blob: 1f7e2b086c7100c029a97317dfcb75d3146c2261 [file] [log] [blame]
#include "frc971/control_loops/drivetrain/splinedrivetrain.h"
#include "Eigen/Dense"
#include "aos/init.h"
#include "aos/util/math.h"
#include "frc971/control_loops/drivetrain/drivetrain.q.h"
#include "frc971/control_loops/drivetrain/drivetrain_config.h"
namespace frc971 {
namespace control_loops {
namespace drivetrain {
SplineDrivetrain::SplineDrivetrain(const DrivetrainConfig<double> &dt_config)
: dt_config_(dt_config), new_goal_(&mutex_) {
worker_thread_ = std::thread(&SplineDrivetrain::ComputeTrajectory, this);
}
void SplineDrivetrain::ScaleCapU(Eigen::Matrix<double, 2, 1> *U) {
output_was_capped_ =
::std::abs((*U)(0, 0)) > 12.0 || ::std::abs((*U)(1, 0)) > 12.0;
if (output_was_capped_) {
*U *= 12.0 / U->lpNorm<Eigen::Infinity>();
}
}
void SplineDrivetrain::ComputeTrajectory() {
::aos::SetCurrentThreadRealtimePriority(1);
::aos::MutexLocker locker(&mutex_);
while (run_) {
while (goal_.spline.spline_idx == future_spline_idx_) {
CHECK(!new_goal_.Wait());
if (!run_) {
return;
}
}
past_distance_spline_.reset();
past_trajectory_.reset();
plan_state_ = PlanState::kBuildingTrajectory;
const ::frc971::MultiSpline &multispline = goal_.spline;
future_spline_idx_ = multispline.spline_idx;
planning_spline_idx_ = future_spline_idx_;
auto x = multispline.spline_x;
auto y = multispline.spline_y;
::std::vector<Spline> splines = ::std::vector<Spline>();
for (int i = 0; i < multispline.spline_count; ++i) {
::Eigen::Matrix<double, 2, 6> points =
::Eigen::Matrix<double, 2, 6>::Zero();
for (int j = 0; j < 6; ++j) {
points(0, j) = x[i * 5 + j];
points(1, j) = y[i * 5 + j];
}
splines.emplace_back(Spline(points));
}
future_drive_spline_backwards_ = goal_.spline.drive_spline_backwards;
future_distance_spline_ = ::std::unique_ptr<DistanceSpline>(
new DistanceSpline(::std::move(splines)));
future_trajectory_ = ::std::unique_ptr<Trajectory>(
new Trajectory(future_distance_spline_.get(), dt_config_));
for (size_t i = 0; i < multispline.constraints.size(); ++i) {
const ::frc971::Constraint &constraint = multispline.constraints[i];
switch (constraint.constraint_type) {
case 0:
break;
case 1:
future_trajectory_->set_longitudal_acceleration(constraint.value);
break;
case 2:
future_trajectory_->set_lateral_acceleration(constraint.value);
break;
case 3:
future_trajectory_->set_voltage_limit(constraint.value);
break;
case 4:
future_trajectory_->LimitVelocity(constraint.start_distance,
constraint.end_distance,
constraint.value);
break;
}
}
plan_state_ = PlanState::kPlanningTrajectory;
future_trajectory_->Plan();
plan_state_ = PlanState::kPlannedTrajectory;
}
}
void SplineDrivetrain::SetGoal(
const ::frc971::control_loops::DrivetrainQueue::Goal &goal) {
current_spline_handle_ = goal.spline_handle;
// If told to stop, set the executing spline to an invalid index and clear out
// its plan:
if (current_spline_handle_ == 0 &&
current_spline_idx_ != goal.spline.spline_idx) {
current_spline_idx_ = -1;
}
::aos::Mutex::State mutex_state = mutex_.TryLock();
if (mutex_state == ::aos::Mutex::State::kLocked) {
if (goal.spline.spline_idx && future_spline_idx_ != goal.spline.spline_idx) {
goal_ = goal;
new_goal_.Broadcast();
if (current_spline_handle_ != current_spline_idx_) {
// If we aren't going to actively execute the current spline, evict it's
// plan.
past_trajectory_ = std::move(current_trajectory_);
past_distance_spline_ = std::move(current_distance_spline_);
}
}
// If you never started executing the previous spline, you're screwed.
if (future_trajectory_ &&
(!current_trajectory_ ||
current_trajectory_->is_at_end(current_xva_.block<2, 1>(0, 0)) ||
current_spline_idx_ == -1)) {
// Move current data to other variables to be cleared by worker.
past_trajectory_ = std::move(current_trajectory_);
past_distance_spline_ = std::move(current_distance_spline_);
// Move the computed data to be executed.
current_trajectory_ = std::move(future_trajectory_);
current_distance_spline_ = std::move(future_distance_spline_);
current_drive_spline_backwards_ = future_drive_spline_backwards_;
current_spline_idx_ = future_spline_idx_;
// Reset internal state to a trajectory start position.
current_xva_ = current_trajectory_->FFAcceleration(0);
current_xva_(1) = 0.0;
has_started_execution_ = false;
}
mutex_.Unlock();
}
}
// TODO(alex): Hold position when done following the spline.
// TODO(Austin): Compensate for voltage error.
void SplineDrivetrain::Update(bool enable, const ::Eigen::Matrix<double, 5, 1> &state) {
next_U_ = ::Eigen::Matrix<double, 2, 1>::Zero();
enable_ = enable;
if (enable && current_trajectory_) {
::Eigen::Matrix<double, 2, 1> U_ff = ::Eigen::Matrix<double, 2, 1>::Zero();
if (!IsAtEnd() &&
current_spline_handle_ == current_spline_idx_) {
has_started_execution_ = true;
// TODO(alex): It takes about a cycle for the outputs to propagate to the
// motors. Consider delaying the output by a cycle.
U_ff = current_trajectory_->FFVoltage(current_xva_(0));
}
::Eigen::Matrix<double, 2, 5> K =
current_trajectory_->KForState(state, dt_config_.dt, Q, R);
::Eigen::Matrix<double, 5, 1> goal_state = CurrentGoalState();
if (current_drive_spline_backwards_) {
::Eigen::Matrix<double, 2, 1> swapU(U_ff(1, 0), U_ff(0, 0));
U_ff = -swapU;
goal_state(2, 0) += M_PI;
double left_goal = goal_state(3, 0);
double right_goal = goal_state(4, 0);
goal_state(3, 0) = -right_goal;
goal_state(4, 0) = -left_goal;
}
::Eigen::Matrix<double, 5, 1> state_error = goal_state - state;
state_error(2, 0) = ::aos::math::NormalizeAngle(state_error(2, 0));
::Eigen::Matrix<double, 2, 1> U_fb = K * state_error;
::Eigen::Matrix<double, 2, 1> xv_state = current_xva_.block<2,1>(0,0);
next_xva_ = current_trajectory_->GetNextXVA(dt_config_.dt, &xv_state);
next_U_ = U_ff + U_fb;
uncapped_U_ = next_U_;
ScaleCapU(&next_U_);
}
}
void SplineDrivetrain::SetOutput(
::frc971::control_loops::DrivetrainQueue::Output *output) {
if (!output) {
return;
}
if (current_spline_handle_ == current_spline_idx_) {
if (!IsAtEnd()) {
output->left_voltage = next_U_(0);
output->right_voltage = next_U_(1);
current_xva_ = next_xva_;
}
}
output->left_voltage = next_U_(0);
output->right_voltage = next_U_(1);
}
void SplineDrivetrain::PopulateStatus(
::frc971::control_loops::DrivetrainQueue::Status *status) const {
if (status && enable_) {
status->uncapped_left_voltage = uncapped_U_(0);
status->uncapped_right_voltage = uncapped_U_(1);
status->robot_speed = current_xva_(1);
status->output_was_capped = output_was_capped_;
}
if (status) {
if (current_distance_spline_) {
::Eigen::Matrix<double, 5, 1> goal_state = CurrentGoalState();
status->trajectory_logging.x = goal_state(0);
status->trajectory_logging.y = goal_state(1);
status->trajectory_logging.theta = ::aos::math::NormalizeAngle(
goal_state(2) + (current_drive_spline_backwards_ ? M_PI : 0.0));
status->trajectory_logging.left_velocity = goal_state(3);
status->trajectory_logging.right_velocity = goal_state(4);
}
status->trajectory_logging.planning_state = static_cast<int8_t>(plan_state_.load());
status->trajectory_logging.is_executing = !IsAtEnd() && has_started_execution_;
status->trajectory_logging.is_executed =
(current_spline_idx_ != -1) && IsAtEnd();
status->trajectory_logging.goal_spline_handle = current_spline_handle_;
status->trajectory_logging.current_spline_idx = current_spline_idx_;
status->trajectory_logging.distance_remaining =
current_trajectory_ ? current_trajectory_->length() - current_xva_.x()
: 0.0;
int32_t planning_spline_idx = planning_spline_idx_;
if (current_spline_idx_ == planning_spline_idx) {
status->trajectory_logging.planning_spline_idx = 0;
} else {
status->trajectory_logging.planning_spline_idx = planning_spline_idx_;
}
}
}
} // namespace drivetrain
} // namespace control_loops
} // namespace frc971