| #include "frc971/control_loops/drivetrain/trajectory.h" |
| |
| #include <chrono> |
| |
| #include "Eigen/Dense" |
| #include "frc971/control_loops/c2d.h" |
| #include "frc971/control_loops/dlqr.h" |
| #include "frc971/control_loops/drivetrain/distance_spline.h" |
| #include "frc971/control_loops/drivetrain/drivetrain_config.h" |
| #include "frc971/control_loops/hybrid_state_feedback_loop.h" |
| #include "frc971/control_loops/state_feedback_loop.h" |
| |
| namespace frc971 { |
| namespace control_loops { |
| namespace drivetrain { |
| |
| Trajectory::Trajectory(const DistanceSpline *spline, |
| const DrivetrainConfig<double> &config, double vmax, |
| int num_distance) |
| : spline_(spline), |
| velocity_drivetrain_(::std::unique_ptr< |
| StateFeedbackLoop<2, 2, 2, double, StateFeedbackHybridPlant<2, 2, 2>, |
| HybridKalman<2, 2, 2>>>( |
| new StateFeedbackLoop<2, 2, 2, double, |
| StateFeedbackHybridPlant<2, 2, 2>, |
| HybridKalman<2, 2, 2>>( |
| config.make_hybrid_drivetrain_velocity_loop()))), |
| robot_radius_l_(config.robot_radius), |
| robot_radius_r_(config.robot_radius), |
| longitudinal_acceleration_(3.0), |
| lateral_acceleration_(2.0), |
| Tlr_to_la_((::Eigen::Matrix<double, 2, 2>() << 0.5, 0.5, |
| -1.0 / (robot_radius_l_ + robot_radius_r_), |
| 1.0 / (robot_radius_l_ + robot_radius_r_)).finished()), |
| Tla_to_lr_(Tlr_to_la_.inverse()), |
| plan_(num_distance == 0 |
| ? ::std::max(100, static_cast<int>(spline_->length() / 0.0025)) |
| : num_distance, |
| vmax), |
| plan_segment_type_(plan_.size(), SegmentType::VELOCITY_LIMITED) {} |
| |
| void Trajectory::LateralAccelPass() { |
| for (size_t i = 0; i < plan_.size(); ++i) { |
| const double distance = Distance(i); |
| const double velocity_limit = LateralVelocityCurvature(distance); |
| if (velocity_limit < plan_[i]) { |
| plan_[i] = velocity_limit; |
| plan_segment_type_[i] = CURVATURE_LIMITED; |
| } |
| } |
| } |
| |
| void Trajectory::VoltageFeasibilityPass(VoltageLimit limit_type) { |
| for (size_t i = 0; i < plan_.size(); ++i) { |
| const double distance = Distance(i); |
| const double velocity_limit = VoltageVelocityLimit(distance, limit_type); |
| if (velocity_limit < plan_[i]) { |
| plan_[i] = velocity_limit; |
| plan_segment_type_[i] = VOLTAGE_LIMITED; |
| } |
| } |
| } |
| |
| double Trajectory::BestAcceleration(double x, double v, bool backwards) { |
| ::Eigen::Matrix<double, 2, 1> K3; |
| ::Eigen::Matrix<double, 2, 1> K4; |
| ::Eigen::Matrix<double, 2, 1> K5; |
| K345(x, &K3, &K4, &K5); |
| |
| // Now, solve for all a's and find the best one which meets our criteria. |
| const ::Eigen::Matrix<double, 2, 1> C = K3 * v * v + K4 * v; |
| double min_voltage_accel = ::std::numeric_limits<double>::infinity(); |
| double max_voltage_accel = -min_voltage_accel; |
| for (const double a : {(voltage_limit_ - C(0, 0)) / K5(0, 0), |
| (voltage_limit_ - C(1, 0)) / K5(1, 0), |
| (-voltage_limit_ - C(0, 0)) / K5(0, 0), |
| (-voltage_limit_ - C(1, 0)) / K5(1, 0)}) { |
| const ::Eigen::Matrix<double, 2, 1> U = K5 * a + K3 * v * v + K4 * v; |
| if ((U.array().abs() < voltage_limit_ + 1e-6).all()) { |
| min_voltage_accel = ::std::min(a, min_voltage_accel); |
| max_voltage_accel = ::std::max(a, max_voltage_accel); |
| } |
| } |
| double best_accel = backwards ? min_voltage_accel : max_voltage_accel; |
| |
| double min_friction_accel, max_friction_accel; |
| FrictionLngAccelLimits(x, v, &min_friction_accel, &max_friction_accel); |
| if (backwards) { |
| best_accel = ::std::max(best_accel, min_friction_accel); |
| } else { |
| best_accel = ::std::min(best_accel, max_friction_accel); |
| } |
| |
| // Ideally, the max would never be less than the min, but due to the way that |
| // the runge kutta solver works, it sometimes ticks over the edge. |
| if (max_friction_accel < min_friction_accel) { |
| VLOG(1) << "At x " << x << " v " << v << " min fric acc " |
| << min_friction_accel << " max fric accel " << max_friction_accel; |
| } |
| if (best_accel < min_voltage_accel || best_accel > max_voltage_accel) { |
| LOG(WARNING) << "Viable friction limits and viable voltage limits do not " |
| "overlap (x: " << x << ", v: " << v |
| << ", backwards: " << backwards |
| << ") best_accel = " << best_accel << ", min voltage " |
| << min_voltage_accel << ", max voltage " << max_voltage_accel |
| << " min friction " << min_friction_accel << " max friction " |
| << max_friction_accel << "."; |
| |
| // Don't actually do anything--this will just result in attempting to drive |
| // higher voltages thatn we have available. In practice, that'll probably |
| // work out fine. |
| } |
| |
| return best_accel; |
| } |
| |
| double Trajectory::LateralVelocityCurvature(double distance) const { |
| // To calculate these constraints, we first note that: |
| // wheel accels = K2 * v_robot' + K1 * v_robot^2 |
| // All that this logic does is solve for v_robot, leaving v_robot' free, |
| // assuming that the wheels are at their limits. |
| // To do this, we: |
| // |
| // 1) Determine what the wheel accels will be at the limit--since we have |
| // two free variables (v_robot, v_robot'), both wheels will be at their |
| // limits--if in a sufficiently tight turn (such that the signs of the |
| // coefficients of K2 are different), then the wheels will be accelerating |
| // in opposite directions; otherwise, they accelerate in the same direction. |
| // The magnitude of these per-wheel accelerations is a function of velocity, |
| // so it must also be solved for. |
| // |
| // 2) Eliminate that v_robot' term (since we don't care |
| // about it) by multiplying be a "K2prime" term (where K2prime * K2 = 0) on |
| // both sides of the equation. |
| // |
| // 3) Solving the relatively tractable remaining equation, which is |
| // basically just grouping all the terms together in one spot and taking the |
| // 4th root of everything. |
| const double dtheta = spline_->DTheta(distance); |
| const ::Eigen::Matrix<double, 1, 2> K2prime = |
| K2(dtheta).transpose() * |
| (::Eigen::Matrix<double, 2, 2>() << 0, 1, -1, 0).finished(); |
| // Calculate whether the wheels are spinning in opposite directions. |
| const bool opposites = K2prime(0) * K2prime(1) < 0; |
| const ::Eigen::Matrix<double, 2, 1> K1calc = K1(spline_->DDTheta(distance)); |
| const double lat_accel_squared = |
| ::std::pow(dtheta / lateral_acceleration_, 2); |
| const double curvature_change_term = |
| (K2prime * K1calc).value() / |
| (K2prime * |
| (::Eigen::Matrix<double, 2, 1>() << 1.0, (opposites ? -1.0 : 1.0)) |
| .finished() * |
| longitudinal_acceleration_) |
| .value(); |
| const double vel_inv = ::std::sqrt( |
| ::std::sqrt(::std::pow(curvature_change_term, 2) + lat_accel_squared)); |
| if (vel_inv == 0.0) { |
| return ::std::numeric_limits<double>::infinity(); |
| } |
| return 1.0 / vel_inv; |
| } |
| |
| void Trajectory::FrictionLngAccelLimits(double x, double v, double *min_accel, |
| double *max_accel) const { |
| // First, calculate the max longitudinal acceleration that can be achieved |
| // by either wheel given the friction elliipse that we have. |
| const double lateral_acceleration = v * v * spline_->DDXY(x).norm(); |
| const double max_wheel_lng_accel_squared = |
| 1.0 - ::std::pow(lateral_acceleration / lateral_acceleration_, 2.0); |
| if (max_wheel_lng_accel_squared < 0.0) { |
| VLOG(1) << "Something (probably Runge-Kutta) queried invalid velocity " << v |
| << " at distance " << x; |
| // If we encounter this, it means that the Runge-Kutta has attempted to |
| // sample points a bit past the edge of the friction boundary. If so, we |
| // gradually ramp the min/max accels to be more and more incorrect (note |
| // how min_accel > max_accel if we reach this case) to avoid causing any |
| // numerical issues. |
| *min_accel = |
| ::std::sqrt(-max_wheel_lng_accel_squared) * longitudinal_acceleration_; |
| *max_accel = -*min_accel; |
| return; |
| } |
| *min_accel = -::std::numeric_limits<double>::infinity(); |
| *max_accel = ::std::numeric_limits<double>::infinity(); |
| |
| // Calculate max/min accelerations by calculating what the robots overall |
| // longitudinal acceleration would be if each wheel were running at the max |
| // forwards/backwards longitudinal acceleration. |
| const double max_wheel_lng_accel = |
| longitudinal_acceleration_ * ::std::sqrt(max_wheel_lng_accel_squared); |
| const ::Eigen::Matrix<double, 2, 1> K1v2 = K1(spline_->DDTheta(x)) * v * v; |
| const ::Eigen::Matrix<double, 2, 1> K2inv = |
| K2(spline_->DTheta(x)).cwiseInverse(); |
| // Store the accelerations of the robot corresponding to each wheel being at |
| // the max/min acceleration. The first coefficient in each vector |
| // corresponds to the left wheel, the second to the right wheel. |
| const ::Eigen::Matrix<double, 2, 1> accels1 = |
| K2inv.array() * (-K1v2.array() + max_wheel_lng_accel); |
| const ::Eigen::Matrix<double, 2, 1> accels2 = |
| K2inv.array() * (-K1v2.array() - max_wheel_lng_accel); |
| |
| // If either term is non-finite, that suggests that a term of K2 is zero |
| // (which is physically possible when turning such that one wheel is |
| // stationary), so just ignore that side of the drivetrain. |
| if (::std::isfinite(accels1(0))) { |
| // The inner max/min in this case determines which of the two cases (+ or |
| // - acceleration on the left wheel) we care about--in a sufficiently |
| // tight turning radius, the left hweel may be accelerating backwards when |
| // the robot as a whole accelerates forwards. We then use that |
| // acceleration to bound the min/max accel. |
| *min_accel = ::std::max(*min_accel, ::std::min(accels1(0), accels2(0))); |
| *max_accel = ::std::min(*max_accel, ::std::max(accels1(0), accels2(0))); |
| } |
| // Same logic as previous if-statement, but for the right wheel. |
| if (::std::isfinite(accels1(1))) { |
| *min_accel = ::std::max(*min_accel, ::std::min(accels1(1), accels2(1))); |
| *max_accel = ::std::min(*max_accel, ::std::max(accels1(1), accels2(1))); |
| } |
| } |
| |
| double Trajectory::VoltageVelocityLimit( |
| double distance, VoltageLimit limit_type, |
| Eigen::Matrix<double, 2, 1> *constraint_voltages) const { |
| // To sketch an outline of the math going on here, we start with the basic |
| // dynamics of the robot along the spline: |
| // K2 * v_robot' + K1 * v_robot^2 = A * K2 * v_robot + B * U |
| // We need to determine the maximum v_robot given constrained U and free |
| // v_robot'. |
| // Similarly to the friction constraints, we accomplish this by first |
| // multiplying by a K2prime term to eliminate the v_robot' term. |
| // As with the friction constraints, we also know that the limits will occur |
| // when both sides of the drivetrain are driven at their max magnitude |
| // voltages, although they may be driven at different signs. |
| // Once we determine whether the voltages match signs, we still have to |
| // consider both possible pairings (technically we could probably |
| // predetermine which pairing, e.g. +/- or -/+, we acre about, but we don't |
| // need to). |
| // |
| // For each pairing, we then get to solve a quadratic formula for the robot |
| // velocity at those voltages. This gives us up to 4 solutions, of which |
| // up to 3 will give us positive velocities; each solution velocity |
| // corresponds to a transition from feasibility to infeasibility, where a |
| // velocity of zero is always feasible, and there will always be 0, 1, or 3 |
| // positive solutions. Among the positive solutions, we take both the min |
| // and the max--the min will be the highest velocity such that all |
| // velocities between zero and that velocity are valid; the max will be |
| // the highest feasible velocity. Which we return depends on what the |
| // limit_type is. |
| // |
| // Sketching the actual math: |
| // K2 * v_robot' + K1 * v_robot^2 = A * K2 * v_robot +/- B * U_max |
| // K2prime * K1 * v_robot^2 = K2prime * (A * K2 * v_robot +/- B * U_max) |
| // a v_robot^2 + b v_robot +/- c = 0 |
| const ::Eigen::Matrix<double, 2, 2> B = |
| velocity_drivetrain_->plant().coefficients().B_continuous; |
| const double dtheta = spline_->DTheta(distance); |
| const ::Eigen::Matrix<double, 2, 1> BinvK2 = B.inverse() * K2(dtheta); |
| // Because voltages can actually impact *both* wheels, in order to determine |
| // whether the voltages will have opposite signs, we need to use B^-1 * K2. |
| const bool opposite_voltages = BinvK2(0) * BinvK2(1) > 0.0; |
| const ::Eigen::Matrix<double, 1, 2> K2prime = |
| K2(dtheta).transpose() * |
| (::Eigen::Matrix<double, 2, 2>() << 0, 1, -1, 0).finished(); |
| const double a = K2prime * K1(spline_->DDTheta(distance)); |
| const double b = -K2prime * |
| velocity_drivetrain_->plant().coefficients().A_continuous * |
| K2(dtheta); |
| const ::Eigen::Matrix<double, 1, 2> c_coeff = -K2prime * B; |
| // Calculate the "positive" version of the voltage limits we will use. |
| const ::Eigen::Matrix<double, 2, 1> abs_volts = |
| voltage_limit_ * |
| (::Eigen::Matrix<double, 2, 1>() << 1.0, (opposite_voltages ? -1.0 : 1.0)) |
| .finished(); |
| |
| double min_valid_vel = ::std::numeric_limits<double>::infinity(); |
| if (limit_type == VoltageLimit::kAggressive) { |
| min_valid_vel = 0.0; |
| } |
| // Iterate over both possibilites for +/- voltage, and solve the quadratic |
| // formula. For every positive solution, adjust the velocity limit |
| // appropriately. |
| for (const double sign : {1.0, -1.0}) { |
| const ::Eigen::Matrix<double, 2, 1> U = sign * abs_volts; |
| const double prev_vel = min_valid_vel; |
| const double c = c_coeff * U; |
| const double determinant = b * b - 4 * a * c; |
| if (a == 0) { |
| // If a == 0, that implies we are on a constant curvature path, in which |
| // case we just have b * v + c = 0. |
| // Note that if -b * c > 0.0, then vel will be greater than zero and b |
| // will be non-zero. |
| if (-b * c > 0.0) { |
| const double vel = -c / b; |
| if (limit_type == VoltageLimit::kConservative) { |
| min_valid_vel = ::std::min(min_valid_vel, vel); |
| } else { |
| min_valid_vel = ::std::max(min_valid_vel, vel); |
| } |
| } else if (b == 0) { |
| // If a and b are zero, then we are travelling in a straight line and |
| // have no voltage-based velocity constraints. |
| min_valid_vel = ::std::numeric_limits<double>::infinity(); |
| } |
| } else if (determinant > 0) { |
| const double sqrt_determinant = ::std::sqrt(determinant); |
| const double high_vel = (-b + sqrt_determinant) / (2.0 * a); |
| const double low_vel = (-b - sqrt_determinant) / (2.0 * a); |
| if (low_vel > 0) { |
| if (limit_type == VoltageLimit::kConservative) { |
| min_valid_vel = ::std::min(min_valid_vel, low_vel); |
| } else { |
| min_valid_vel = ::std::max(min_valid_vel, low_vel); |
| } |
| } |
| if (high_vel > 0) { |
| if (limit_type == VoltageLimit::kConservative) { |
| min_valid_vel = ::std::min(min_valid_vel, high_vel); |
| } else { |
| min_valid_vel = ::std::max(min_valid_vel, high_vel); |
| } |
| } |
| } else if (determinant == 0 && -b * a > 0) { |
| const double vel = -b / (2.0 * a); |
| if (vel > 0.0) { |
| if (limit_type == VoltageLimit::kConservative) { |
| min_valid_vel = ::std::min(min_valid_vel, vel); |
| } else { |
| min_valid_vel = ::std::max(min_valid_vel, vel); |
| } |
| } |
| } |
| if (constraint_voltages != nullptr && prev_vel != min_valid_vel) { |
| *constraint_voltages = U; |
| } |
| } |
| return min_valid_vel; |
| } |
| |
| void Trajectory::ForwardPass() { |
| plan_[0] = 0.0; |
| const double delta_distance = Distance(1) - Distance(0); |
| for (size_t i = 0; i < plan_.size() - 1; ++i) { |
| const double distance = Distance(i); |
| |
| // Integrate our acceleration forward one step. |
| const double new_plan_velocity = IntegrateAccelForDistance( |
| [this](double x, double v) { return ForwardAcceleration(x, v); }, |
| plan_[i], distance, delta_distance); |
| |
| if (new_plan_velocity <= plan_[i + 1]) { |
| plan_[i + 1] = new_plan_velocity; |
| plan_segment_type_[i] = SegmentType::ACCELERATION_LIMITED; |
| } |
| } |
| } |
| |
| void Trajectory::BackwardPass() { |
| const double delta_distance = Distance(0) - Distance(1); |
| plan_.back() = 0.0; |
| for (size_t i = plan_.size() - 1; i > 0; --i) { |
| const double distance = Distance(i); |
| |
| // Integrate our deceleration back one step. |
| const double new_plan_velocity = IntegrateAccelForDistance( |
| [this](double x, double v) { return BackwardAcceleration(x, v); }, |
| plan_[i], distance, delta_distance); |
| |
| if (new_plan_velocity <= plan_[i - 1]) { |
| plan_[i - 1] = new_plan_velocity; |
| plan_segment_type_[i - 1] = SegmentType::DECELERATION_LIMITED; |
| } |
| } |
| } |
| |
| ::Eigen::Matrix<double, 3, 1> Trajectory::FFAcceleration(double distance) { |
| if (distance < 0.0) { |
| // Make sure we don't end up off the beginning of the curve. |
| distance = 0.0; |
| } else if (distance > length()) { |
| // Make sure we don't end up off the end of the curve. |
| distance = length(); |
| } |
| const size_t before_index = DistanceToSegment(distance); |
| const size_t after_index = before_index + 1; |
| |
| const double before_distance = Distance(before_index); |
| const double after_distance = Distance(after_index); |
| |
| // And then also make sure we aren't curvature limited. |
| const double vcurvature = LateralVelocityCurvature(distance); |
| |
| double acceleration; |
| double velocity; |
| // TODO(james): While technically correct for sufficiently small segment |
| // steps, this method of switching between limits has a tendency to produce |
| // sudden jumps in acceelrations, which is undesirable. |
| switch (plan_segment_type_[DistanceToSegment(distance)]) { |
| case SegmentType::VELOCITY_LIMITED: |
| acceleration = 0.0; |
| velocity = (plan_[before_index] + plan_[after_index]) / 2.0; |
| // TODO(austin): Accelerate or decelerate until we hit the limit in the |
| // time slice. Otherwise our acceleration will be lying for this slice. |
| // Do note, we've got small slices so the effect will be small. |
| break; |
| case SegmentType::CURVATURE_LIMITED: |
| velocity = vcurvature; |
| FrictionLngAccelLimits(distance, velocity, &acceleration, &acceleration); |
| break; |
| case SegmentType::VOLTAGE_LIMITED: |
| // Normally, we expect that voltage limited plans will all get dominated |
| // by the acceleration/deceleration limits. This may not always be true; |
| // if we ever encounter this error, we just need to back out what the |
| // accelerations would be in this case. |
| LOG(FATAL) << "Unexpectedly got VOLTAGE_LIMITED plan."; |
| break; |
| case SegmentType::ACCELERATION_LIMITED: |
| // TODO(james): The integration done here and in the DECELERATION_LIMITED |
| // can technically cause us to violate friction constraints. We currently |
| // don't do anything about it to avoid causing sudden jumps in voltage, |
| // but we probably *should* at some point. |
| velocity = IntegrateAccelForDistance( |
| [this](double x, double v) { return ForwardAcceleration(x, v); }, |
| plan_[before_index], before_distance, distance - before_distance); |
| acceleration = ForwardAcceleration(distance, velocity); |
| break; |
| case SegmentType::DECELERATION_LIMITED: |
| velocity = IntegrateAccelForDistance( |
| [this](double x, double v) { return BackwardAcceleration(x, v); }, |
| plan_[after_index], after_distance, distance - after_distance); |
| acceleration = BackwardAcceleration(distance, velocity); |
| break; |
| default: |
| AOS_LOG( |
| FATAL, "Unknown segment type %d\n", |
| static_cast<int>(plan_segment_type_[DistanceToSegment(distance)])); |
| break; |
| } |
| |
| return (::Eigen::Matrix<double, 3, 1>() << distance, velocity, acceleration) |
| .finished(); |
| } |
| |
| ::Eigen::Matrix<double, 2, 1> Trajectory::FFVoltage(double distance) { |
| const Eigen::Matrix<double, 3, 1> xva = FFAcceleration(distance); |
| const double velocity = xva(1); |
| const double acceleration = xva(2); |
| |
| ::Eigen::Matrix<double, 2, 1> K3; |
| ::Eigen::Matrix<double, 2, 1> K4; |
| ::Eigen::Matrix<double, 2, 1> K5; |
| K345(distance, &K3, &K4, &K5); |
| |
| return K5 * acceleration + K3 * velocity * velocity + K4 * velocity; |
| } |
| |
| const ::std::vector<double> Trajectory::Distances() const { |
| ::std::vector<double> d; |
| d.reserve(plan_.size()); |
| for (size_t i = 0; i < plan_.size(); ++i) { |
| d.push_back(Distance(i)); |
| } |
| return d; |
| } |
| |
| ::Eigen::Matrix<double, 5, 5> Trajectory::ALinearizedContinuous( |
| const ::Eigen::Matrix<double, 5, 1> &state) const { |
| const double sintheta = ::std::sin(state(2)); |
| const double costheta = ::std::cos(state(2)); |
| const ::Eigen::Matrix<double, 2, 1> linear_angular = |
| Tlr_to_la_ * state.block<2, 1>(3, 0); |
| |
| // When stopped, just roll with a min velocity. |
| double linear_velocity = 0.0; |
| constexpr double kMinVelocity = 0.1; |
| if (::std::abs(linear_angular(0)) < kMinVelocity / 100.0) { |
| linear_velocity = 0.1; |
| } else if (::std::abs(linear_angular(0)) > kMinVelocity) { |
| linear_velocity = linear_angular(0); |
| } else if (linear_angular(0) > 0) { |
| linear_velocity = kMinVelocity; |
| } else if (linear_angular(0) < 0) { |
| linear_velocity = -kMinVelocity; |
| } |
| |
| ::Eigen::Matrix<double, 5, 5> result = ::Eigen::Matrix<double, 5, 5>::Zero(); |
| result(0, 2) = -sintheta * linear_velocity; |
| result(0, 3) = 0.5 * costheta; |
| result(0, 4) = 0.5 * costheta; |
| |
| result(1, 2) = costheta * linear_velocity; |
| result(1, 3) = 0.5 * sintheta; |
| result(1, 4) = 0.5 * sintheta; |
| |
| result(2, 3) = Tlr_to_la_(1, 0); |
| result(2, 4) = Tlr_to_la_(1, 1); |
| |
| result.block<2, 2>(3, 3) = |
| velocity_drivetrain_->plant().coefficients().A_continuous; |
| return result; |
| } |
| |
| ::Eigen::Matrix<double, 5, 2> Trajectory::BLinearizedContinuous() const { |
| ::Eigen::Matrix<double, 5, 2> result = ::Eigen::Matrix<double, 5, 2>::Zero(); |
| result.block<2, 2>(3, 0) = |
| velocity_drivetrain_->plant().coefficients().B_continuous; |
| return result; |
| } |
| |
| void Trajectory::AB(const ::Eigen::Matrix<double, 5, 1> &state, |
| ::std::chrono::nanoseconds dt, |
| ::Eigen::Matrix<double, 5, 5> *A, |
| ::Eigen::Matrix<double, 5, 2> *B) const { |
| ::Eigen::Matrix<double, 5, 5> A_linearized_continuous = |
| ALinearizedContinuous(state); |
| ::Eigen::Matrix<double, 5, 2> B_linearized_continuous = |
| BLinearizedContinuous(); |
| |
| // Now, convert it to discrete. |
| controls::C2D(A_linearized_continuous, B_linearized_continuous, dt, A, B); |
| } |
| |
| ::Eigen::Matrix<double, 2, 5> Trajectory::KForState( |
| const ::Eigen::Matrix<double, 5, 1> &state, ::std::chrono::nanoseconds dt, |
| const ::Eigen::DiagonalMatrix<double, 5> &Q, |
| const ::Eigen::DiagonalMatrix<double, 2> &R) const { |
| ::Eigen::Matrix<double, 5, 5> A; |
| ::Eigen::Matrix<double, 5, 2> B; |
| AB(state, dt, &A, &B); |
| |
| ::Eigen::Matrix<double, 5, 5> S = ::Eigen::Matrix<double, 5, 5>::Zero(); |
| ::Eigen::Matrix<double, 2, 5> K = ::Eigen::Matrix<double, 2, 5>::Zero(); |
| |
| int info = ::frc971::controls::dlqr<5, 2>(A, B, Q, R, &K, &S); |
| if (info != 0) { |
| AOS_LOG(ERROR, "Failed to solve %d, controllability: %d\n", info, |
| controls::Controllability(A, B)); |
| // TODO(austin): Can we be more clever here? Use the last one? We should |
| // collect more info about when this breaks down from logs. |
| K = ::Eigen::Matrix<double, 2, 5>::Zero(); |
| } |
| ::Eigen::EigenSolver<::Eigen::Matrix<double, 5, 5>> eigensolver(A - B * K); |
| const auto eigenvalues = eigensolver.eigenvalues(); |
| AOS_LOG(DEBUG, |
| "Eigenvalues: (%f + %fj), (%f + %fj), (%f + %fj), (%f + %fj), (%f + " |
| "%fj)\n", |
| eigenvalues(0).real(), eigenvalues(0).imag(), eigenvalues(1).real(), |
| eigenvalues(1).imag(), eigenvalues(2).real(), eigenvalues(2).imag(), |
| eigenvalues(3).real(), eigenvalues(3).imag(), eigenvalues(4).real(), |
| eigenvalues(4).imag()); |
| return K; |
| } |
| |
| const ::Eigen::Matrix<double, 5, 1> Trajectory::GoalState(double distance, |
| double velocity) { |
| ::Eigen::Matrix<double, 5, 1> result; |
| result.block<2, 1>(0, 0) = spline_->XY(distance); |
| result(2, 0) = spline_->Theta(distance); |
| |
| result.block<2, 1>(3, 0) = |
| Tla_to_lr_ * (::Eigen::Matrix<double, 2, 1>() << velocity, |
| spline_->DThetaDt(distance, velocity)) |
| .finished(); |
| return result; |
| } |
| |
| ::Eigen::Matrix<double, 3, 1> Trajectory::GetNextXVA( |
| ::std::chrono::nanoseconds dt, ::Eigen::Matrix<double, 2, 1> *state) { |
| double dt_float = ::aos::time::DurationInSeconds(dt); |
| |
| // TODO(austin): This feels like something that should be pulled out into |
| // a library for re-use. |
| *state = RungeKutta( |
| [this](const ::Eigen::Matrix<double, 2, 1> x) { |
| ::Eigen::Matrix<double, 3, 1> xva = FFAcceleration(x(0)); |
| return (::Eigen::Matrix<double, 2, 1>() << x(1), xva(2)).finished(); |
| }, |
| *state, dt_float); |
| |
| ::Eigen::Matrix<double, 3, 1> result = FFAcceleration((*state)(0)); |
| (*state)(1) = result(1); |
| return result; |
| } |
| |
| ::std::vector<::Eigen::Matrix<double, 3, 1>> Trajectory::PlanXVA( |
| ::std::chrono::nanoseconds dt) { |
| ::Eigen::Matrix<double, 2, 1> state = ::Eigen::Matrix<double, 2, 1>::Zero(); |
| ::std::vector<::Eigen::Matrix<double, 3, 1>> result; |
| result.emplace_back(FFAcceleration(0)); |
| result.back()(1) = 0.0; |
| |
| while (!is_at_end(state)) { |
| result.emplace_back(GetNextXVA(dt, &state)); |
| } |
| return result; |
| } |
| |
| void Trajectory::LimitVelocity(double starting_distance, double ending_distance, |
| const double max_velocity) { |
| const double segment_length = ending_distance - starting_distance; |
| |
| const double min_length = length() / static_cast<double>(plan_.size() - 1); |
| if (starting_distance > ending_distance) { |
| AOS_LOG(FATAL, "End before start: %f > %f\n", starting_distance, |
| ending_distance); |
| } |
| starting_distance = ::std::min(length(), ::std::max(0.0, starting_distance)); |
| ending_distance = ::std::min(length(), ::std::max(0.0, ending_distance)); |
| if (segment_length < min_length) { |
| const size_t plan_index = static_cast<size_t>( |
| ::std::round((starting_distance + ending_distance) / 2.0 / min_length)); |
| if (max_velocity < plan_[plan_index]) { |
| plan_[plan_index] = max_velocity; |
| } |
| } else { |
| for (size_t i = DistanceToSegment(starting_distance) + 1; |
| i < DistanceToSegment(ending_distance) + 1; ++i) { |
| if (max_velocity < plan_[i]) { |
| plan_[i] = max_velocity; |
| if (i < DistanceToSegment(ending_distance)) { |
| plan_segment_type_[i] = SegmentType::VELOCITY_LIMITED; |
| } |
| } |
| } |
| } |
| } |
| |
| } // namespace drivetrain |
| } // namespace control_loops |
| } // namespace frc971 |