node->len = (uint32_t)(type & ~0xe0); |
| return mpack_tree_parse_bytes(tree, node); |
| |
| // not one of the common infix types |
| default: |
| break; |
| } |
| #endif |
| |
| switch (type) { |
| |
| #if !MPACK_OPTIMIZE_FOR_SIZE |
| // positive fixnum |
| case 0x00: case 0x01: case 0x02: case 0x03: case 0x04: case 0x05: case 0x06: case 0x07: |
| case 0x08: case 0x09: case 0x0a: case 0x0b: case 0x0c: case 0x0d: case 0x0e: case 0x0f: |
| case 0x10: case 0x11: case 0x12: case 0x13: case 0x14: case 0x15: case 0x16: case 0x17: |
| case 0x18: case 0x19: case 0x1a: case 0x1b: case 0x1c: case 0x1d: case 0x1e: case 0x1f: |
| case 0x20: case 0x21: case 0x22: case 0x23: case 0x24: case 0x25: case 0x26: case 0x27: |
| case 0x28: case 0x29: case 0x2a: case 0x2b: case 0x2c: case 0x2d: case 0x2e: case 0x2f: |
| case 0x30: case 0x31: case 0x32: case 0x33: case 0x34: case 0x35: case 0x36: case 0x37: |
| case 0x38: case 0x39: case 0x3a: case 0x3b: case 0x3c: case 0x3d: case 0x3e: case 0x3f: |
| case 0x40: case 0x41: case 0x42: case 0x43: case 0x44: case 0x45: case 0x46: case 0x47: |
| case 0x48: case 0x49: case 0x4a: case 0x4b: case 0x4c: case 0x4d: case 0x4e: case 0x4f: |
| case 0x50: case 0x51: case 0x52: case 0x53: case 0x54: case 0x55: case 0x56: case 0x57: |
| case 0x58: case 0x59: case 0x5a: case 0x5b: case 0x5c: case 0x5d: case 0x5e: case 0x5f: |
| case 0x60: case 0x61: case 0x62: case 0x63: case 0x64: case 0x65: case 0x66: case 0x67: |
| case 0x68: case 0x69: case 0x6a: case 0x6b: case 0x6c: case 0x6d: case 0x6e: case 0x6f: |
| case 0x70: case 0x71: case 0x72: case 0x73: case 0x74: case 0x75: case 0x76: case 0x77: |
| case 0x78: case 0x79: case 0x7a: case 0x7b: case 0x7c: case 0x7d: case 0x7e: case 0x7f: |
| node->type = mpack_type_uint; |
| node->value.u = type; |
| return true; |
| |
| // negative fixnum |
| case 0xe0: case 0xe1: case 0xe2: case 0xe3: case 0xe4: case 0xe5: case 0xe6: case 0xe7: |
| case 0xe8: case 0xe9: case 0xea: case 0xeb: case 0xec: case 0xed: case 0xee: case 0xef: |
| case 0xf0: case 0xf1: case 0xf2: case 0xf3: case 0xf4: case 0xf5: case 0xf6: case 0xf7: |
| case 0xf8: case 0xf9: case 0xfa: case 0xfb: case 0xfc: case 0xfd: case 0xfe: case 0xff: |
| node->type = mpack_type_int; |
| node->value.i = (int8_t)type; |
| return true; |
| |
| // fixmap |
| case 0x80: case 0x81: case 0x82: case 0x83: case 0x84: case 0x85: case 0x86: case 0x87: |
| case 0x88: case 0x89: case 0x8a: case 0x8b: case 0x8c: case 0x8d: case 0x8e: case 0x8f: |
| node->type = mpack_type_map; |
| node->len = (uint32_t)(type & ~0xf0); |
| return mpack_tree_parse_children(tree, node); |
| |
| // fixarray |
| case 0x90: case 0x91: case 0x92: case 0x93: case 0x94: case 0x95: case 0x96: case 0x97: |
| case 0x98: case 0x99: case 0x9a: case 0x9b: case 0x9c: case 0x9d: case 0x9e: case 0x9f: |
| node->type = mpack_type_array; |
| node->len = (uint32_t)(type & ~0xf0); |
| return mpack_tree_parse_children(tree, node); |
| |
| // fixstr |
| case 0xa0: case 0xa1: case 0xa2: case 0xa3: case 0xa4: case 0xa5: case 0xa6: case 0xa7: |
| case 0xa8: case 0xa9: case 0xaa: case 0xab: case 0xac: case 0xad: case 0xae: case 0xaf: |
| case 0xb0: case 0xb1: case 0xb2: case 0xb3: case 0xb4: case 0xb5: case 0xb6: case 0xb7: |
| case 0xb8: case 0xb9: case 0xba: case 0xbb: case 0xbc: case 0xbd: case 0xbe: case 0xbf: |
| node->type = mpack_type_str; |
| node->len = (uint32_t)(type & ~0xe0); |
| return mpack_tree_parse_bytes(tree, node); |
| #endif |
| |
| // nil |
| case 0xc0: |
| node->type = mpack_type_nil; |
| return true; |
| |
| // bool |
| case 0xc2: case 0xc3: |
| node->type = mpack_type_bool; |
| node->value.b = type & 1; |
| return true; |
| |
| // bin8 |
| case 0xc4: |
| node->type = mpack_type_bin; |
| if (!mpack_tree_reserve_bytes(tree, sizeof(uint8_t))) |
| return false; |
| node->len = mpack_load_u8(tree->data + tree->size + 1); |
| return mpack_tree_parse_bytes(tree, node); |
| |
| // bin16 |
| case 0xc5: |
| node->type = mpack_type_bin; |
| if (!mpack_tree_reserve_bytes(tree, sizeof(uint16_t))) |
| return false; |
| node->len = mpack_load_u16(tree->data + tree->size + 1); |
| return mpack_tree_parse_bytes(tree, node); |
| |
| // bin32 |
| case 0xc6: |
| node->type = mpack_type_bin; |
| if (!mpack_tree_reserve_bytes(tree, sizeof(uint32_t))) |
| return false; |
| node->len = mpack_load_u32(tree->data + tree->size + 1); |
| return mpack_tree_parse_bytes(tree, node); |
| |
| #if MPACK_EXTENSIONS |
| // ext8 |
| case 0xc7: |
| if (!mpack_tree_reserve_bytes(tree, sizeof(uint8_t))) |
| return false; |
| node->len = mpack_load_u8(tree->data + tree->size + 1); |
| return mpack_tree_parse_ext(tree, node); |
| |
| // ext16 |
| case 0xc8: |
| if (!mpack_tree_reserve_bytes(tree, sizeof(uint16_t))) |
| return false; |
| node->len = mpack_load_u16(tree->data + tree->size + 1); |
| return mpack_tree_parse_ext(tree, node); |
| |
| // ext32 |
| case 0xc9: |
| if (!mpack_tree_reserve_bytes(tree, sizeof(uint32_t))) |
| return false; |
| node->len = mpack_load_u32(tree->data + tree->size + 1); |
| return mpack_tree_parse_ext(tree, node); |
| #endif |
| |
| // float |
| case 0xca: |
| #if MPACK_FLOAT |
| if (!mpack_tree_reserve_bytes(tree, sizeof(float))) |
| return false; |
| node->value.f = mpack_load_float(tree->data + tree->size + 1); |
| #else |
| if (!mpack_tree_reserve_bytes(tree, sizeof(uint32_t))) |
| return false; |
| node->value.f = mpack_load_u32(tree->data + tree->size + 1); |
| #endif |
| node->type = mpack_type_float; |
| return true; |
| |
| // double |
| case 0xcb: |
| #if MPACK_DOUBLE |
| if (!mpack_tree_reserve_bytes(tree, sizeof(double))) |
| return false; |
| node->value.d = mpack_load_double(tree->data + tree->size + 1); |
| #else |
| if (!mpack_tree_reserve_bytes(tree, sizeof(uint64_t))) |
| return false; |
| node->value.d = mpack_load_u64(tree->data + tree->size + 1); |
| #endif |
| node->type = mpack_type_double; |
| return true; |
| |
| // uint8 |
| case 0xcc: |
| node->type = mpack_type_uint; |
| if (!mpack_tree_reserve_bytes(tree, sizeof(uint8_t))) |
| return false; |
| node->value.u = mpack_load_u8(tree->data + tree->size + 1); |
| return true; |
| |
| // uint16 |
| case 0xcd: |
| node->type = mpack_type_uint; |
| if (!mpack_tree_reserve_bytes(tree, sizeof(uint16_t))) |
| return false; |
| node->value.u = mpack_load_u16(tree->data + tree->size + 1); |
| return true; |
| |
| // uint32 |
| case 0xce: |
| node->type = mpack_type_uint; |
| if (!mpack_tree_reserve_bytes(tree, sizeof(uint32_t))) |
| return false; |
| node->value.u = mpack_load_u32(tree->data + tree->size + 1); |
| return true; |
| |
| // uint64 |
| case 0xcf: |
| node->type = mpack_type_uint; |
| if (!mpack_tree_reserve_bytes(tree, sizeof(uint64_t))) |
| return false; |
| node->value.u = mpack_load_u64(tree->data + tree->size + 1); |
| return true; |
| |
| // int8 |
| case 0xd0: |
| node->type = mpack_type_int; |
| if (!mpack_tree_reserve_bytes(tree, sizeof(int8_t))) |
| return false; |
| node->value.i = mpack_load_i8(tree->data + tree->size + 1); |
| return true; |
| |
| // int16 |
| case 0xd1: |
| node->type = mpack_type_int; |
| if (!mpack_tree_reserve_bytes(tree, sizeof(int16_t))) |
| return false; |
| node->value.i = mpack_load_i16(tree->data + tree->size + 1); |
| return true; |
| |
| // int32 |
| case 0xd2: |
| node->type = mpack_type_int; |
| if (!mpack_tree_reserve_bytes(tree, sizeof(int32_t))) |
| return false; |
| node->value.i = mpack_load_i32(tree->data + tree->size + 1); |
| return true; |
| |
| // int64 |
| case 0xd3: |
| node->type = mpack_type_int; |
| if (!mpack_tree_reserve_bytes(tree, sizeof(int64_t))) |
| return false; |
| node->value.i = mpack_load_i64(tree->data + tree->size + 1); |
| return true; |
| |
| #if MPACK_EXTENSIONS |
| // fixext1 |
| case 0xd4: |
| node->len = 1; |
| return mpack_tree_parse_ext(tree, node); |
| |
| // fixext2 |
| case 0xd5: |
| node->len = 2; |
| return mpack_tree_parse_ext(tree, node); |
| |
| // fixext4 |
| case 0xd6: |
| node->len = 4; |
| return mpack_tree_parse_ext(tree, node); |
| |
| // fixext8 |
| case 0xd7: |
| node->len = 8; |
| return mpack_tree_parse_ext(tree, node); |
| |
| // fixext16 |
| case 0xd8: |
| node->len = 16; |
| return mpack_tree_parse_ext(tree, node); |
| #endif |
| |
| // str8 |
| case 0xd9: |
| if (!mpack_tree_reserve_bytes(tree, sizeof(uint8_t))) |
| return false; |
| node->len = mpack_load_u8(tree->data + tree->size + 1); |
| node->type = mpack_type_str; |
| return mpack_tree_parse_bytes(tree, node); |
| |
| // str16 |
| case 0xda: |
| if (!mpack_tree_reserve_bytes(tree, sizeof(uint16_t))) |
| return false; |
| node->len = mpack_load_u16(tree->data + tree->size + 1); |
| node->type = mpack_type_str; |
| return mpack_tree_parse_bytes(tree, node); |
| |
| // str32 |
| case 0xdb: |
| if (!mpack_tree_reserve_bytes(tree, sizeof(uint32_t))) |
| return false; |
| node->len = mpack_load_u32(tree->data + tree->size + 1); |
| node->type = mpack_type_str; |
| return mpack_tree_parse_bytes(tree, node); |
| |
| // array16 |
| case 0xdc: |
| if (!mpack_tree_reserve_bytes(tree, sizeof(uint16_t))) |
| return false; |
| node->len = mpack_load_u16(tree->data + tree->size + 1); |
| node->type = mpack_type_array; |
| return mpack_tree_parse_children(tree, node); |
| |
| // array32 |
| case 0xdd: |
| if (!mpack_tree_reserve_bytes(tree, sizeof(uint32_t))) |
| return false; |
| node->len = mpack_load_u32(tree->data + tree->size + 1); |
| node->type = mpack_type_array; |
| return mpack_tree_parse_children(tree, node); |
| |
| // map16 |
| case 0xde: |
| if (!mpack_tree_reserve_bytes(tree, sizeof(uint16_t))) |
| return false; |
| node->len = mpack_load_u16(tree->data + tree->size + 1); |
| node->type = mpack_type_map; |
| return mpack_tree_parse_children(tree, node); |
| |
| // map32 |
| case 0xdf: |
| if (!mpack_tree_reserve_bytes(tree, sizeof(uint32_t))) |
| return false; |
| node->len = mpack_load_u32(tree->data + tree->size + 1); |
| node->type = mpack_type_map; |
| return mpack_tree_parse_children(tree, node); |
| |
| // reserved |
| case 0xc1: |
| mpack_tree_flag_error(tree, mpack_error_invalid); |
| return false; |
| |
| #if !MPACK_EXTENSIONS |
| // ext |
| case 0xc7: // fallthrough |
| case 0xc8: // fallthrough |
| case 0xc9: // fallthrough |
| // fixext |
| case 0xd4: // fallthrough |
| case 0xd5: // fallthrough |
| case 0xd6: // fallthrough |
| case 0xd7: // fallthrough |
| case 0xd8: |
| mpack_tree_flag_error(tree, mpack_error_unsupported); |
| return false; |
| #endif |
| |
| #if MPACK_OPTIMIZE_FOR_SIZE |
| // any other bytes should have been handled by the infix switch |
| default: |
| break; |
| #endif |
| } |
| |
| mpack_assert(0, "unreachable"); |
| return false; |
| } |
| |
| static bool mpack_tree_parse_node(mpack_tree_t* tree, mpack_node_data_t* node) { |
| mpack_log("parsing a node at position %i in level %i\n", |
| (int)tree->size, (int)tree->parser.level); |
| |
| if (!mpack_tree_parse_node_contents(tree, node)) { |
| mpack_log("node parsing returned false\n"); |
| return false; |
| } |
| |
| tree->parser.possible_nodes_left -= tree->parser.current_node_reserved; |
| |
| // The reserve for the current node does not include the initial byte |
| // previously reserved as part of its parent. |
| size_t node_size = tree->parser.current_node_reserved + 1; |
| |
| // If the parsed type is a map or array, the reserve includes one byte for |
| // each child. We want to subtract these out of possible_nodes_left, but |
| // not out of the current size of the tree. |
| if (node->type == mpack_type_array) |
| node_size -= node->len; |
| else if (node->type == mpack_type_map) |
| node_size -= node->len * 2; |
| tree->size += node_size; |
| |
| mpack_log("parsed a node of type %s of %i bytes and " |
| "%i additional bytes reserved for children.\n", |
| mpack_type_to_string(node->type), (int)node_size, |
| (int)tree->parser.current_node_reserved + 1 - (int)node_size); |
| |
| return true; |
| } |
| |
| /* |
| * We read nodes in a loop instead of recursively for maximum performance. The |
| * stack holds the amount of children left to read in each level of the tree. |
| * Parsing can pause and resume when more data becomes available. |
| */ |
| static bool mpack_tree_continue_parsing(mpack_tree_t* tree) { |
| if (mpack_tree_error(tree) != mpack_ok) |
| return false; |
| |
| mpack_tree_parser_t* parser = &tree->parser; |
| mpack_assert(parser->state == mpack_tree_parse_state_in_progress); |
| mpack_log("parsing tree elements, %i bytes in buffer\n", (int)tree->data_length); |
| |
| // we loop parsing nodes until the parse stack is empty. we break |
| // by returning out of the function. |
| while (true) { |
| mpack_node_data_t* node = parser->stack[parser->level].child; |
| size_t level = parser->level; |
| if (!mpack_tree_parse_node(tree, node)) |
| return false; |
| --parser->stack[level].left; |
| ++parser->stack[level].child; |
| |
| mpack_assert(mpack_tree_error(tree) == mpack_ok, |
| "mpack_tree_parse_node() should have returned false due to error!"); |
| |
| // pop empty stack levels, exiting the outer loop when the stack is empty. |
| // (we could tail-optimize containers by pre-emptively popping empty |
| // stack levels before reading the new element, this way we wouldn't |
| // have to loop. but we eventually want to use the parse stack to give |
| // better error messages that contain the location of the error, so |
| // it needs to be complete.) |
| while (parser->stack[parser->level].left == 0) { |
| if (parser->level == 0) |
| return true; |
| --parser->level; |
| } |
| } |
| } |
| |
| static void mpack_tree_cleanup(mpack_tree_t* tree) { |
| MPACK_UNUSED(tree); |
| |
| #ifdef MPACK_MALLOC |
| if (tree->parser.stack_owned) { |
| MPACK_FREE(tree->parser.stack); |
| tree->parser.stack = NULL; |
| tree->parser.stack_owned = false; |
| } |
| |
| mpack_tree_page_t* page = tree->next; |
| while (page != NULL) { |
| mpack_tree_page_t* next = page->next; |
| mpack_log("freeing page %p\n", (void*)page); |
| MPACK_FREE(page); |
| page = next; |
| } |
| tree->next = NULL; |
| #endif |
| } |
| |
| static bool mpack_tree_parse_start(mpack_tree_t* tree) { |
| if (mpack_tree_error(tree) != mpack_ok) |
| return false; |
| |
| mpack_tree_parser_t* parser = &tree->parser; |
| mpack_assert(parser->state != mpack_tree_parse_state_in_progress, |
| "previous parsing was not finished!"); |
| |
| if (parser->state == mpack_tree_parse_state_parsed) |
| mpack_tree_cleanup(tree); |
| |
| mpack_log("starting parse\n"); |
| tree->parser.state = mpack_tree_parse_state_in_progress; |
| tree->parser.current_node_reserved = 0; |
| |
| // check if we previously parsed a tree |
| if (tree->size > 0) { |
| #ifdef MPACK_MALLOC |
| // if we're buffered, move the remaining data back to the |
| // start of the buffer |
| // TODO: This is not ideal performance-wise. We should only move data |
| // when we need to call the fill function. |
| // TODO: We could consider shrinking the buffer here, especially if we |
| // determine that the fill function is providing less than a quarter of |
| // the buffer size or if messages take up less than a quarter of the |
| // buffer size. Maybe this should be configurable. |
| if (tree->buffer != NULL) { |
| mpack_memmove(tree->buffer, tree->buffer + tree->size, tree->data_length - tree->size); |
| } |
| else |
| #endif |
| // otherwise advance past the parsed data |
| { |
| tree->data += tree->size; |
| } |
| tree->data_length -= tree->size; |
| tree->size = 0; |
| tree->node_count = 0; |
| } |
| |
| // make sure we have at least one byte available before allocating anything |
| parser->possible_nodes_left = tree->data_length; |
| if (!mpack_tree_reserve_bytes(tree, sizeof(uint8_t))) { |
| tree->parser.state = mpack_tree_parse_state_not_started; |
| return false; |
| } |
| mpack_log("parsing tree at %p starting with byte %x\n", tree->data, (uint8_t)tree->data[0]); |
| parser->possible_nodes_left -= 1; |
| tree->node_count = 1; |
| |
| #ifdef MPACK_MALLOC |
| parser->stack = parser->stack_local; |
| parser->stack_owned = false; |
| parser->stack_capacity = sizeof(parser->stack_local) / sizeof(*parser->stack_local); |
| |
| if (tree->pool == NULL) { |
| |
| // allocate first page |
| mpack_tree_page_t* page = (mpack_tree_page_t*)MPACK_MALLOC(MPACK_PAGE_ALLOC_SIZE); |
| mpack_log("allocated initial page %p of size %i count %i\n", |
| (void*)page, (int)MPACK_PAGE_ALLOC_SIZE, (int)MPACK_NODES_PER_PAGE); |
| if (page == NULL) { |
| tree->error = mpack_error_memory; |
| return false; |
| } |
| page->next = NULL; |
| tree->next = page; |
| |
| parser->nodes = page->nodes; |
| parser->nodes_left = MPACK_NODES_PER_PAGE; |
| } |
| else |
| #endif |
| { |
| // otherwise use the provided pool |
| mpack_assert(tree->pool != NULL, "no pool provided?"); |
| parser->nodes = tree->pool; |
| parser->nodes_left = tree->pool_count; |
| } |
| |
| tree->root = parser->nodes; |
| ++parser->nodes; |
| --parser->nodes_left; |
| |
| parser->level = 0; |
| parser->stack[0].child = tree->root; |
| parser->stack[0].left = 1; |
| |
| return true; |
| } |
| |
| void mpack_tree_parse(mpack_tree_t* tree) { |
| if (mpack_tree_error(tree) != mpack_ok) |
| return; |
| |
| if (tree->parser.state != mpack_tree_parse_state_in_progress) { |
| if (!mpack_tree_parse_start(tree)) { |
| mpack_tree_flag_error(tree, (tree->read_fn == NULL) ? |
| mpack_error_invalid : mpack_error_io); |
| return; |
| } |
| } |
| |
| if (!mpack_tree_continue_parsing(tree)) { |
| if (mpack_tree_error(tree) != mpack_ok) |
| return; |
| |
| // We're parsing synchronously on a blocking fill function. If we |
| // didn't completely finish parsing the tree, it's an error. |
| mpack_log("tree parsing incomplete. flagging error.\n"); |
| mpack_tree_flag_error(tree, (tree->read_fn == NULL) ? |
| mpack_error_invalid : mpack_error_io); |
| return; |
| } |
| |
| mpack_assert(mpack_tree_error(tree) == mpack_ok); |
| mpack_assert(tree->parser.level == 0); |
| tree->parser.state = mpack_tree_parse_state_parsed; |
| mpack_log("parsed tree of %i bytes, %i bytes left\n", (int)tree->size, (int)tree->parser.possible_nodes_left); |
| mpack_log("%i nodes in final page\n", (int)tree->parser.nodes_left); |
| } |
| |
| bool mpack_tree_try_parse(mpack_tree_t* tree) { |
| if (mpack_tree_error(tree) != mpack_ok) |
| return false; |
| |
| if (tree->parser.state != mpack_tree_parse_state_in_progress) |
| if (!mpack_tree_parse_start(tree)) |
| return false; |
| |
| if (!mpack_tree_continue_parsing(tree)) |
| return false; |
| |
| mpack_assert(mpack_tree_error(tree) == mpack_ok); |
| mpack_assert(tree->parser.level == 0); |
| tree->parser.state = mpack_tree_parse_state_parsed; |
| return true; |
| } |
| |
| |
| |
| /* |
| * Tree functions |
| */ |
| |
| mpack_node_t mpack_tree_root(mpack_tree_t* tree) { |
| if (mpack_tree_error(tree) != mpack_ok) |
| return mpack_tree_nil_node(tree); |
| |
| // We check that a tree was parsed successfully and assert if not. You must |
| // call mpack_tree_parse() (or mpack_tree_try_parse() with a success |
| // result) in order to access the root node. |
| if (tree->parser.state != mpack_tree_parse_state_parsed) { |
| mpack_break("Tree has not been parsed! " |
| "Did you call mpack_tree_parse() or mpack_tree_try_parse()?"); |
| mpack_tree_flag_error(tree, mpack_error_bug); |
| return mpack_tree_nil_node(tree); |
| } |
| |
| return mpack_node(tree, tree->root); |
| } |
| |
| static void mpack_tree_init_clear(mpack_tree_t* tree) { |
| mpack_memset(tree, 0, sizeof(*tree)); |
| tree->nil_node.type = mpack_type_nil; |
| tree->missing_node.type = mpack_type_missing; |
| tree->max_size = SIZE_MAX; |
| tree->max_nodes = SIZE_MAX; |
| } |
| |
| #ifdef MPACK_MALLOC |
| void mpack_tree_init_data(mpack_tree_t* tree, const char* data, size_t length) { |
| mpack_tree_init_clear(tree); |
| |
| MPACK_STATIC_ASSERT(MPACK_NODE_PAGE_SIZE >= sizeof(mpack_tree_page_t), |
| "MPACK_NODE_PAGE_SIZE is too small"); |
| |
| MPACK_STATIC_ASSERT(MPACK_PAGE_ALLOC_SIZE <= MPACK_NODE_PAGE_SIZE, |
| "incorrect page rounding?"); |
| |
| tree->data = data; |
| tree->data_length = length; |
| tree->pool = NULL; |
| tree->pool_count = 0; |
| tree->next = NULL; |
| |
| mpack_log("===========================\n"); |
| mpack_log("initializing tree with data of size %i\n", (int)length); |
| } |
| #endif |
| |
| void mpack_tree_init_pool(mpack_tree_t* tree, const char* data, size_t length, |
| mpack_node_data_t* node_pool, size_t node_pool_count) |
| { |
| mpack_tree_init_clear(tree); |
| #ifdef MPACK_MALLOC |
| tree->next = NULL; |
| #endif |
| |
| if (node_pool_count == 0) { |
| mpack_break("initial page has no nodes!"); |
| mpack_tree_flag_error(tree, mpack_error_bug); |
| return; |
| } |
| |
| tree->data = data; |
| tree->data_length = length; |
| tree->pool = node_pool; |
| tree->pool_count = node_pool_count; |
| |
| mpack_log("===========================\n"); |
| mpack_log("initializing tree with data of size %i and pool of count %i\n", |
| (int)length, (int)node_pool_count); |
| } |
| |
| void mpack_tree_init_error(mpack_tree_t* tree, mpack_error_t error) { |
| mpack_tree_init_clear(tree); |
| tree->error = error; |
| |
| mpack_log("===========================\n"); |
| mpack_log("initializing tree error state %i\n", (int)error); |
| } |
| |
| #ifdef MPACK_MALLOC |
| void mpack_tree_init_stream(mpack_tree_t* tree, mpack_tree_read_t read_fn, void* context, |
| size_t max_message_size, size_t max_message_nodes) { |
| mpack_tree_init_clear(tree); |
| |
| tree->read_fn = read_fn; |
| tree->context = context; |
| |
| mpack_tree_set_limits(tree, max_message_size, max_message_nodes); |
| tree->max_size = max_message_size; |
| tree->max_nodes = max_message_nodes; |
| |
| mpack_log("===========================\n"); |
| mpack_log("initializing tree with stream, max size %i max nodes %i\n", |
| (int)max_message_size, (int)max_message_nodes); |
| } |
| #endif |
| |
| void mpack_tree_set_limits(mpack_tree_t* tree, size_t max_message_size, size_t max_message_nodes) { |
| mpack_assert(max_message_size > 0); |
| mpack_assert(max_message_nodes > 0); |
| tree->max_size = max_message_size; |
| tree->max_nodes = max_message_nodes; |
| } |
| |
| #if MPACK_STDIO |
| typedef struct mpack_file_tree_t { |
| char* data; |
| size_t size; |
| char buffer[MPACK_BUFFER_SIZE]; |
| } mpack_file_tree_t; |
| |
| static void mpack_file_tree_teardown(mpack_tree_t* tree) { |
| mpack_file_tree_t* file_tree = (mpack_file_tree_t*)tree->context; |
| MPACK_FREE(file_tree->data); |
| MPACK_FREE(file_tree); |
| } |
| |
| static bool mpack_file_tree_read(mpack_tree_t* tree, mpack_file_tree_t* file_tree, FILE* file, size_t max_bytes) { |
| |
| // get the file size |
| errno = 0; |
| int error = 0; |
| fseek(file, 0, SEEK_END); |
| error |= errno; |
| long size = ftell(file); |
| error |= errno; |
| fseek(file, 0, SEEK_SET); |
| error |= errno; |
| |
| // check for errors |
| if (error != 0 || size < 0) { |
| mpack_tree_init_error(tree, mpack_error_io); |
| return false; |
| } |
| if (size == 0) { |
| mpack_tree_init_error(tree, mpack_error_invalid); |
| return false; |
| } |
| |
| // make sure the size is less than max_bytes |
| // (this mess exists to safely convert between long and size_t regardless of their widths) |
| if (max_bytes != 0 && (((uint64_t)LONG_MAX > (uint64_t)SIZE_MAX && size > (long)SIZE_MAX) || (size_t)size > max_bytes)) { |
| mpack_tree_init_error(tree, mpack_error_too_big); |
| return false; |
| } |
| |
| // allocate data |
| file_tree->data = (char*)MPACK_MALLOC((size_t)size); |
| if (file_tree->data == NULL) { |
| mpack_tree_init_error(tree, mpack_error_memory); |
| return false; |
| } |
| |
| // read the file |
| long total = 0; |
| while (total < size) { |
| size_t read = fread(file_tree->data + total, 1, (size_t)(size - total), file); |
| if (read <= 0) { |
| mpack_tree_init_error(tree, mpack_error_io); |
| MPACK_FREE(file_tree->data); |
| return false; |
| } |
| total += (long)read; |
| } |
| |
| file_tree->size = (size_t)size; |
| return true; |
| } |
| |
| static bool mpack_tree_file_check_max_bytes(mpack_tree_t* tree, size_t max_bytes) { |
| |
| // the C STDIO family of file functions use long (e.g. ftell) |
| if (max_bytes > LONG_MAX) { |
| mpack_break("max_bytes of %" PRIu64 " is invalid, maximum is LONG_MAX", (uint64_t)max_bytes); |
| mpack_tree_init_error(tree, mpack_error_bug); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static void mpack_tree_init_stdfile_noclose(mpack_tree_t* tree, FILE* stdfile, size_t max_bytes) { |
| |
| // allocate file tree |
| mpack_file_tree_t* file_tree = (mpack_file_tree_t*) MPACK_MALLOC(sizeof(mpack_file_tree_t)); |
| if (file_tree == NULL) { |
| mpack_tree_init_error(tree, mpack_error_memory); |
| return; |
| } |
| |
| // read all data |
| if (!mpack_file_tree_read(tree, file_tree, stdfile, max_bytes)) { |
| MPACK_FREE(file_tree); |
| return; |
| } |
| |
| mpack_tree_init_data(tree, file_tree->data, file_tree->size); |
| mpack_tree_set_context(tree, file_tree); |
| mpack_tree_set_teardown(tree, mpack_file_tree_teardown); |
| } |
| |
| void mpack_tree_init_stdfile(mpack_tree_t* tree, FILE* stdfile, size_t max_bytes, bool close_when_done) { |
| if (!mpack_tree_file_check_max_bytes(tree, max_bytes)) |
| return; |
| |
| mpack_tree_init_stdfile_noclose(tree, stdfile, max_bytes); |
| |
| if (close_when_done) |
| fclose(stdfile); |
| } |
| |
| void mpack_tree_init_filename(mpack_tree_t* tree, const char* filename, size_t max_bytes) { |
| if (!mpack_tree_file_check_max_bytes(tree, max_bytes)) |
| return; |
| |
| // open the file |
| FILE* file = fopen(filename, "rb"); |
| if (!file) { |
| mpack_tree_init_error(tree, mpack_error_io); |
| return; |
| } |
| |
| mpack_tree_init_stdfile(tree, file, max_bytes, true); |
| } |
| #endif |
| |
| mpack_error_t mpack_tree_destroy(mpack_tree_t* tree) { |
| mpack_tree_cleanup(tree); |
| |
| #ifdef MPACK_MALLOC |
| if (tree->buffer) |
| MPACK_FREE(tree->buffer); |
| #endif |
| |
| if (tree->teardown) |
| tree->teardown(tree); |
| tree->teardown = NULL; |
| |
| return tree->error; |
| } |
| |
| void mpack_tree_flag_error(mpack_tree_t* tree, mpack_error_t error) { |
| if (tree->error == mpack_ok) { |
| mpack_log("tree %p setting error %i: %s\n", (void*)tree, (int)error, mpack_error_to_string(error)); |
| tree->error = error; |
| if (tree->error_fn) |
| tree->error_fn(tree, error); |
| } |
| |
| } |
| |
| |
| |
| /* |
| * Node misc functions |
| */ |
| |
| void mpack_node_flag_error(mpack_node_t node, mpack_error_t error) { |
| mpack_tree_flag_error(node.tree, error); |
| } |
| |
| mpack_tag_t mpack_node_tag(mpack_node_t node) { |
| if (mpack_node_error(node) != mpack_ok) |
| return mpack_tag_nil(); |
| |
| mpack_tag_t tag = MPACK_TAG_ZERO; |
| |
| tag.type = node.data->type; |
| switch (node.data->type) { |
| case mpack_type_missing: |
| // If a node is missing, I don't know if it makes sense to ask for |
| // a tag for it. We'll return a missing tag to match the missing |
| // node I guess, but attempting to use the tag for anything (like |
| // writing it for example) will flag mpack_error_bug. |
| break; |
| case mpack_type_nil: break; |
| case mpack_type_bool: tag.v.b = node.data->value.b; break; |
| case mpack_type_float: tag.v.f = node.data->value.f; break; |
| case mpack_type_double: tag.v.d = node.data->value.d; break; |
| case mpack_type_int: tag.v.i = node.data->value.i; break; |
| case mpack_type_uint: tag.v.u = node.data->value.u; break; |
| |
| case mpack_type_str: tag.v.l = node.data->len; break; |
| case mpack_type_bin: tag.v.l = node.data->len; break; |
| |
| #if MPACK_EXTENSIONS |
| case mpack_type_ext: |
| tag.v.l = node.data->len; |
| tag.exttype = mpack_node_exttype_unchecked(node); |
| break; |
| #endif |
| |
| case mpack_type_array: tag.v.n = node.data->len; break; |
| case mpack_type_map: tag.v.n = node.data->len; break; |
| |
| default: |
| mpack_assert(0, "unrecognized type %i", (int)node.data->type); |
| break; |
| } |
| return tag; |
| } |
| |
| #if MPACK_DEBUG && MPACK_STDIO |
| static void mpack_node_print_element(mpack_node_t node, mpack_print_t* print, size_t depth) { |
| mpack_node_data_t* data = node.data; |
| size_t i,j; |
| switch (data->type) { |
| case mpack_type_str: |
| { |
| mpack_print_append_cstr(print, "\""); |
| const char* bytes = mpack_node_data_unchecked(node); |
| for (i = 0; i < data->len; ++i) { |
| char c = bytes[i]; |
| switch (c) { |
| case '\n': mpack_print_append_cstr(print, "\\n"); break; |
| case '\\': mpack_print_append_cstr(print, "\\\\"); break; |
| case '"': mpack_print_append_cstr(print, "\\\""); break; |
| default: mpack_print_append(print, &c, 1); break; |
| } |
| } |
| mpack_print_append_cstr(print, "\""); |
| } |
| break; |
| |
| case mpack_type_array: |
| mpack_print_append_cstr(print, "[\n"); |
| for (i = 0; i < data->len; ++i) { |
| for (j = 0; j < depth + 1; ++j) |
| mpack_print_append_cstr(print, " "); |
| mpack_node_print_element(mpack_node_array_at(node, i), print, depth + 1); |
| if (i != data->len - 1) |
| mpack_print_append_cstr(print, ","); |
| mpack_print_append_cstr(print, "\n"); |
| } |
| for (i = 0; i < depth; ++i) |
| mpack_print_append_cstr(print, " "); |
| mpack_print_append_cstr(print, "]"); |
| break; |
| |
| case mpack_type_map: |
| mpack_print_append_cstr(print, "{\n"); |
| for (i = 0; i < data->len; ++i) { |
| for (j = 0; j < depth + 1; ++j) |
| mpack_print_append_cstr(print, " "); |
| mpack_node_print_element(mpack_node_map_key_at(node, i), print, depth + 1); |
| mpack_print_append_cstr(print, ": "); |
| mpack_node_print_element(mpack_node_map_value_at(node, i), print, depth + 1); |
| if (i != data->len - 1) |
| mpack_print_append_cstr(print, ","); |
| mpack_print_append_cstr(print, "\n"); |
| } |
| for (i = 0; i < depth; ++i) |
| mpack_print_append_cstr(print, " "); |
| mpack_print_append_cstr(print, "}"); |
| break; |
| |
| default: |
| { |
| const char* prefix = NULL; |
| size_t prefix_length = 0; |
| if (mpack_node_type(node) == mpack_type_bin |
| #if MPACK_EXTENSIONS |
| || mpack_node_type(node) == mpack_type_ext |
| #endif |
| ) { |
| prefix = mpack_node_data(node); |
| prefix_length = mpack_node_data_len(node); |
| } |
| |
| char buf[256]; |
| mpack_tag_t tag = mpack_node_tag(node); |
| mpack_tag_debug_pseudo_json(tag, buf, sizeof(buf), prefix, prefix_length); |
| mpack_print_append_cstr(print, buf); |
| } |
| break; |
| } |
| } |
| |
| void mpack_node_print_to_buffer(mpack_node_t node, char* buffer, size_t buffer_size) { |
| if (buffer_size == 0) { |
| mpack_assert(false, "buffer size is zero!"); |
| return; |
| } |
| |
| mpack_print_t print; |
| mpack_memset(&print, 0, sizeof(print)); |
| print.buffer = buffer; |
| print.size = buffer_size; |
| mpack_node_print_element(node, &print, 0); |
| mpack_print_append(&print, "", 1); // null-terminator |
| mpack_print_flush(&print); |
| |
| // we always make sure there's a null-terminator at the end of the buffer |
| // in case we ran out of space. |
| print.buffer[print.size - 1] = '\0'; |
| } |
| |
| void mpack_node_print_to_callback(mpack_node_t node, mpack_print_callback_t callback, void* context) { |
| char buffer[1024]; |
| mpack_print_t print; |
| mpack_memset(&print, 0, sizeof(print)); |
| print.buffer = buffer; |
| print.size = sizeof(buffer); |
| print.callback = callback; |
| print.context = context; |
| mpack_node_print_element(node, &print, 0); |
| mpack_print_flush(&print); |
| } |
| |
| void mpack_node_print_to_file(mpack_node_t node, FILE* file) { |
| mpack_assert(file != NULL, "file is NULL"); |
| |
| char buffer[1024]; |
| mpack_print_t print; |
| mpack_memset(&print, 0, sizeof(print)); |
| print.buffer = buffer; |
| print.size = sizeof(buffer); |
| print.callback = &mpack_print_file_callback; |
| print.context = file; |
| |
| size_t depth = 2; |
| size_t i; |
| for (i = 0; i < depth; ++i) |
| mpack_print_append_cstr(&print, " "); |
| mpack_node_print_element(node, &print, depth); |
| mpack_print_append_cstr(&print, "\n"); |
| mpack_print_flush(&print); |
| } |
| #endif |
| |
| |
| |
| /* |
| * Node Value Functions |
| */ |
| |
| #if MPACK_EXTENSIONS |
| mpack_timestamp_t mpack_node_timestamp(mpack_node_t node) { |
| mpack_timestamp_t timestamp = {0, 0}; |
| |
| // we'll let mpack_node_exttype() do most checks |
| if (mpack_node_exttype(node) != MPACK_EXTTYPE_TIMESTAMP) { |
| mpack_log("exttype %i\n", mpack_node_exttype(node)); |
| mpack_node_flag_error(node, mpack_error_type); |
| return timestamp; |
| } |
| |
| const char* p = mpack_node_data_unchecked(node); |
| |
| switch (node.data->len) { |
| case 4: |
| timestamp.nanoseconds = 0; |
| timestamp.seconds = mpack_load_u32(p); |
| break; |
| |
| case 8: { |
| uint64_t value = mpack_load_u64(p); |
| timestamp.nanoseconds = (uint32_t)(value >> 34); |
| timestamp.seconds = value & ((MPACK_UINT64_C(1) << 34) - 1); |
| break; |
| } |
| |
| case 12: |
| timestamp.nanoseconds = mpack_load_u32(p); |
| timestamp.seconds = mpack_load_i64(p + 4); |
| break; |
| |
| default: |
| mpack_tree_flag_error(node.tree, mpack_error_invalid); |
| return timestamp; |
| } |
| |
| if (timestamp.nanoseconds > MPACK_TIMESTAMP_NANOSECONDS_MAX) { |
| mpack_tree_flag_error(node.tree, mpack_error_invalid); |
| mpack_timestamp_t zero = {0, 0}; |
| return zero; |
| } |
| |
| return timestamp; |
| } |
| |
| int64_t mpack_node_timestamp_seconds(mpack_node_t node) { |
| return mpack_node_timestamp(node).seconds; |
| } |
| |
| uint32_t mpack_node_timestamp_nanoseconds(mpack_node_t node) { |
| return mpack_node_timestamp(node).nanoseconds; |
| } |
| #endif |
| |
| |
| |
| /* |
| * Node Data Functions |
| */ |
| |
| void mpack_node_check_utf8(mpack_node_t node) { |
| if (mpack_node_error(node) != mpack_ok) |
| return; |
| mpack_node_data_t* data = node.data; |
| if (data->type != mpack_type_str || !mpack_utf8_check(mpack_node_data_unchecked(node), data->len)) |
| mpack_node_flag_error(node, mpack_error_type); |
| } |
| |
| void mpack_node_check_utf8_cstr(mpack_node_t node) { |
| if (mpack_node_error(node) != mpack_ok) |
| return; |
| mpack_node_data_t* data = node.data; |
| if (data->type != mpack_type_str || !mpack_utf8_check_no_null(mpack_node_data_unchecked(node), data->len)) |
| mpack_node_flag_error(node, mpack_error_type); |
| } |
| |
| size_t mpack_node_copy_data(mpack_node_t node, char* buffer, size_t bufsize) { |
| if (mpack_node_error(node) != mpack_ok) |
| return 0; |
| |
| mpack_assert(bufsize == 0 || buffer != NULL, "buffer is NULL for maximum of %i bytes", (int)bufsize); |
| |
| mpack_type_t type = node.data->type; |
| if (type != mpack_type_str && type != mpack_type_bin |
| #if MPACK_EXTENSIONS |
| && type != mpack_type_ext |
| #endif |
| ) { |
| mpack_node_flag_error(node, mpack_error_type); |
| return 0; |
| } |
| |
| if (node.data->len > bufsize) { |
| mpack_node_flag_error(node, mpack_error_too_big); |
| return 0; |
| } |
| |
| mpack_memcpy(buffer, mpack_node_data_unchecked(node), node.data->len); |
| return (size_t)node.data->len; |
| } |
| |
| size_t mpack_node_copy_utf8(mpack_node_t node, char* buffer, size_t bufsize) { |
| if (mpack_node_error(node) != mpack_ok) |
| return 0; |
| |
| mpack_assert(bufsize == 0 || buffer != NULL, "buffer is NULL for maximum of %i bytes", (int)bufsize); |
| |
| mpack_type_t type = node.data->type; |
| if (type != mpack_type_str) { |
| mpack_node_flag_error(node, mpack_error_type); |
| return 0; |
| } |
| |
| if (node.data->len > bufsize) { |
| mpack_node_flag_error(node, mpack_error_too_big); |
| return 0; |
| } |
| |
| if (!mpack_utf8_check(mpack_node_data_unchecked(node), node.data->len)) { |
| mpack_node_flag_error(node, mpack_error_type); |
| return 0; |
| } |
| |
| mpack_memcpy(buffer, mpack_node_data_unchecked(node), node.data->len); |
| return (size_t)node.data->len; |
| } |
| |
| void mpack_node_copy_cstr(mpack_node_t node, char* buffer, size_t bufsize) { |
| |
| // we can't break here because the error isn't recoverable; we |
| // have to add a null-terminator. |
| mpack_assert(buffer != NULL, "buffer is NULL"); |
| mpack_assert(bufsize >= 1, "buffer size is zero; you must have room for at least a null-terminator"); |
| |
| if (mpack_node_error(node) != mpack_ok) { |
| buffer[0] = '\0'; |
| return; |
| } |
| |
| if (node.data->type != mpack_type_str) { |
| buffer[0] = '\0'; |
| mpack_node_flag_error(node, mpack_error_type); |
| return; |
| } |
| |
| if (node.data->len > bufsize - 1) { |
| buffer[0] = '\0'; |
| mpack_node_flag_error(node, mpack_error_too_big); |
| return; |
| } |
| |
| if (!mpack_str_check_no_null(mpack_node_data_unchecked(node), node.data->len)) { |
| buffer[0] = '\0'; |
| mpack_node_flag_error(node, mpack_error_type); |
| return; |
| } |
| |
| mpack_memcpy(buffer, mpack_node_data_unchecked(node), node.data->len); |
| buffer[node.data->len] = '\0'; |
| } |
| |
| void mpack_node_copy_utf8_cstr(mpack_node_t node, char* buffer, size_t bufsize) { |
| |
| // we can't break here because the error isn't recoverable; we |
| // have to add a null-terminator. |
| mpack_assert(buffer != NULL, "buffer is NULL"); |
| mpack_assert(bufsize >= 1, "buffer size is zero; you must have room for at least a null-terminator"); |
| |
| if (mpack_node_error(node) != mpack_ok) { |
| buffer[0] = '\0'; |
| return; |
| } |
| |
| if (node.data->type != mpack_type_str) { |
| buffer[0] = '\0'; |
| mpack_node_flag_error(node, mpack_error_type); |
| return; |
| } |
| |
| if (node.data->len > bufsize - 1) { |
| buffer[0] = '\0'; |
| mpack_node_flag_error(node, mpack_error_too_big); |
| return; |
| } |
| |
| if (!mpack_utf8_check_no_null(mpack_node_data_unchecked(node), node.data->len)) { |
| buffer[0] = '\0'; |
| mpack_node_flag_error(node, mpack_error_type); |
| return; |
| } |
| |
| mpack_memcpy(buffer, mpack_node_data_unchecked(node), node.data->len); |
| buffer[node.data->len] = '\0'; |
| } |
| |
| #ifdef MPACK_MALLOC |
| char* mpack_node_data_alloc(mpack_node_t node, size_t maxlen) { |
| if (mpack_node_error(node) != mpack_ok) |
| return NULL; |
| |
| // make sure this is a valid data type |
| mpack_type_t type = node.data->type; |
| if (type != mpack_type_str && type != mpack_type_bin |
| #if MPACK_EXTENSIONS |
| && type != mpack_type_ext |
| #endif |
| ) { |
| mpack_node_flag_error(node, mpack_error_type); |
| return NULL; |
| } |
| |
| if (node.data->len > maxlen) { |
| mpack_node_flag_error(node, mpack_error_too_big); |
| return NULL; |
| } |
| |
| char* ret = (char*) MPACK_MALLOC((size_t)node.data->len); |
| if (ret == NULL) { |
| mpack_node_flag_error(node, mpack_error_memory); |
| return NULL; |
| } |
| |
| mpack_memcpy(ret, mpack_node_data_unchecked(node), node.data->len); |
| return ret; |
| } |
| |
| char* mpack_node_cstr_alloc(mpack_node_t node, size_t maxlen) { |
| if (mpack_node_error(node) != mpack_ok) |
| return NULL; |
| |
| // make sure maxlen makes sense |
| if (maxlen < 1) { |
| mpack_break("maxlen is zero; you must have room for at least a null-terminator"); |
| mpack_node_flag_error(node, mpack_error_bug); |
| return NULL; |
| } |
| |
| if (node.data->type != mpack_type_str) { |
| mpack_node_flag_error(node, mpack_error_type); |
| return NULL; |
| } |
| |
| if (node.data->len > maxlen - 1) { |
| mpack_node_flag_error(node, mpack_error_too_big); |
| return NULL; |
| } |
| |
| if (!mpack_str_check_no_null(mpack_node_data_unchecked(node), node.data->len)) { |
| mpack_node_flag_error(node, mpack_error_type); |
| return NULL; |
| } |
| |
| char* ret = (char*) MPACK_MALLOC((size_t)(node.data->len + 1)); |
| if (ret == NULL) { |
| mpack_node_flag_error(node, mpack_error_memory); |
| return NULL; |
| } |
| |
| mpack_memcpy(ret, mpack_node_data_unchecked(node), node.data->len); |
| ret[node.data->len] = '\0'; |
| return ret; |
| } |
| |
| char* mpack_node_utf8_cstr_alloc(mpack_node_t node, size_t maxlen) { |
| if (mpack_node_error(node) != mpack_ok) |
| return NULL; |
| |
| // make sure maxlen makes sense |
| if (maxlen < 1) { |
| mpack_break("maxlen is zero; you must have room for at least a null-terminator"); |
| mpack_node_flag_error(node, mpack_error_bug); |
| return NULL; |
| } |
| |
| if (node.data->type != mpack_type_str) { |
| mpack_node_flag_error(node, mpack_error_type); |
| return NULL; |
| } |
| |
| if (node.data->len > maxlen - 1) { |
| mpack_node_flag_error(node, mpack_error_too_big); |
| return NULL; |
| } |
| |
| if (!mpack_utf8_check_no_null(mpack_node_data_unchecked(node), node.data->len)) { |
| mpack_node_flag_error(node, mpack_error_type); |
| return NULL; |
| } |
| |
| char* ret = (char*) MPACK_MALLOC((size_t)(node.data->len + 1)); |
| if (ret == NULL) { |
| mpack_node_flag_error(node, mpack_error_memory); |
| return NULL; |
| } |
| |
| mpack_memcpy(ret, mpack_node_data_unchecked(node), node.data->len); |
| ret[node.data->len] = '\0'; |
| return ret; |
| } |
| #endif |
| |
| |
| /* |
| * Compound Node Functions |
| */ |
| |
| static mpack_node_data_t* mpack_node_map_int_impl(mpack_node_t node, int64_t num) { |
| if (mpack_node_error(node) != mpack_ok) |
| return NULL; |
| |
| if (node.data->type != mpack_type_map) { |
| mpack_node_flag_error(node, mpack_error_type); |
| return NULL; |
| } |
| |
| mpack_node_data_t* found = NULL; |
| |
| size_t i; |
| for (i = 0; i < node.data->len; ++i) { |
| mpack_node_data_t* key = mpack_node_child(node, i * 2); |
| |
| if ((key->type == mpack_type_int && key->value.i == num) || |
| (key->type == mpack_type_uint && num >= 0 && key->value.u == (uint64_t)num)) |
| { |
| if (found) { |
| mpack_node_flag_error(node, mpack_error_data); |
| return NULL; |
| } |
| found = mpack_node_child(node, i * 2 + 1); |
| } |
| } |
| |
| if (found) |
| return found; |
| |
| return NULL; |
| } |
| |
| static mpack_node_data_t* mpack_node_map_uint_impl(mpack_node_t node, uint64_t num) { |
| if (mpack_node_error(node) != mpack_ok) |
| return NULL; |
| |
| if (node.data->type != mpack_type_map) { |
| mpack_node_flag_error(node, mpack_error_type); |
| return NULL; |
| } |
| |
| mpack_node_data_t* found = NULL; |
| |
| size_t i; |
| for (i = 0; i < node.data->len; ++i) { |
| mpack_node_data_t* key = mpack_node_child(node, i * 2); |
| |
| if ((key->type == mpack_type_uint && key->value.u == num) || |
| (key->type == mpack_type_int && key->value.i >= 0 && (uint64_t)key->value.i == num)) |
| { |
| if (found) { |
| mpack_node_flag_error(node, mpack_error_data); |
| return NULL; |
| } |
| found = mpack_node_child(node, i * 2 + 1); |
| } |
| } |
| |
| if (found) |
| return found; |
| |
| return NULL; |
| } |
| |
| static mpack_node_data_t* mpack_node_map_str_impl(mpack_node_t node, const char* str, size_t length) { |
| if (mpack_node_error(node) != mpack_ok) |
| return NULL; |
| |
| mpack_assert(length == 0 || str != NULL, "str of length %i is NULL", (int)length); |
| |
| if (node.data->type != mpack_type_map) { |
| mpack_node_flag_error(node, mpack_error_type); |
| return NULL; |
| } |
| |
| mpack_tree_t* tree = node.tree; |
| mpack_node_data_t* found = NULL; |
| |
| size_t i; |
| for (i = 0; i < node.data->len; ++i) { |
| mpack_node_data_t* key = mpack_node_child(node, i * 2); |
| |
| if (key->type == mpack_type_str && key->len == length && |
| mpack_memcmp(str, mpack_node_data_unchecked(mpack_node(tree, key)), length) == 0) { |
| if (found) { |
| mpack_node_flag_error(node, mpack_error_data); |
| return NULL; |
| } |
| found = mpack_node_child(node, i * 2 + 1); |
| } |
| } |
| |
| if (found) |
| return found; |
| |
| return NULL; |
| } |
| |
| static mpack_node_t mpack_node_wrap_lookup(mpack_tree_t* tree, mpack_node_data_t* data) { |
| if (!data) { |
| if (tree->error == mpack_ok) |
| mpack_tree_flag_error(tree, mpack_error_data); |
| return mpack_tree_nil_node(tree); |
| } |
| return mpack_node(tree, data); |
| } |
| |
| static mpack_node_t mpack_node_wrap_lookup_optional(mpack_tree_t* tree, mpack_node_data_t* data) { |
| if (!data) { |
| if (tree->error == mpack_ok) |
| return mpack_tree_missing_node(tree); |
| return mpack_tree_nil_node(tree); |
| } |
| return mpack_node(tree, data); |
| } |
| |
| mpack_node_t mpack_node_map_int(mpack_node_t node, int64_t num) { |
| return mpack_node_wrap_lookup(node.tree, mpack_node_map_int_impl(node, num)); |
| } |
| |
| mpack_node_t mpack_node_map_int_optional(mpack_node_t node, int64_t num) { |
| return mpack_node_wrap_lookup_optional(node.tree, mpack_node_map_int_impl(node, num)); |
| } |
| |
| mpack_node_t mpack_node_map_uint(mpack_node_t node, uint64_t num) { |
| return mpack_node_wrap_lookup(node.tree, mpack_node_map_uint_impl(node, num)); |
| } |
| |
| mpack_node_t mpack_node_map_uint_optional(mpack_node_t node, uint64_t num) { |
| return mpack_node_wrap_lookup_optional(node.tree, mpack_node_map_uint_impl(node, num)); |
| } |
| |
| mpack_node_t mpack_node_map_str(mpack_node_t node, const char* str, size_t length) { |
| return mpack_node_wrap_lookup(node.tree, mpack_node_map_str_impl(node, str, length)); |
| } |
| |
| mpack_node_t mpack_node_map_str_optional(mpack_node_t node, const char* str, size_t length) { |
| return mpack_node_wrap_lookup_optional(node.tree, mpack_node_map_str_impl(node, str, length)); |
| } |
| |
| mpack_node_t mpack_node_map_cstr(mpack_node_t node, const char* cstr) { |
| mpack_assert(cstr != NULL, "cstr is NULL"); |
| return mpack_node_map_str(node, cstr, mpack_strlen(cstr)); |
| } |
| |
| mpack_node_t mpack_node_map_cstr_optional(mpack_node_t node, const char* cstr) { |
| mpack_assert(cstr != NULL, "cstr is NULL"); |
| return mpack_node_map_str_optional(node, cstr, mpack_strlen(cstr)); |
| } |
| |
| bool mpack_node_map_contains_int(mpack_node_t node, int64_t num) { |
| return mpack_node_map_int_impl(node, num) != NULL; |
| } |
| |
| bool mpack_node_map_contains_uint(mpack_node_t node, uint64_t num) { |
| return mpack_node_map_uint_impl(node, num) != NULL; |
| } |
| |
| bool mpack_node_map_contains_str(mpack_node_t node, const char* str, size_t length) { |
| return mpack_node_map_str_impl(node, str, length) != NULL; |
| } |
| |
| bool mpack_node_map_contains_cstr(mpack_node_t node, const char* cstr) { |
| mpack_assert(cstr != NULL, "cstr is NULL"); |
| return mpack_node_map_contains_str(node, cstr, mpack_strlen(cstr)); |
| } |
| |
| size_t mpack_node_enum_optional(mpack_node_t node, const char* strings[], size_t count) { |
| if (mpack_node_error(node) != mpack_ok) |
| return count; |
| |
| // the value is only recognized if it is a string |
| if (mpack_node_type(node) != mpack_type_str) |
| return count; |
| |
| // fetch the string |
| const char* key = mpack_node_str(node); |
| size_t keylen = mpack_node_strlen(node); |
| mpack_assert(mpack_node_error(node) == mpack_ok, "these should not fail"); |
| |
| // find what key it matches |
| size_t i; |
| for (i = 0; i < count; ++i) { |
| const char* other = strings[i]; |
| size_t otherlen = mpack_strlen(other); |
| if (keylen == otherlen && mpack_memcmp(key, other, keylen) == 0) |
| return i; |
| } |
| |
| // no matches |
| return count; |
| } |
| |
| size_t mpack_node_enum(mpack_node_t node, const char* strings[], size_t count) { |
| size_t value = mpack_node_enum_optional(node, strings, count); |
| if (value == count) |
| mpack_node_flag_error(node, mpack_error_type); |
| return value; |
| } |
| |
| mpack_type_t mpack_node_type(mpack_node_t node) { |
| if (mpack_node_error(node) != mpack_ok) |
| return mpack_type_nil; |
| return node.data->type; |
| } |
| |
| bool mpack_node_is_nil(mpack_node_t node) { |
| if (mpack_node_error(node) != mpack_ok) { |
| // All nodes are treated as nil nodes when we are in error. |
| return true; |
| } |
| return node.data->type == mpack_type_nil; |
| } |
| |
| bool mpack_node_is_missing(mpack_node_t node) { |
| if (mpack_node_error(node) != mpack_ok) { |
| // errors still return nil nodes, not missing nodes. |
| return false; |
| } |
| return node.data->type == mpack_type_missing; |
| } |
| |
| void mpack_node_nil(mpack_node_t node) { |
| if (mpack_node_error(node) != mpack_ok) |
| return; |
| if (node.data->type != mpack_type_nil) |
| mpack_node_flag_error(node, mpack_error_type); |
| } |
| |
| void mpack_node_missing(mpack_node_t node) { |
| if (mpack_node_error(node) != mpack_ok) |
| return; |
| if (node.data->type != mpack_type_missing) |
| mpack_node_flag_error(node, mpack_error_type); |
| } |
| |
| bool mpack_node_bool(mpack_node_t node) { |
| if (mpack_node_error(node) != mpack_ok) |
| return false; |
| |
| if (node.data->type == mpack_type_bool) |
| return node.data->value.b; |
| |
| mpack_node_flag_error(node, mpack_error_type); |
| return false; |
| } |
| |
| void mpack_node_true(mpack_node_t node) { |
| if (mpack_node_bool(node) != true) |
| mpack_node_flag_error(node, mpack_error_type); |
| } |
| |
| void mpack_node_false(mpack_node_t node) { |
| if (mpack_node_bool(node) != false) |
| mpack_node_flag_error(node, mpack_error_type); |
| } |
| |
| uint8_t mpack_node_u8(mpack_node_t node) { |
| if (mpack_node_error(node) != mpack_ok) |
| return 0; |
| |
| if (node.data->type == mpack_type_uint) { |
| if (node.data->value.u <= MPACK_UINT8_MAX) |
| return (uint8_t)node.data->value.u; |
| } else if (node.data->type == mpack_type_int) { |
| if (node.data->value.i >= 0 && node.data->value.i <= MPACK_UINT8_MAX) |
| return (uint8_t)node.data->value.i; |
| } |
| |
| mpack_node_flag_error(node, mpack_error_type); |
| return 0; |
| } |
| |
| int8_t mpack_node_i8(mpack_node_t node) { |
| if (mpack_node_error(node) != mpack_ok) |
| return 0; |
| |
| if (node.data->type == mpack_type_uint) { |
| if (node.data->value.u <= MPACK_INT8_MAX) |
| return (int8_t)node.data->value.u; |
| } else if (node.data->type == mpack_type_int) { |
| if (node.data->value.i >= MPACK_INT8_MIN && node.data->value.i <= MPACK_INT8_MAX) |
| return (int8_t)node.data->value.i; |
| } |
| |
| mpack_node_flag_error(node, mpack_error_type); |
| return 0; |
| } |
| |
| uint16_t mpack_node_u16(mpack_node_t node) { |
| if (mpack_node_error(node) != mpack_ok) |
| return 0; |
| |
| if (node.data->type == mpack_type_uint) { |
| if (node.data->value.u <= MPACK_UINT16_MAX) |
| return (uint16_t)node.data->value.u; |
| } else if (node.data->type == mpack_type_int) { |
| if (node.data->value.i >= 0 && node.data->value.i <= MPACK_UINT16_MAX) |
| return (uint16_t)node.data->value.i; |
| } |
| |
| mpack_node_flag_error(node, mpack_error_type); |
| return 0; |
| } |
| |
| int16_t mpack_node_i16(mpack_node_t node) { |
| if (mpack_node_error(node) != mpack_ok) |
| return 0; |
| |
| if (node.data->type == mpack_type_uint) { |
| if (node.data->value.u <= MPACK_INT16_MAX) |
| return (int16_t)node.data->value.u; |
| } else if (node.data->type == mpack_type_int) { |
| if (node.data->value.i >= MPACK_INT16_MIN && node.data->value.i <= MPACK_INT16_MAX) |
| return (int16_t)node.data->value.i; |
| } |
| |
| mpack_node_flag_error(node, mpack_error_type); |
| return 0; |
| } |
| |
| uint32_t mpack_node_u32(mpack_node_t node) { |
| if (mpack_node_error(node) != mpack_ok) |
| return 0; |
| |
| if (node.data->type == mpack_type_uint) { |
| if (node.data->value.u <= MPACK_UINT32_MAX) |
| return (uint32_t)node.data->value.u; |
| } else if (node.data->type == mpack_type_int) { |
| if (node.data->value.i >= 0 && node.data->value.i <= MPACK_UINT32_MAX) |
| return (uint32_t)node.data->value.i; |
| } |
| |
| mpack_node_flag_error(node, mpack_error_type); |
| return 0; |
| } |
| |
| int32_t mpack_node_i32(mpack_node_t node) { |
| if (mpack_node_error(node) != mpack_ok) |
| return 0; |
| |
| if (node.data->type == mpack_type_uint) { |
| if (node.data->value.u <= MPACK_INT32_MAX) |
| return (int32_t)node.data->value.u; |
| } else if (node.data->type == mpack_type_int) { |
| if (node.data->value.i >= MPACK_INT32_MIN && node.data->value.i <= MPACK_INT32_MAX) |
| return (int32_t)node.data->value.i; |
| } |
| |
| mpack_node_flag_error(node, mpack_error_type); |
| return 0; |
| } |
| |
| uint64_t mpack_node_u64(mpack_node_t node) { |
| if (mpack_node_error(node) != mpack_ok) |
| return 0; |
| |
| if (node.data->type == mpack_type_uint) { |
| return node.data->value.u; |
| } else if (node.data->type == mpack_type_int) { |
| if (node.data->value.i >= 0) |
| return (uint64_t)node.data->value.i; |
| } |
| |
| mpack_node_flag_error(node, mpack_error_type); |
| return 0; |
| } |
| |
| int64_t mpack_node_i64(mpack_node_t node) { |
| if (mpack_node_error(node) != mpack_ok) |
| return 0; |
| |
| if (node.data->type == mpack_type_uint) { |
| if (node.data->value.u <= (uint64_t)MPACK_INT64_MAX) |
| return (int64_t)node.data->value.u; |
| } else if (node.data->type == mpack_type_int) { |
| return node.data->value.i; |
| } |
| |
| mpack_node_flag_error(node, mpack_error_type); |
| return 0; |
| } |
| |
| unsigned int mpack_node_uint(mpack_node_t node) { |
| |
| // This should be true at compile-time, so this just wraps the 32-bit function. |
| if (sizeof(unsigned int) == 4) |
| return (unsigned int)mpack_node_u32(node); |
| |
| // Otherwise we use u64 and check the range. |
| uint64_t val = mpack_node_u64(node); |
| if (val <= MPACK_UINT_MAX) |
| return (unsigned int)val; |
| |
| mpack_node_flag_error(node, mpack_error_type); |
| return 0; |
| } |
| |
| int mpack_node_int(mpack_node_t node) { |
| |
| // This should be true at compile-time, so this just wraps the 32-bit function. |
| if (sizeof(int) == 4) |
| return (int)mpack_node_i32(node); |
| |
| // Otherwise we use i64 and check the range. |
| int64_t val = mpack_node_i64(node); |
| if (val >= MPACK_INT_MIN && val <= MPACK_INT_MAX) |
| return (int)val; |
| |
| mpack_node_flag_error(node, mpack_error_type); |
| return 0; |
| } |
| |
| #if MPACK_FLOAT |
| float mpack_node_float(mpack_node_t node) { |
| if (mpack_node_error(node) != mpack_ok) |
| return 0.0f; |
| |
| if (node.data->type == mpack_type_uint) |
| return (float)node.data->value.u; |
| if (node.data->type == mpack_type_int) |
| return (float)node.data->value.i; |
| if (node.data->type == mpack_type_float) |
| return node.data->value.f; |
| |
| if (node.data->type == mpack_type_double) { |
| #if MPACK_DOUBLE |
| return (float)node.data->value.d; |
| #else |
| return mpack_shorten_raw_double_to_float(node.data->value.d); |
| #endif |
| } |
| |
| mpack_node_flag_error(node, mpack_error_type); |
| return 0.0f; |
| } |
| #endif |
| |
| #if MPACK_DOUBLE |
| double mpack_node_double(mpack_node_t node) { |
| if (mpack_node_error(node) != mpack_ok) |
| return 0.0; |
| |
| if (node.data->type == mpack_type_uint) |
| return (double)node.data->value.u; |
| else if (node.data->type == mpack_type_int) |
| return (double)node.data->value.i; |
| else if (node.data->type == mpack_type_float) |
| return (double)node.data->value.f; |
| else if (node.data->type == mpack_type_double) |
| return node.data->value.d; |
| |
| mpack_node_flag_error(node, mpack_error_type); |
| return 0.0; |
| } |
| #endif |
| |
| #if MPACK_FLOAT |
| float mpack_node_float_strict(mpack_node_t node) { |
| if (mpack_node_error(node) != mpack_ok) |
| return 0.0f; |
| |
| if (node.data->type == mpack_type_float) |
| return node.data->value.f; |
| |
| mpack_node_flag_error(node, mpack_error_type); |
| return 0.0f; |
| } |
| #endif |
| |
| #if MPACK_DOUBLE |
| double mpack_node_double_strict(mpack_node_t node) { |
| if (mpack_node_error(node) != mpack_ok) |
| return 0.0; |
| |
| if (node.data->type == mpack_type_float) |
| return (double)node.data->value.f; |
| else if (node.data->type == mpack_type_double) |
| return node.data->value.d; |
| |
| mpack_node_flag_error(node, mpack_error_type); |
| return 0.0; |
| } |
| #endif |
| |
| #if !MPACK_FLOAT |
| uint32_t mpack_node_raw_float(mpack_node_t node) { |
| if (mpack_node_error(node) != mpack_ok) |
| return 0; |
| |
| if (node.data->type == mpack_type_float) |
| return node.data->value.f; |
| |
| mpack_node_flag_error(node, mpack_error_type); |
| return 0; |
| } |
| #endif |
| |
| #if !MPACK_DOUBLE |
| uint64_t mpack_node_raw_double(mpack_node_t node) { |
| if (mpack_node_error(node) != mpack_ok) |
| return 0; |
| |
| if (node.data->type == mpack_type_double) |
| return node.data->value.d; |
| |
| mpack_node_flag_error(node, mpack_error_type); |
| return 0; |
| } |
| #endif |
| |
| #if MPACK_EXTENSIONS |
| int8_t mpack_node_exttype(mpack_node_t node) { |
| if (mpack_node_error(node) != mpack_ok) |
| return 0; |
| |
| if (node.data->type == mpack_type_ext) |
| return mpack_node_exttype_unchecked(node); |
| |
| mpack_node_flag_error(node, mpack_error_type); |
| return 0; |
| } |
| #endif |
| |
| uint32_t mpack_node_data_len(mpack_node_t node) { |
| if (mpack_node_error(node) != mpack_ok) |
| return 0; |
| |
| mpack_type_t type = node.data->type; |
| if (type == mpack_type_str || type == mpack_type_bin |
| #if MPACK_EXTENSIONS |
| || type == mpack_type_ext |
| #endif |
| ) |
| return (uint32_t)node.data->len; |
| |
| mpack_node_flag_error(node, mpack_error_type); |
| return 0; |
| } |
| |
| size_t mpack_node_strlen(mpack_node_t node) { |
| if (mpack_node_error(node) != mpack_ok) |
| return 0; |
| |
| if (node.data->type == mpack_type_str) |
| return (size_t)node.data->len; |
| |
| mpack_node_flag_error(node, mpack_error_type); |
| return 0; |
| } |
| |
| const char* mpack_node_str(mpack_node_t node) { |
| if (mpack_node_error(node) != mpack_ok) |
| return NULL; |
| |
| mpack_type_t type = node.data->type; |
| if (type == mpack_type_str) |
| return mpack_node_data_unchecked(node); |
| |
| mpack_node_flag_error(node, mpack_error_type); |
| return NULL; |
| } |
| |
| const char* mpack_node_data(mpack_node_t node) { |
| if (mpack_node_error(node) != mpack_ok) |
| return NULL; |
| |
| mpack_type_t type = node.data->type; |
| if (type == mpack_type_str || type == mpack_type_bin |
| #if MPACK_EXTENSIONS |
| || type == mpack_type_ext |
| #endif |
| ) |
| return mpack_node_data_unchecked(node); |
| |
| mpack_node_flag_error(node, mpack_error_type); |
| return NULL; |
| } |
| |
| const char* mpack_node_bin_data(mpack_node_t node) { |
| if (mpack_node_error(node) != mpack_ok) |
| return NULL; |
| |
| if (node.data->type == mpack_type_bin) |
| return mpack_node_data_unchecked(node); |
| |
| mpack_node_flag_error(node, mpack_error_type); |
| return NULL; |
| } |
| |
| size_t mpack_node_bin_size(mpack_node_t node) { |
| if (mpack_node_error(node) != mpack_ok) |
| return 0; |
| |
| if (node.data->type == mpack_type_bin) |
| return (size_t)node.data->len; |
| |
| mpack_node_flag_error(node, mpack_error_type); |
| return 0; |
| } |
| |
| size_t mpack_node_array_length(mpack_node_t node) { |
| if (mpack_node_error(node) != mpack_ok) |
| return 0; |
| |
| if (node.data->type != mpack_type_array) { |
| mpack_node_flag_error(node, mpack_error_type); |
| return 0; |
| } |
| |
| return (size_t)node.data->len; |
| } |
| |
| mpack_node_t mpack_node_array_at(mpack_node_t node, size_t index) { |
| if (mpack_node_error(node) != mpack_ok) |
| return mpack_tree_nil_node(node.tree); |
| |
| if (node.data->type != mpack_type_array) { |
| mpack_node_flag_error(node, mpack_error_type); |
| return mpack_tree_nil_node(node.tree); |
| } |
| |
| if (index >= node.data->len) { |
| mpack_node_flag_error(node, mpack_error_data); |
| return mpack_tree_nil_node(node.tree); |
| } |
| |
| return mpack_node(node.tree, mpack_node_child(node, index)); |
| } |
| |
| size_t mpack_node_map_count(mpack_node_t node) { |
| if (mpack_node_error(node) != mpack_ok) |
| return 0; |
| |
| if (node.data->type != mpack_type_map) { |
| mpack_node_flag_error(node, mpack_error_type); |
| return 0; |
| } |
| |
| return node.data->len; |
| } |
| |
| // internal node map lookup |
| static mpack_node_t mpack_node_map_at(mpack_node_t node, size_t index, size_t offset) { |
| if (mpack_node_error(node) != mpack_ok) |
| return mpack_tree_nil_node(node.tree); |
| |
| if (node.data->type != mpack_type_map) { |
| mpack_node_flag_error(node, mpack_error_type); |
| return mpack_tree_nil_node(node.tree); |
| } |
| |
| if (index >= node.data->len) { |
| mpack_node_flag_error(node, mpack_error_data); |
| return mpack_tree_nil_node(node.tree); |
| } |
| |
| return mpack_node(node.tree, mpack_node_child(node, index * 2 + offset)); |
| } |
| |
| mpack_node_t mpack_node_map_key_at(mpack_node_t node, size_t index) { |
| return mpack_node_map_at(node, index, 0); |
| } |
| |
| mpack_node_t mpack_node_map_value_at(mpack_node_t node, size_t index) { |
| return mpack_node_map_at(node, index, 1); |
| } |
| |
| #endif |
| |
| } // namespace wpi |
| MPACK_SILENCE_WARNINGS_END |