blob: eacb7fdeb3e2fcad18dc50f7226591be3cf45f4d [file] [log] [blame]
#!/usr/bin/python3
from aos.util.trapezoid_profile import TrapezoidProfile
from frc971.control_loops.python import control_loop
from frc971.control_loops.python import angular_system
from frc971.control_loops.python import controls
import numpy
import sys
from matplotlib import pylab
import gflags
import glog
FLAGS = gflags.FLAGS
try:
gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
except gflags.DuplicateFlagError:
pass
# Hood is an angular subsystem due to the mounting of the encoder on the hood
# joint. We are currently electing to ignore potential non-linearity.
range_of_travel_radians = (38.0 * numpy.pi / 180.0)
# 0.5 inches/turn
# 6.7725 inches of travel
turns_of_leadscrew_per_range_of_travel = 6.7725 / 0.5
radians_per_turn = range_of_travel_radians / turns_of_leadscrew_per_range_of_travel
radians_per_turn_of_motor = 12.0 / 60.0 * radians_per_turn
kHood = angular_system.AngularSystemParams(
name='Hood',
motor=control_loop.BAG(),
G=radians_per_turn_of_motor / (2.0 * numpy.pi),
J=0.1,
q_pos=0.15,
q_vel=10.0,
kalman_q_pos=0.12,
kalman_q_vel=10.0,
kalman_q_voltage=30.0,
kalman_r_position=0.02)
def main(argv):
if FLAGS.plot:
R = numpy.matrix([[numpy.pi / 4.0], [0.0]])
angular_system.PlotKick(kHood, R)
angular_system.PlotMotion(kHood, R)
glog.debug("Radians per turn: %f\n", radians_per_turn)
# Write the generated constants out to a file.
if len(argv) != 5:
glog.fatal(
'Expected .h file name and .cc file name for the hood and integral hood.'
)
else:
namespaces = ['y2020', 'control_loops', 'superstructure', 'hood']
angular_system.WriteAngularSystem(kHood, argv[1:3], argv[3:5],
namespaces)
if __name__ == '__main__':
argv = FLAGS(sys.argv)
glog.init()
sys.exit(main(argv))