| // Copyright (c) FIRST and other WPILib contributors. |
| // Open Source Software; you can modify and/or share it under the terms of |
| // the WPILib BSD license file in the root directory of this project. |
| |
| #include "wpi/timestamp.h" |
| |
| #include <atomic> |
| #include <optional> |
| |
| #ifdef __FRC_ROBORIO__ |
| #include <stdint.h> |
| #pragma GCC diagnostic push |
| #pragma GCC diagnostic ignored "-Wpedantic" |
| #pragma GCC diagnostic ignored "-Wignored-qualifiers" |
| #include <FRC_FPGA_ChipObject/RoboRIO_FRC_ChipObject_Aliases.h> |
| #include <FRC_FPGA_ChipObject/nRoboRIO_FPGANamespace/tHMB.h> |
| #pragma GCC diagnostic pop |
| namespace fpga { |
| using namespace nFPGA; |
| using namespace nRoboRIO_FPGANamespace; |
| } // namespace fpga |
| #include <memory> |
| |
| #include "dlfcn.h" |
| #endif |
| |
| #ifdef _WIN32 |
| #include <windows.h> |
| |
| #include <cassert> |
| #include <exception> |
| #else |
| #include <chrono> |
| #endif |
| |
| #include <cstdio> |
| |
| #include <fmt/format.h> |
| |
| #ifdef __FRC_ROBORIO__ |
| namespace { |
| static constexpr const char hmbName[] = "HMB_0_RAM"; |
| static constexpr int timestampLowerOffset = 0xF0; |
| static constexpr int timestampUpperOffset = 0xF1; |
| static constexpr int hmbTimestampOffset = 5; // 5 us offset |
| using NiFpga_CloseHmbFunc = NiFpga_Status (*)(const NiFpga_Session session, |
| const char* memoryName); |
| using NiFpga_OpenHmbFunc = NiFpga_Status (*)(const NiFpga_Session session, |
| const char* memoryName, |
| size_t* memorySize, |
| void** virtualAddress); |
| using NiFpga_FindRegisterFunc = NiFpga_Status (*)(NiFpga_Session session, |
| const char* registerName, |
| uint32_t* registerOffset); |
| using NiFpga_ReadU32Func = NiFpga_Status (*)(NiFpga_Session session, |
| uint32_t indicator, |
| uint32_t* value); |
| using NiFpga_WriteU32Func = NiFpga_Status (*)(NiFpga_Session session, |
| uint32_t control, uint32_t value); |
| static void dlcloseWrapper(void* handle) { |
| dlclose(handle); |
| } |
| static std::atomic_flag hmbInitialized = ATOMIC_FLAG_INIT; |
| static std::atomic_flag nowUseDefaultOnFailure = ATOMIC_FLAG_INIT; |
| struct HMBLowLevel { |
| ~HMBLowLevel() { Reset(); } |
| bool Configure(const NiFpga_Session session) { |
| int32_t status = 0; |
| niFpga.reset(dlopen("libNiFpga.so", RTLD_LAZY)); |
| if (!niFpga) { |
| fmt::print(stderr, "Could not open libNiFpga.so\n"); |
| return false; |
| } |
| NiFpga_OpenHmbFunc openHmb = reinterpret_cast<NiFpga_OpenHmbFunc>( |
| dlsym(niFpga.get(), "NiFpgaDll_OpenHmb")); |
| closeHmb = reinterpret_cast<NiFpga_CloseHmbFunc>( |
| dlsym(niFpga.get(), "NiFpgaDll_CloseHmb")); |
| NiFpga_FindRegisterFunc findRegister = |
| reinterpret_cast<NiFpga_FindRegisterFunc>( |
| dlsym(niFpga.get(), "NiFpgaDll_FindRegister")); |
| NiFpga_ReadU32Func readU32 = reinterpret_cast<NiFpga_ReadU32Func>( |
| dlsym(niFpga.get(), "NiFpgaDll_ReadU32")); |
| NiFpga_WriteU32Func writeU32 = reinterpret_cast<NiFpga_WriteU32Func>( |
| dlsym(niFpga.get(), "NiFpgaDll_WriteU32")); |
| if (openHmb == nullptr || closeHmb == nullptr || findRegister == nullptr || |
| writeU32 == nullptr || readU32 == nullptr) { |
| fmt::print(stderr, "Could not find HMB symbols in libNiFpga.so\n"); |
| niFpga = nullptr; |
| return false; |
| } |
| uint32_t hmbConfigRegister = 0; |
| status = findRegister(session, "HMB.Config", &hmbConfigRegister); |
| if (status != 0) { |
| fmt::print(stderr, "Failed to find HMB.Config register, status code {}\n", |
| status); |
| closeHmb = nullptr; |
| niFpga = nullptr; |
| return false; |
| } |
| size_t hmbBufferSize = 0; |
| status = |
| openHmb(session, hmbName, &hmbBufferSize, |
| reinterpret_cast<void**>(const_cast<uint32_t**>(&hmbBuffer))); |
| if (status != 0) { |
| fmt::print(stderr, "Failed to open HMB, status code {}\n", status); |
| closeHmb = nullptr; |
| niFpga = nullptr; |
| return false; |
| } |
| fpga::tHMB::tConfig cfg; |
| uint32_t read = 0; |
| status = readU32(session, hmbConfigRegister, &read); |
| cfg.value = read; |
| cfg.Enables_Timestamp = 1; |
| status = writeU32(session, hmbConfigRegister, cfg.value); |
| hmbSession.emplace(session); |
| hmbInitialized.test_and_set(); |
| return true; |
| } |
| void Reset() { |
| hmbInitialized.clear(); |
| std::optional<NiFpga_Session> oldSesh; |
| hmbSession.swap(oldSesh); |
| if (oldSesh.has_value()) { |
| closeHmb(oldSesh.value(), hmbName); |
| niFpga = nullptr; |
| } |
| } |
| std::optional<NiFpga_Session> hmbSession; |
| NiFpga_CloseHmbFunc closeHmb = nullptr; |
| volatile uint32_t* hmbBuffer = nullptr; |
| std::unique_ptr<void, decltype(&dlcloseWrapper)> niFpga{nullptr, |
| dlcloseWrapper}; |
| }; |
| struct HMBHolder { |
| void Configure(void* col, std::unique_ptr<fpga::tHMB> hmbObject) { |
| hmb = std::move(hmbObject); |
| chipObjectLibrary.reset(col); |
| if (!lowLevel.Configure(hmb->getSystemInterface()->getHandle())) { |
| hmb = nullptr; |
| chipObjectLibrary = nullptr; |
| } |
| } |
| void Reset() { |
| lowLevel.Reset(); |
| hmb = nullptr; |
| chipObjectLibrary = nullptr; |
| } |
| HMBLowLevel lowLevel; |
| std::unique_ptr<fpga::tHMB> hmb; |
| std::unique_ptr<void, decltype(&dlcloseWrapper)> chipObjectLibrary{ |
| nullptr, dlcloseWrapper}; |
| }; |
| static HMBHolder hmb; |
| } // namespace |
| #endif |
| |
| // offset in microseconds |
| static uint64_t time_since_epoch() noexcept { |
| #ifdef _WIN32 |
| FILETIME ft; |
| uint64_t tmpres = 0; |
| // 100-nanosecond intervals since January 1, 1601 (UTC) |
| // which means 0.1 us |
| GetSystemTimePreciseAsFileTime(&ft); |
| tmpres |= ft.dwHighDateTime; |
| tmpres <<= 32; |
| tmpres |= ft.dwLowDateTime; |
| tmpres /= 10u; // convert to us |
| // January 1st, 1970 - January 1st, 1601 UTC ~ 369 years |
| // or 11644473600000000 us |
| static const uint64_t deltaepoch = 11644473600000000ull; |
| tmpres -= deltaepoch; |
| return tmpres; |
| #else |
| // 1-us intervals |
| return std::chrono::duration_cast<std::chrono::microseconds>( |
| std::chrono::system_clock::now().time_since_epoch()) |
| .count(); |
| #endif |
| } |
| |
| static uint64_t timestamp() noexcept { |
| #ifdef _WIN32 |
| LARGE_INTEGER li; |
| QueryPerformanceCounter(&li); |
| // there is an imprecision with the initial value, |
| // but what matters is that timestamps are monotonic and consistent |
| return static_cast<uint64_t>(li.QuadPart); |
| #else |
| // 1-us intervals |
| return std::chrono::duration_cast<std::chrono::microseconds>( |
| std::chrono::steady_clock::now().time_since_epoch()) |
| .count(); |
| #endif |
| } |
| |
| #ifdef _WIN32 |
| static uint64_t update_frequency() { |
| LARGE_INTEGER li; |
| if (!QueryPerformanceFrequency(&li) || !li.QuadPart) { |
| // log something |
| std::terminate(); |
| } |
| return static_cast<uint64_t>(li.QuadPart); |
| } |
| #endif |
| |
| static const uint64_t zerotime_val = time_since_epoch(); |
| static const uint64_t offset_val = timestamp(); |
| #ifdef _WIN32 |
| static const uint64_t frequency_val = update_frequency(); |
| #endif |
| |
| uint64_t wpi::NowDefault() { |
| #ifdef _WIN32 |
| assert(offset_val > 0u); |
| assert(frequency_val > 0u); |
| uint64_t delta = timestamp() - offset_val; |
| // because the frequency is in update per seconds, we have to multiply the |
| // delta by 1,000,000 |
| uint64_t delta_in_us = delta * 1000000ull / frequency_val; |
| return delta_in_us + zerotime_val; |
| #else |
| return zerotime_val + timestamp() - offset_val; |
| #endif |
| } |
| |
| static std::atomic<uint64_t (*)()> now_impl{wpi::NowDefault}; |
| |
| void wpi::impl::SetupNowDefaultOnRio() { |
| #ifdef __FRC_ROBORIO__ |
| nowUseDefaultOnFailure.test_and_set(); |
| #endif |
| } |
| |
| #ifdef __FRC_ROBORIO__ |
| template <> |
| void wpi::impl::SetupNowRio(void* chipObjectLibrary, |
| std::unique_ptr<fpga::tHMB> hmbObject) { |
| if (!hmbInitialized.test()) { |
| hmb.Configure(chipObjectLibrary, std::move(hmbObject)); |
| } |
| } |
| #endif |
| |
| void wpi::impl::SetupNowRio(uint32_t session) { |
| #ifdef __FRC_ROBORIO__ |
| if (!hmbInitialized.test()) { |
| hmb.lowLevel.Configure(session); |
| } |
| #endif |
| } |
| |
| void wpi::impl::ShutdownNowRio() { |
| #ifdef __FRC_ROBORIO__ |
| hmb.Reset(); |
| #endif |
| } |
| |
| void wpi::SetNowImpl(uint64_t (*func)(void)) { |
| now_impl = func ? func : NowDefault; |
| } |
| |
| uint64_t wpi::Now() { |
| #ifdef __FRC_ROBORIO__ |
| // Same code as HAL_GetFPGATime() |
| if (!hmbInitialized.test()) { |
| if (nowUseDefaultOnFailure.test()) { |
| return timestamp() - offset_val; |
| } else { |
| fmt::print( |
| stderr, |
| "FPGA not yet configured in wpi::Now(). Time will not be correct.\n"); |
| std::fflush(stderr); |
| return 1; |
| } |
| } |
| |
| asm("dmb"); |
| uint64_t upper1 = hmb.lowLevel.hmbBuffer[timestampUpperOffset]; |
| asm("dmb"); |
| uint32_t lower = hmb.lowLevel.hmbBuffer[timestampLowerOffset]; |
| asm("dmb"); |
| uint64_t upper2 = hmb.lowLevel.hmbBuffer[timestampUpperOffset]; |
| |
| if (upper1 != upper2) { |
| // Rolled over between the lower call, reread lower |
| asm("dmb"); |
| lower = hmb.lowLevel.hmbBuffer[timestampLowerOffset]; |
| } |
| // 5 is added here because the time to write from the FPGA |
| // to the HMB buffer is longer then the time to read |
| // from the time register. This would cause register based |
| // timestamps to be ahead of HMB timestamps, which could |
| // be very bad. |
| return (upper2 << 32) + lower + hmbTimestampOffset; |
| #else |
| return (now_impl.load())(); |
| #endif |
| } |
| |
| uint64_t wpi::GetSystemTime() { |
| return time_since_epoch(); |
| } |
| |
| extern "C" { |
| |
| void WPI_Impl_SetupNowUseDefaultOnRio(void) { |
| return wpi::impl::SetupNowDefaultOnRio(); |
| } |
| |
| void WPI_Impl_SetupNowRioWithSession(uint32_t session) { |
| return wpi::impl::SetupNowRio(session); |
| } |
| |
| void WPI_Impl_ShutdownNowRio(void) { |
| return wpi::impl::ShutdownNowRio(); |
| } |
| |
| uint64_t WPI_NowDefault(void) { |
| return wpi::NowDefault(); |
| } |
| |
| void WPI_SetNowImpl(uint64_t (*func)(void)) { |
| wpi::SetNowImpl(func); |
| } |
| |
| uint64_t WPI_Now(void) { |
| return wpi::Now(); |
| } |
| |
| uint64_t WPI_GetSystemTime(void) { |
| return wpi::GetSystemTime(); |
| } |
| |
| } // extern "C" |