blob: c811964afd6f7945e119ac5d230126fe9149370e [file] [log] [blame]
// Copyright (c) FIRST and other WPILib contributors.
// Open Source Software; you can modify and/or share it under the terms of
// the WPILib BSD license file in the root directory of this project.
#include "wpi/timestamp.h"
#include <atomic>
#include <optional>
#ifdef __FRC_ROBORIO__
#include <stdint.h>
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpedantic"
#pragma GCC diagnostic ignored "-Wignored-qualifiers"
#include <FRC_FPGA_ChipObject/RoboRIO_FRC_ChipObject_Aliases.h>
#include <FRC_FPGA_ChipObject/nRoboRIO_FPGANamespace/tHMB.h>
#pragma GCC diagnostic pop
namespace fpga {
using namespace nFPGA;
using namespace nRoboRIO_FPGANamespace;
} // namespace fpga
#include <memory>
#include "dlfcn.h"
#endif
#ifdef _WIN32
#include <windows.h>
#include <cassert>
#include <exception>
#else
#include <chrono>
#endif
#include <cstdio>
#include <fmt/format.h>
#ifdef __FRC_ROBORIO__
namespace {
static constexpr const char hmbName[] = "HMB_0_RAM";
static constexpr int timestampLowerOffset = 0xF0;
static constexpr int timestampUpperOffset = 0xF1;
static constexpr int hmbTimestampOffset = 5; // 5 us offset
using NiFpga_CloseHmbFunc = NiFpga_Status (*)(const NiFpga_Session session,
const char* memoryName);
using NiFpga_OpenHmbFunc = NiFpga_Status (*)(const NiFpga_Session session,
const char* memoryName,
size_t* memorySize,
void** virtualAddress);
using NiFpga_FindRegisterFunc = NiFpga_Status (*)(NiFpga_Session session,
const char* registerName,
uint32_t* registerOffset);
using NiFpga_ReadU32Func = NiFpga_Status (*)(NiFpga_Session session,
uint32_t indicator,
uint32_t* value);
using NiFpga_WriteU32Func = NiFpga_Status (*)(NiFpga_Session session,
uint32_t control, uint32_t value);
static void dlcloseWrapper(void* handle) {
dlclose(handle);
}
static std::atomic_flag hmbInitialized = ATOMIC_FLAG_INIT;
static std::atomic_flag nowUseDefaultOnFailure = ATOMIC_FLAG_INIT;
struct HMBLowLevel {
~HMBLowLevel() { Reset(); }
bool Configure(const NiFpga_Session session) {
int32_t status = 0;
niFpga.reset(dlopen("libNiFpga.so", RTLD_LAZY));
if (!niFpga) {
fmt::print(stderr, "Could not open libNiFpga.so\n");
return false;
}
NiFpga_OpenHmbFunc openHmb = reinterpret_cast<NiFpga_OpenHmbFunc>(
dlsym(niFpga.get(), "NiFpgaDll_OpenHmb"));
closeHmb = reinterpret_cast<NiFpga_CloseHmbFunc>(
dlsym(niFpga.get(), "NiFpgaDll_CloseHmb"));
NiFpga_FindRegisterFunc findRegister =
reinterpret_cast<NiFpga_FindRegisterFunc>(
dlsym(niFpga.get(), "NiFpgaDll_FindRegister"));
NiFpga_ReadU32Func readU32 = reinterpret_cast<NiFpga_ReadU32Func>(
dlsym(niFpga.get(), "NiFpgaDll_ReadU32"));
NiFpga_WriteU32Func writeU32 = reinterpret_cast<NiFpga_WriteU32Func>(
dlsym(niFpga.get(), "NiFpgaDll_WriteU32"));
if (openHmb == nullptr || closeHmb == nullptr || findRegister == nullptr ||
writeU32 == nullptr || readU32 == nullptr) {
fmt::print(stderr, "Could not find HMB symbols in libNiFpga.so\n");
niFpga = nullptr;
return false;
}
uint32_t hmbConfigRegister = 0;
status = findRegister(session, "HMB.Config", &hmbConfigRegister);
if (status != 0) {
fmt::print(stderr, "Failed to find HMB.Config register, status code {}\n",
status);
closeHmb = nullptr;
niFpga = nullptr;
return false;
}
size_t hmbBufferSize = 0;
status =
openHmb(session, hmbName, &hmbBufferSize,
reinterpret_cast<void**>(const_cast<uint32_t**>(&hmbBuffer)));
if (status != 0) {
fmt::print(stderr, "Failed to open HMB, status code {}\n", status);
closeHmb = nullptr;
niFpga = nullptr;
return false;
}
fpga::tHMB::tConfig cfg;
uint32_t read = 0;
status = readU32(session, hmbConfigRegister, &read);
cfg.value = read;
cfg.Enables_Timestamp = 1;
status = writeU32(session, hmbConfigRegister, cfg.value);
hmbSession.emplace(session);
hmbInitialized.test_and_set();
return true;
}
void Reset() {
hmbInitialized.clear();
std::optional<NiFpga_Session> oldSesh;
hmbSession.swap(oldSesh);
if (oldSesh.has_value()) {
closeHmb(oldSesh.value(), hmbName);
niFpga = nullptr;
}
}
std::optional<NiFpga_Session> hmbSession;
NiFpga_CloseHmbFunc closeHmb = nullptr;
volatile uint32_t* hmbBuffer = nullptr;
std::unique_ptr<void, decltype(&dlcloseWrapper)> niFpga{nullptr,
dlcloseWrapper};
};
struct HMBHolder {
void Configure(void* col, std::unique_ptr<fpga::tHMB> hmbObject) {
hmb = std::move(hmbObject);
chipObjectLibrary.reset(col);
if (!lowLevel.Configure(hmb->getSystemInterface()->getHandle())) {
hmb = nullptr;
chipObjectLibrary = nullptr;
}
}
void Reset() {
lowLevel.Reset();
hmb = nullptr;
chipObjectLibrary = nullptr;
}
HMBLowLevel lowLevel;
std::unique_ptr<fpga::tHMB> hmb;
std::unique_ptr<void, decltype(&dlcloseWrapper)> chipObjectLibrary{
nullptr, dlcloseWrapper};
};
static HMBHolder hmb;
} // namespace
#endif
// offset in microseconds
static uint64_t time_since_epoch() noexcept {
#ifdef _WIN32
FILETIME ft;
uint64_t tmpres = 0;
// 100-nanosecond intervals since January 1, 1601 (UTC)
// which means 0.1 us
GetSystemTimePreciseAsFileTime(&ft);
tmpres |= ft.dwHighDateTime;
tmpres <<= 32;
tmpres |= ft.dwLowDateTime;
tmpres /= 10u; // convert to us
// January 1st, 1970 - January 1st, 1601 UTC ~ 369 years
// or 11644473600000000 us
static const uint64_t deltaepoch = 11644473600000000ull;
tmpres -= deltaepoch;
return tmpres;
#else
// 1-us intervals
return std::chrono::duration_cast<std::chrono::microseconds>(
std::chrono::system_clock::now().time_since_epoch())
.count();
#endif
}
static uint64_t timestamp() noexcept {
#ifdef _WIN32
LARGE_INTEGER li;
QueryPerformanceCounter(&li);
// there is an imprecision with the initial value,
// but what matters is that timestamps are monotonic and consistent
return static_cast<uint64_t>(li.QuadPart);
#else
// 1-us intervals
return std::chrono::duration_cast<std::chrono::microseconds>(
std::chrono::steady_clock::now().time_since_epoch())
.count();
#endif
}
#ifdef _WIN32
static uint64_t update_frequency() {
LARGE_INTEGER li;
if (!QueryPerformanceFrequency(&li) || !li.QuadPart) {
// log something
std::terminate();
}
return static_cast<uint64_t>(li.QuadPart);
}
#endif
static const uint64_t zerotime_val = time_since_epoch();
static const uint64_t offset_val = timestamp();
#ifdef _WIN32
static const uint64_t frequency_val = update_frequency();
#endif
uint64_t wpi::NowDefault() {
#ifdef _WIN32
assert(offset_val > 0u);
assert(frequency_val > 0u);
uint64_t delta = timestamp() - offset_val;
// because the frequency is in update per seconds, we have to multiply the
// delta by 1,000,000
uint64_t delta_in_us = delta * 1000000ull / frequency_val;
return delta_in_us + zerotime_val;
#else
return zerotime_val + timestamp() - offset_val;
#endif
}
static std::atomic<uint64_t (*)()> now_impl{wpi::NowDefault};
void wpi::impl::SetupNowDefaultOnRio() {
#ifdef __FRC_ROBORIO__
nowUseDefaultOnFailure.test_and_set();
#endif
}
#ifdef __FRC_ROBORIO__
template <>
void wpi::impl::SetupNowRio(void* chipObjectLibrary,
std::unique_ptr<fpga::tHMB> hmbObject) {
if (!hmbInitialized.test()) {
hmb.Configure(chipObjectLibrary, std::move(hmbObject));
}
}
#endif
void wpi::impl::SetupNowRio(uint32_t session) {
#ifdef __FRC_ROBORIO__
if (!hmbInitialized.test()) {
hmb.lowLevel.Configure(session);
}
#endif
}
void wpi::impl::ShutdownNowRio() {
#ifdef __FRC_ROBORIO__
hmb.Reset();
#endif
}
void wpi::SetNowImpl(uint64_t (*func)(void)) {
now_impl = func ? func : NowDefault;
}
uint64_t wpi::Now() {
#ifdef __FRC_ROBORIO__
// Same code as HAL_GetFPGATime()
if (!hmbInitialized.test()) {
if (nowUseDefaultOnFailure.test()) {
return timestamp() - offset_val;
} else {
fmt::print(
stderr,
"FPGA not yet configured in wpi::Now(). Time will not be correct.\n");
std::fflush(stderr);
return 1;
}
}
asm("dmb");
uint64_t upper1 = hmb.lowLevel.hmbBuffer[timestampUpperOffset];
asm("dmb");
uint32_t lower = hmb.lowLevel.hmbBuffer[timestampLowerOffset];
asm("dmb");
uint64_t upper2 = hmb.lowLevel.hmbBuffer[timestampUpperOffset];
if (upper1 != upper2) {
// Rolled over between the lower call, reread lower
asm("dmb");
lower = hmb.lowLevel.hmbBuffer[timestampLowerOffset];
}
// 5 is added here because the time to write from the FPGA
// to the HMB buffer is longer then the time to read
// from the time register. This would cause register based
// timestamps to be ahead of HMB timestamps, which could
// be very bad.
return (upper2 << 32) + lower + hmbTimestampOffset;
#else
return (now_impl.load())();
#endif
}
uint64_t wpi::GetSystemTime() {
return time_since_epoch();
}
extern "C" {
void WPI_Impl_SetupNowUseDefaultOnRio(void) {
return wpi::impl::SetupNowDefaultOnRio();
}
void WPI_Impl_SetupNowRioWithSession(uint32_t session) {
return wpi::impl::SetupNowRio(session);
}
void WPI_Impl_ShutdownNowRio(void) {
return wpi::impl::ShutdownNowRio();
}
uint64_t WPI_NowDefault(void) {
return wpi::NowDefault();
}
void WPI_SetNowImpl(uint64_t (*func)(void)) {
wpi::SetNowImpl(func);
}
uint64_t WPI_Now(void) {
return wpi::Now();
}
uint64_t WPI_GetSystemTime(void) {
return wpi::GetSystemTime();
}
} // extern "C"