Copy y2018 python arm visualization to y2023

Signed-off-by: Maxwell Henderson <mxwhenderson@gmail.com>
Change-Id: I0e4c2be36e46ab1d88ba04cfdb8e80f1e88ec5fc
diff --git a/y2023/control_loops/python/BUILD b/y2023/control_loops/python/BUILD
index b024676..a2ea6d8 100644
--- a/y2023/control_loops/python/BUILD
+++ b/y2023/control_loops/python/BUILD
@@ -31,6 +31,24 @@
     ],
 )
 
+py_binary(
+    name = "graph_edit",
+    srcs = [
+        "graph_edit.py",
+        "graph_generate.py",
+    ],
+    legacy_create_init = False,
+    target_compatible_with = ["@platforms//cpu:x86_64"],
+    deps = [
+        ":python_init",
+        "//frc971/control_loops/python:basic_window",
+        "//frc971/control_loops/python:color",
+        "@pip//numpy",
+        "@pip//pygobject",
+        "@pip//shapely",
+    ],
+)
+
 py_library(
     name = "polydrivetrain_lib",
     srcs = [
diff --git a/y2023/control_loops/python/graph_edit.py b/y2023/control_loops/python/graph_edit.py
new file mode 100644
index 0000000..7b6179c
--- /dev/null
+++ b/y2023/control_loops/python/graph_edit.py
@@ -0,0 +1,495 @@
+#!/usr/bin/python3
+
+from __future__ import print_function
+import os
+from frc971.control_loops.python import basic_window
+from frc971.control_loops.python.color import Color, palette
+import random
+import gi
+import numpy
+
+gi.require_version('Gtk', '3.0')
+from gi.repository import Gdk, Gtk
+import cairo
+import graph_generate
+from graph_generate import XYSegment, AngleSegment, to_theta, to_xy, alpha_blend
+from graph_generate import back_to_xy_loop, subdivide_theta, to_theta_loop
+from graph_generate import l1, l2, joint_center
+
+from frc971.control_loops.python.basic_window import OverrideMatrix, identity, quit_main_loop, set_color
+
+import shapely
+from shapely.geometry import Polygon
+
+
+def px(cr):
+    return OverrideMatrix(cr, identity)
+
+
+def draw_px_cross(cr, length_px):
+    """Draws a cross with fixed dimensions in pixel space."""
+    with px(cr):
+        x, y = cr.get_current_point()
+        cr.move_to(x, y - length_px)
+        cr.line_to(x, y + length_px)
+        cr.stroke()
+
+        cr.move_to(x - length_px, y)
+        cr.line_to(x + length_px, y)
+        cr.stroke()
+
+
+def angle_dist_sqr(a1, a2):
+    """Distance between two points in angle space."""
+    return (a1[0] - a2[0])**2 + (a1[1] - a2[1])**2
+
+
+# Find the highest y position that intersects the vertical line defined by x.
+def inter_y(x):
+    return numpy.sqrt((l2 + l1)**2 -
+                      (x - joint_center[0])**2) + joint_center[1]
+
+
+# This is the x position where the inner (hyperextension) circle intersects the horizontal line
+derr = numpy.sqrt((l1 - l2)**2 - (joint_center[1] - 0.3048)**2)
+
+
+# Define min and max l1 angles based on vertical constraints.
+def get_angle(boundary):
+    h = numpy.sqrt((l1)**2 - (boundary - joint_center[0])**2) + joint_center[1]
+    return numpy.arctan2(h, boundary - joint_center[0])
+
+
+# left hand side lines
+lines1 = [
+    (-0.826135, inter_y(-0.826135)),
+    (-0.826135, 0.1397),
+    (-23.025 * 0.0254, 0.1397),
+    (-23.025 * 0.0254, 0.3048),
+    (joint_center[0] - derr, 0.3048),
+]
+
+# right hand side lines
+lines2 = [(joint_center[0] + derr, 0.3048), (0.422275, 0.3048),
+          (0.422275, 0.1397), (0.826135, 0.1397),
+          (0.826135, inter_y(0.826135))]
+
+t1_min = get_angle((32.525 - 4.0) * 0.0254)
+t2_min = -7.0 / 4.0 * numpy.pi
+
+t1_max = get_angle((-32.525 + 4.0) * 0.0254)
+t2_max = numpy.pi * 3.0 / 4.0
+
+
+# Draw lines to cr + stroke.
+def draw_lines(cr, lines):
+    cr.move_to(lines[0][0], lines[0][1])
+    for pt in lines[1:]:
+        cr.line_to(pt[0], pt[1])
+    with px(cr):
+        cr.stroke()
+
+
+# Rotate a rasterized loop such that it aligns to when the parameters loop
+def rotate_to_jump_point(points):
+    last_pt = points[0]
+    for pt_i in range(1, len(points)):
+        pt = points[pt_i]
+        delta = last_pt[1] - pt[1]
+        if abs(delta) > numpy.pi:
+            return points[pt_i:] + points[:pt_i]
+        last_pt = pt
+    return points
+
+
+# shift points vertically by dy.
+def y_shift(points, dy):
+    return [(x, y + dy) for x, y in points]
+
+
+lines1_theta_part = rotate_to_jump_point(to_theta_loop(lines1, 0))
+lines2_theta_part = rotate_to_jump_point(to_theta_loop(lines2))
+
+# Some hacks here to make a single polygon by shifting to get an extra copy of the contraints.
+lines1_theta = y_shift(lines1_theta_part, -numpy.pi * 2) + lines1_theta_part + \
+    y_shift(lines1_theta_part, numpy.pi * 2)
+lines2_theta = y_shift(lines2_theta_part, numpy.pi * 2) + lines2_theta_part + \
+    y_shift(lines2_theta_part, -numpy.pi * 2)
+
+lines_theta = lines1_theta + lines2_theta
+
+p1 = Polygon(lines_theta)
+
+p2 = Polygon([(t1_min, t2_min), (t1_max, t2_min), (t1_max, t2_max),
+              (t1_min, t2_max)])
+
+# Fully computed theta constrints.
+lines_theta = list(p1.intersection(p2).exterior.coords)
+
+lines1_theta_back = back_to_xy_loop(lines1_theta)
+lines2_theta_back = back_to_xy_loop(lines2_theta)
+
+lines_theta_back = back_to_xy_loop(lines_theta)
+
+
+# Get the closest point to a line from a test pt.
+def get_closest(prev, cur, pt):
+    dx_ang = (cur[0] - prev[0])
+    dy_ang = (cur[1] - prev[1])
+
+    d = numpy.sqrt(dx_ang**2 + dy_ang**2)
+    if (d < 0.000001):
+        return prev, numpy.sqrt((prev[0] - pt[0])**2 + (prev[1] - pt[1])**2)
+
+    pdx = -dy_ang / d
+    pdy = dx_ang / d
+
+    dpx = pt[0] - prev[0]
+    dpy = pt[1] - prev[1]
+
+    alpha = (dx_ang * dpx + dy_ang * dpy) / d / d
+
+    if (alpha < 0):
+        return prev, numpy.sqrt((prev[0] - pt[0])**2 + (prev[1] - pt[1])**2)
+    elif (alpha > 1):
+        return cur, numpy.sqrt((cur[0] - pt[0])**2 + (cur[1] - pt[1])**2)
+    else:
+        return (alpha_blend(prev[0], cur[0], alpha), alpha_blend(prev[1], cur[1], alpha)), \
+            abs(dpx * pdx + dpy * pdy)
+
+
+def closest_segment(lines, pt):
+    c_pt, c_pt_dist = get_closest(lines[-1], lines[0], pt)
+    for i in range(1, len(lines)):
+        prev = lines[i - 1]
+        cur = lines[i]
+        c_pt_new, c_pt_new_dist = get_closest(prev, cur, pt)
+        if c_pt_new_dist < c_pt_dist:
+            c_pt = c_pt_new
+            c_pt_dist = c_pt_new_dist
+    return c_pt, c_pt_dist
+
+
+# Create a GTK+ widget on which we will draw using Cairo
+class Silly(basic_window.BaseWindow):
+
+    def __init__(self):
+        super(Silly, self).__init__()
+
+        self.window = Gtk.Window()
+        self.window.set_title("DrawingArea")
+
+        self.window.set_events(Gdk.EventMask.BUTTON_PRESS_MASK
+                               | Gdk.EventMask.BUTTON_RELEASE_MASK
+                               | Gdk.EventMask.POINTER_MOTION_MASK
+                               | Gdk.EventMask.SCROLL_MASK
+                               | Gdk.EventMask.KEY_PRESS_MASK)
+        self.method_connect("key-press-event", self.do_key_press)
+        self.method_connect("button-press-event",
+                            self._do_button_press_internal)
+        self.method_connect("configure-event", self._do_configure)
+        self.window.add(self)
+        self.window.show_all()
+
+        self.theta_version = False
+        self.reinit_extents()
+
+        self.last_pos = (numpy.pi / 2.0, 1.0)
+        self.circular_index_select = -1
+
+        # Extra stuff for drawing lines.
+        self.segments = []
+        self.prev_segment_pt = None
+        self.now_segment_pt = None
+        self.spline_edit = 0
+        self.edit_control1 = True
+
+    def do_key_press(self, event):
+        pass
+
+    def _do_button_press_internal(self, event):
+        o_x = event.x
+        o_y = event.y
+        x = event.x - self.window_shape[0] / 2
+        y = self.window_shape[1] / 2 - event.y
+        scale = self.get_current_scale()
+        event.x = x / scale + self.center[0]
+        event.y = y / scale + self.center[1]
+        self.do_button_press(event)
+        event.x = o_x
+        event.y = o_y
+
+    def do_button_press(self, event):
+        pass
+
+    def _do_configure(self, event):
+        self.window_shape = (event.width, event.height)
+
+    def redraw(self):
+        if not self.needs_redraw:
+            self.needs_redraw = True
+            self.window.queue_draw()
+
+    def method_connect(self, event, cb):
+
+        def handler(obj, *args):
+            cb(*args)
+
+        self.window.connect(event, handler)
+
+    def reinit_extents(self):
+        if self.theta_version:
+            self.extents_x_min = -numpy.pi * 2
+            self.extents_x_max = numpy.pi * 2
+            self.extents_y_min = -numpy.pi * 2
+            self.extents_y_max = numpy.pi * 2
+        else:
+            self.extents_x_min = -40.0 * 0.0254
+            self.extents_x_max = 40.0 * 0.0254
+            self.extents_y_min = -4.0 * 0.0254
+            self.extents_y_max = 110.0 * 0.0254
+
+        self.init_extents(
+            (0.5 * (self.extents_x_min + self.extents_x_max), 0.5 *
+             (self.extents_y_max + self.extents_y_min)),
+            (1.0 * (self.extents_x_max - self.extents_x_min), 1.0 *
+             (self.extents_y_max - self.extents_y_min)))
+
+    # Handle the expose-event by drawing
+    def handle_draw(self, cr):
+        # use "with px(cr): blah;" to transform to pixel coordinates.
+
+        # Fill the background color of the window with grey
+        set_color(cr, palette["GREY"])
+        cr.paint()
+
+        # Draw a extents rectangle
+        set_color(cr, palette["WHITE"])
+        cr.rectangle(self.extents_x_min, self.extents_y_min,
+                     (self.extents_x_max - self.extents_x_min),
+                     self.extents_y_max - self.extents_y_min)
+        cr.fill()
+
+        if not self.theta_version:
+            # Draw a filled white rectangle.
+            set_color(cr, palette["WHITE"])
+            cr.rectangle(-2.0, -2.0, 4.0, 4.0)
+            cr.fill()
+
+            set_color(cr, palette["BLUE"])
+            cr.arc(joint_center[0], joint_center[1], l2 + l1, 0,
+                   2.0 * numpy.pi)
+            with px(cr):
+                cr.stroke()
+            cr.arc(joint_center[0], joint_center[1], l1 - l2, 0,
+                   2.0 * numpy.pi)
+            with px(cr):
+                cr.stroke()
+        else:
+            # Draw a filled white rectangle.
+            set_color(cr, palette["WHITE"])
+            cr.rectangle(-numpy.pi, -numpy.pi, numpy.pi * 2.0, numpy.pi * 2.0)
+            cr.fill()
+
+        if self.theta_version:
+            set_color(cr, palette["BLUE"])
+            for i in range(-6, 6):
+                cr.move_to(-40, -40 + i * numpy.pi)
+                cr.line_to(40, 40 + i * numpy.pi)
+            with px(cr):
+                cr.stroke()
+
+        if self.theta_version:
+            set_color(cr, Color(0.5, 0.5, 1.0))
+            draw_lines(cr, lines_theta)
+        else:
+            set_color(cr, Color(0.5, 1.0, 1.0))
+            draw_lines(cr, lines1)
+            draw_lines(cr, lines2)
+
+            def get_circular_index(pt):
+                theta1, theta2 = pt
+                circular_index = int(numpy.floor((theta2 - theta1) / numpy.pi))
+                return circular_index
+
+            set_color(cr, palette["BLUE"])
+            lines = subdivide_theta(lines_theta)
+            o_circular_index = circular_index = get_circular_index(lines[0])
+            p_xy = to_xy(lines[0][0], lines[0][1])
+            if circular_index == self.circular_index_select:
+                cr.move_to(p_xy[0] + circular_index * 0, p_xy[1])
+            for pt in lines[1:]:
+                p_xy = to_xy(pt[0], pt[1])
+                circular_index = get_circular_index(pt)
+                if o_circular_index == self.circular_index_select:
+                    cr.line_to(p_xy[0] + o_circular_index * 0, p_xy[1])
+                if circular_index != o_circular_index:
+                    o_circular_index = circular_index
+                    with px(cr):
+                        cr.stroke()
+                    if circular_index == self.circular_index_select:
+                        cr.move_to(p_xy[0] + circular_index * 0, p_xy[1])
+
+            with px(cr):
+                cr.stroke()
+
+        if not self.theta_version:
+            theta1, theta2 = to_theta(self.last_pos,
+                                      self.circular_index_select)
+            x, y = joint_center[0], joint_center[1]
+            cr.move_to(x, y)
+
+            x += numpy.cos(theta1) * l1
+            y += numpy.sin(theta1) * l1
+            cr.line_to(x, y)
+            x += numpy.cos(theta2) * l2
+            y += numpy.sin(theta2) * l2
+            cr.line_to(x, y)
+            with px(cr):
+                cr.stroke()
+
+            cr.move_to(self.last_pos[0], self.last_pos[1])
+            set_color(cr, Color(0.0, 1.0, 0.2))
+            draw_px_cross(cr, 20)
+
+        if self.theta_version:
+            set_color(cr, Color(0.0, 1.0, 0.2))
+            cr.move_to(self.last_pos[0], self.last_pos[1])
+            draw_px_cross(cr, 5)
+
+            c_pt, dist = closest_segment(lines_theta, self.last_pos)
+            print("dist:", dist, c_pt, self.last_pos)
+            set_color(cr, palette["CYAN"])
+            cr.move_to(c_pt[0], c_pt[1])
+            draw_px_cross(cr, 5)
+
+        set_color(cr, Color(0.0, 0.5, 1.0))
+        for segment in self.segments:
+            color = [0, random.random(), 1]
+            random.shuffle(color)
+            set_color(cr, Color(color[0], color[1], color[2]))
+            segment.DrawTo(cr, self.theta_version)
+            with px(cr):
+                cr.stroke()
+
+        set_color(cr, Color(0.0, 1.0, 0.5))
+        segment = self.current_seg()
+        if segment:
+            print(segment)
+            segment.DrawTo(cr, self.theta_version)
+            with px(cr):
+                cr.stroke()
+
+    def cur_pt_in_theta(self):
+        if self.theta_version: return self.last_pos
+        return to_theta(self.last_pos, self.circular_index_select)
+
+    # Current segment based on which mode the drawing system is in.
+    def current_seg(self):
+        if self.prev_segment_pt and self.now_segment_pt:
+            if self.theta_version:
+                return AngleSegment(self.prev_segment_pt, self.now_segment_pt)
+            else:
+                return XYSegment(self.prev_segment_pt, self.now_segment_pt)
+
+    def do_key_press(self, event):
+        keyval = Gdk.keyval_to_lower(event.keyval)
+        print("Gdk.KEY_" + Gdk.keyval_name(keyval))
+        if keyval == Gdk.KEY_q:
+            print("Found q key and exiting.")
+            quit_main_loop()
+        elif keyval == Gdk.KEY_c:
+            # Increment which arm solution we render
+            self.circular_index_select += 1
+            print(self.circular_index_select)
+        elif keyval == Gdk.KEY_v:
+            # Decrement which arm solution we render
+            self.circular_index_select -= 1
+            print(self.circular_index_select)
+        elif keyval == Gdk.KEY_w:
+            # Add this segment to the segment list.
+            segment = self.current_seg()
+            if segment: self.segments.append(segment)
+            self.prev_segment_pt = self.now_segment_pt
+
+        elif keyval == Gdk.KEY_r:
+            self.prev_segment_pt = self.now_segment_pt
+
+        elif keyval == Gdk.KEY_p:
+            # Print out the segments.
+            print(repr(self.segments))
+        elif keyval == Gdk.KEY_g:
+            # Generate theta points.
+            if self.segments:
+                print(repr(self.segments[0].ToThetaPoints()))
+        elif keyval == Gdk.KEY_e:
+            best_pt = self.now_segment_pt
+            best_dist = 1e10
+            for segment in self.segments:
+                d = angle_dist_sqr(segment.start, self.now_segment_pt)
+                if (d < best_dist):
+                    best_pt = segment.start
+                    best_dist = d
+                d = angle_dist_sqr(segment.end, self.now_segment_pt)
+                if (d < best_dist):
+                    best_pt = segment.end
+                    best_dist = d
+            self.now_segment_pt = best_pt
+
+        elif keyval == Gdk.KEY_t:
+            # Toggle between theta and xy renderings
+            if self.theta_version:
+                theta1, theta2 = self.last_pos
+                data = to_xy(theta1, theta2)
+                self.circular_index_select = int(
+                    numpy.floor((theta2 - theta1) / numpy.pi))
+                self.last_pos = (data[0], data[1])
+            else:
+                self.last_pos = self.cur_pt_in_theta()
+
+            self.theta_version = not self.theta_version
+            self.reinit_extents()
+
+        elif keyval == Gdk.KEY_z:
+            self.edit_control1 = not self.edit_control1
+            if self.edit_control1:
+                self.now_segment_pt = self.segments[0].control1
+            else:
+                self.now_segment_pt = self.segments[0].control2
+            if not self.theta_version:
+                data = to_xy(self.now_segment_pt[0], self.now_segment_pt[1])
+                self.last_pos = (data[0], data[1])
+            else:
+                self.last_pos = self.now_segment_pt
+
+            print("self.last_pos: ", self.last_pos, " ci: ",
+                  self.circular_index_select)
+
+        self.redraw()
+
+    def do_button_press(self, event):
+        self.last_pos = (event.x, event.y)
+        self.now_segment_pt = self.cur_pt_in_theta()
+
+        if self.edit_control1:
+            self.segments[0].control1 = self.now_segment_pt
+        else:
+            self.segments[0].control2 = self.now_segment_pt
+
+        print('Clicked at theta: %s' % (repr(self.now_segment_pt, )))
+        if not self.theta_version:
+            print('Clicked at xy, circular index: (%f, %f, %f)' %
+                  (self.last_pos[0], self.last_pos[1],
+                   self.circular_index_select))
+
+        print('c1: numpy.array([%f, %f])' %
+              (self.segments[0].control1[0], self.segments[0].control1[1]))
+        print('c2: numpy.array([%f, %f])' %
+              (self.segments[0].control2[0], self.segments[0].control2[1]))
+
+        self.redraw()
+
+
+silly = Silly()
+silly.segments = graph_generate.segments
+basic_window.RunApp()
diff --git a/y2023/control_loops/python/graph_generate.py b/y2023/control_loops/python/graph_generate.py
new file mode 100644
index 0000000..046b9dd
--- /dev/null
+++ b/y2023/control_loops/python/graph_generate.py
@@ -0,0 +1,798 @@
+import numpy
+
+# joint_center in x-y space.
+joint_center = (-0.299, 0.299)
+
+# Joint distances (l1 = "proximal", l2 = "distal")
+l1 = 46.25 * 0.0254
+l2 = 43.75 * 0.0254
+
+
+# Convert from x-y coordinates to theta coordinates.
+# orientation is a bool. This orientation is circular_index mod 2.
+# where circular_index is the circular index, or the position in the
+# "hyperextension" zones. "cross_point" allows shifting the place where
+# it rounds the result so that it draws nicer (no other functional differences).
+def to_theta(pt, circular_index, cross_point=-numpy.pi):
+    orient = (circular_index % 2) == 0
+    x = pt[0]
+    y = pt[1]
+    x -= joint_center[0]
+    y -= joint_center[1]
+    l3 = numpy.hypot(x, y)
+    t3 = numpy.arctan2(y, x)
+    theta1 = numpy.arccos((l1**2 + l3**2 - l2**2) / (2 * l1 * l3))
+
+    if orient:
+        theta1 = -theta1
+    theta1 += t3
+    theta1 = (theta1 - cross_point) % (2 * numpy.pi) + cross_point
+    theta2 = numpy.arctan2(y - l1 * numpy.sin(theta1),
+                           x - l1 * numpy.cos(theta1))
+    return numpy.array((theta1, theta2))
+
+
+# Simple trig to go back from theta1, theta2 to x-y
+def to_xy(theta1, theta2):
+    x = numpy.cos(theta1) * l1 + numpy.cos(theta2) * l2 + joint_center[0]
+    y = numpy.sin(theta1) * l1 + numpy.sin(theta2) * l2 + joint_center[1]
+    orient = ((theta2 - theta1) % (2.0 * numpy.pi)) < numpy.pi
+    return (x, y, orient)
+
+
+def get_circular_index(theta):
+    return int(numpy.floor((theta[1] - theta[0]) / numpy.pi))
+
+
+def get_xy(theta):
+    theta1 = theta[0]
+    theta2 = theta[1]
+    x = numpy.cos(theta1) * l1 + numpy.cos(theta2) * l2 + joint_center[0]
+    y = numpy.sin(theta1) * l1 + numpy.sin(theta2) * l2 + joint_center[1]
+    return numpy.array((x, y))
+
+
+# Draw a list of lines to a cairo context.
+def draw_lines(cr, lines):
+    cr.move_to(lines[0][0], lines[0][1])
+    for pt in lines[1:]:
+        cr.line_to(pt[0], pt[1])
+
+
+max_dist = 0.01
+max_dist_theta = numpy.pi / 64
+xy_end_circle_size = 0.01
+theta_end_circle_size = 0.07
+
+
+# Subdivide in theta space.
+def subdivide_theta(lines):
+    out = []
+    last_pt = lines[0]
+    out.append(last_pt)
+    for n_pt in lines[1:]:
+        for pt in subdivide(last_pt, n_pt, max_dist_theta):
+            out.append(pt)
+        last_pt = n_pt
+
+    return out
+
+
+# subdivide in xy space.
+def subdivide_xy(lines, max_dist=max_dist):
+    out = []
+    last_pt = lines[0]
+    out.append(last_pt)
+    for n_pt in lines[1:]:
+        for pt in subdivide(last_pt, n_pt, max_dist):
+            out.append(pt)
+        last_pt = n_pt
+
+    return out
+
+
+def to_theta_with_ci(pt, circular_index):
+    return to_theta_with_circular_index(pt[0], pt[1], circular_index)
+
+
+# to_theta, but distinguishes between
+def to_theta_with_circular_index(x, y, circular_index):
+    theta1, theta2 = to_theta((x, y), circular_index)
+    n_circular_index = int(numpy.floor((theta2 - theta1) / numpy.pi))
+    theta2 = theta2 + ((circular_index - n_circular_index)) * numpy.pi
+    return numpy.array((theta1, theta2))
+
+
+# alpha is in [0, 1] and is the weight to merge a and b.
+def alpha_blend(a, b, alpha):
+    """Blends a and b.
+
+    Args:
+      alpha: double, Ratio.  Needs to be in [0, 1] and is the weight to blend a
+          and b.
+    """
+    return b * alpha + (1.0 - alpha) * a
+
+
+def normalize(v):
+    """Normalize a vector while handling 0 length vectors."""
+    norm = numpy.linalg.norm(v)
+    if norm == 0:
+        return v
+    return v / norm
+
+
+# CI is circular index and allows selecting between all the stats that map
+# to the same x-y state (by giving them an integer index).
+# This will compute approximate first and second derivatives with respect
+# to path length.
+def to_theta_with_circular_index_and_derivs(x, y, dx, dy,
+                                            circular_index_select):
+    a = to_theta_with_circular_index(x, y, circular_index_select)
+    b = to_theta_with_circular_index(x + dx * 0.0001, y + dy * 0.0001,
+                                     circular_index_select)
+    c = to_theta_with_circular_index(x - dx * 0.0001, y - dy * 0.0001,
+                                     circular_index_select)
+    d1 = normalize(b - a)
+    d2 = normalize(c - a)
+    accel = (d1 + d2) / numpy.linalg.norm(a - b)
+    return (a[0], a[1], d1[0], d1[1], accel[0], accel[1])
+
+
+def to_theta_with_ci_and_derivs(p_prev, p, p_next, c_i_select):
+    a = to_theta(p, c_i_select)
+    b = to_theta(p_next, c_i_select)
+    c = to_theta(p_prev, c_i_select)
+    d1 = normalize(b - a)
+    d2 = normalize(c - a)
+    accel = (d1 + d2) / numpy.linalg.norm(a - b)
+    return (a[0], a[1], d1[0], d1[1], accel[0], accel[1])
+
+
+# Generic subdivision algorithm.
+def subdivide(p1, p2, max_dist):
+    dx = p2[0] - p1[0]
+    dy = p2[1] - p1[1]
+    dist = numpy.sqrt(dx**2 + dy**2)
+    n = int(numpy.ceil(dist / max_dist))
+    return [(alpha_blend(p1[0], p2[0],
+                         float(i) / n), alpha_blend(p1[1], p2[1],
+                                                    float(i) / n))
+            for i in range(1, n + 1)]
+
+
+# convert from an xy space loop into a theta loop.
+# All segements are expected go from one "hyper-extension" boundary
+# to another, thus we must go backwards over the "loop" to get a loop in
+# x-y space.
+def to_theta_loop(lines, cross_point=-numpy.pi):
+    out = []
+    last_pt = lines[0]
+    for n_pt in lines[1:]:
+        for pt in subdivide(last_pt, n_pt, max_dist):
+            out.append(to_theta(pt, 0, cross_point))
+        last_pt = n_pt
+    for n_pt in reversed(lines[:-1]):
+        for pt in subdivide(last_pt, n_pt, max_dist):
+            out.append(to_theta(pt, 1, cross_point))
+        last_pt = n_pt
+    return out
+
+
+# Convert a loop (list of line segments) into
+# The name incorrectly suggests that it is cyclic.
+def back_to_xy_loop(lines):
+    out = []
+    last_pt = lines[0]
+    out.append(to_xy(last_pt[0], last_pt[1]))
+    for n_pt in lines[1:]:
+        for pt in subdivide(last_pt, n_pt, max_dist_theta):
+            out.append(to_xy(pt[0], pt[1]))
+        last_pt = n_pt
+
+    return out
+
+
+# Segment in angle space.
+class AngleSegment:
+
+    def __init__(self, start, end, name=None, alpha_unitizer=None, vmax=None):
+        """Creates an angle segment.
+
+        Args:
+          start: (double, double),  The start of the segment in theta1, theta2
+              coordinates in radians
+          end: (double, double),  The end of the segment in theta1, theta2
+              coordinates in radians
+        """
+        self.start = start
+        self.end = end
+        self.name = name
+        self.alpha_unitizer = alpha_unitizer
+        self.vmax = vmax
+
+    def __repr__(self):
+        return "AngleSegment(%s, %s)" % (repr(self.start), repr(self.end))
+
+    def DrawTo(self, cr, theta_version):
+        if theta_version:
+            cr.move_to(self.start[0], self.start[1] + theta_end_circle_size)
+            cr.arc(self.start[0], self.start[1], theta_end_circle_size, 0,
+                   2.0 * numpy.pi)
+            cr.move_to(self.end[0], self.end[1] + theta_end_circle_size)
+            cr.arc(self.end[0], self.end[1], theta_end_circle_size, 0,
+                   2.0 * numpy.pi)
+            cr.move_to(self.start[0], self.start[1])
+            cr.line_to(self.end[0], self.end[1])
+        else:
+            start_xy = to_xy(self.start[0], self.start[1])
+            end_xy = to_xy(self.end[0], self.end[1])
+            draw_lines(cr, back_to_xy_loop([self.start, self.end]))
+            cr.move_to(start_xy[0] + xy_end_circle_size, start_xy[1])
+            cr.arc(start_xy[0], start_xy[1], xy_end_circle_size, 0,
+                   2.0 * numpy.pi)
+            cr.move_to(end_xy[0] + xy_end_circle_size, end_xy[1])
+            cr.arc(end_xy[0], end_xy[1], xy_end_circle_size, 0, 2.0 * numpy.pi)
+
+    def ToThetaPoints(self):
+        dx = self.end[0] - self.start[0]
+        dy = self.end[1] - self.start[1]
+        mag = numpy.hypot(dx, dy)
+        dx /= mag
+        dy /= mag
+
+        return [(self.start[0], self.start[1], dx, dy, 0.0, 0.0),
+                (self.end[0], self.end[1], dx, dy, 0.0, 0.0)]
+
+
+class XYSegment:
+    """Straight line in XY space."""
+
+    def __init__(self, start, end, name=None, alpha_unitizer=None, vmax=None):
+        """Creates an XY segment.
+
+        Args:
+          start: (double, double),  The start of the segment in theta1, theta2
+              coordinates in radians
+          end: (double, double),  The end of the segment in theta1, theta2
+              coordinates in radians
+        """
+        self.start = start
+        self.end = end
+        self.name = name
+        self.alpha_unitizer = alpha_unitizer
+        self.vmax = vmax
+
+    def __repr__(self):
+        return "XYSegment(%s, %s)" % (repr(self.start), repr(self.end))
+
+    def DrawTo(self, cr, theta_version):
+        if theta_version:
+            theta1, theta2 = self.start
+            circular_index_select = int(
+                numpy.floor((self.start[1] - self.start[0]) / numpy.pi))
+            start = get_xy(self.start)
+            end = get_xy(self.end)
+
+            ln = [(start[0], start[1]), (end[0], end[1])]
+            draw_lines(cr, [
+                to_theta_with_circular_index(x, y, circular_index_select)
+                for x, y in subdivide_xy(ln)
+            ])
+            cr.move_to(self.start[0] + theta_end_circle_size, self.start[1])
+            cr.arc(self.start[0], self.start[1], theta_end_circle_size, 0,
+                   2.0 * numpy.pi)
+            cr.move_to(self.end[0] + theta_end_circle_size, self.end[1])
+            cr.arc(self.end[0], self.end[1], theta_end_circle_size, 0,
+                   2.0 * numpy.pi)
+        else:
+            start = get_xy(self.start)
+            end = get_xy(self.end)
+            cr.move_to(start[0], start[1])
+            cr.line_to(end[0], end[1])
+            cr.move_to(start[0] + xy_end_circle_size, start[1])
+            cr.arc(start[0], start[1], xy_end_circle_size, 0, 2.0 * numpy.pi)
+            cr.move_to(end[0] + xy_end_circle_size, end[1])
+            cr.arc(end[0], end[1], xy_end_circle_size, 0, 2.0 * numpy.pi)
+
+    def ToThetaPoints(self):
+        """ Converts to points in theta space via to_theta_with_circular_index_and_derivs"""
+        theta1, theta2 = self.start
+        circular_index_select = int(
+            numpy.floor((self.start[1] - self.start[0]) / numpy.pi))
+        start = get_xy(self.start)
+        end = get_xy(self.end)
+
+        ln = [(start[0], start[1]), (end[0], end[1])]
+
+        dx = end[0] - start[0]
+        dy = end[1] - start[1]
+        mag = numpy.hypot(dx, dy)
+        dx /= mag
+        dy /= mag
+
+        return [
+            to_theta_with_circular_index_and_derivs(x, y, dx, dy,
+                                                    circular_index_select)
+            for x, y in subdivide_xy(ln, 0.01)
+        ]
+
+
+def spline_eval(start, control1, control2, end, alpha):
+    a = alpha_blend(start, control1, alpha)
+    b = alpha_blend(control1, control2, alpha)
+    c = alpha_blend(control2, end, alpha)
+    return alpha_blend(alpha_blend(a, b, alpha), alpha_blend(b, c, alpha),
+                       alpha)
+
+
+def subdivide_spline(start, control1, control2, end):
+    # TODO: pick N based on spline parameters? or otherwise change it to be more evenly spaced?
+    n = 100
+    for i in range(0, n + 1):
+        yield i / float(n)
+
+
+class SplineSegment:
+
+    def __init__(self,
+                 start,
+                 control1,
+                 control2,
+                 end,
+                 name=None,
+                 alpha_unitizer=None,
+                 vmax=None):
+        self.start = start
+        self.control1 = control1
+        self.control2 = control2
+        self.end = end
+        self.name = name
+        self.alpha_unitizer = alpha_unitizer
+        self.vmax = vmax
+
+    def __repr__(self):
+        return "SplineSegment(%s, %s, %s, %s)" % (repr(
+            self.start), repr(self.control1), repr(
+                self.control2), repr(self.end))
+
+    def DrawTo(self, cr, theta_version):
+        if theta_version:
+            c_i_select = get_circular_index(self.start)
+            start = get_xy(self.start)
+            control1 = get_xy(self.control1)
+            control2 = get_xy(self.control2)
+            end = get_xy(self.end)
+
+            draw_lines(cr, [
+                to_theta(spline_eval(start, control1, control2, end, alpha),
+                         c_i_select)
+                for alpha in subdivide_spline(start, control1, control2, end)
+            ])
+            cr.move_to(self.start[0] + theta_end_circle_size, self.start[1])
+            cr.arc(self.start[0], self.start[1], theta_end_circle_size, 0,
+                   2.0 * numpy.pi)
+            cr.move_to(self.end[0] + theta_end_circle_size, self.end[1])
+            cr.arc(self.end[0], self.end[1], theta_end_circle_size, 0,
+                   2.0 * numpy.pi)
+        else:
+            start = get_xy(self.start)
+            control1 = get_xy(self.control1)
+            control2 = get_xy(self.control2)
+            end = get_xy(self.end)
+
+            draw_lines(cr, [
+                spline_eval(start, control1, control2, end, alpha)
+                for alpha in subdivide_spline(start, control1, control2, end)
+            ])
+
+            cr.move_to(start[0] + xy_end_circle_size, start[1])
+            cr.arc(start[0], start[1], xy_end_circle_size, 0, 2.0 * numpy.pi)
+            cr.move_to(end[0] + xy_end_circle_size, end[1])
+            cr.arc(end[0], end[1], xy_end_circle_size, 0, 2.0 * numpy.pi)
+
+    def ToThetaPoints(self):
+        t1, t2 = self.start
+        c_i_select = get_circular_index(self.start)
+        start = get_xy(self.start)
+        control1 = get_xy(self.control1)
+        control2 = get_xy(self.control2)
+        end = get_xy(self.end)
+
+        return [
+            to_theta_with_ci_and_derivs(
+                spline_eval(start, control1, control2, end, alpha - 0.00001),
+                spline_eval(start, control1, control2, end, alpha),
+                spline_eval(start, control1, control2, end, alpha + 0.00001),
+                c_i_select)
+            for alpha in subdivide_spline(start, control1, control2, end)
+        ]
+
+
+def get_derivs(t_prev, t, t_next):
+    c, a, b = t_prev, t, t_next
+    d1 = normalize(b - a)
+    d2 = normalize(c - a)
+    accel = (d1 + d2) / numpy.linalg.norm(a - b)
+    return (a[0], a[1], d1[0], d1[1], accel[0], accel[1])
+
+
+class ThetaSplineSegment:
+
+    def __init__(self,
+                 start,
+                 control1,
+                 control2,
+                 end,
+                 name=None,
+                 alpha_unitizer=None,
+                 vmax=None):
+        self.start = start
+        self.control1 = control1
+        self.control2 = control2
+        self.end = end
+        self.name = name
+        self.alpha_unitizer = alpha_unitizer
+        self.vmax = vmax
+
+    def __repr__(self):
+        return "ThetaSplineSegment(%s, %s, &s, %s)" % (repr(
+            self.start), repr(self.control1), repr(
+                self.control2), repr(self.end))
+
+    def DrawTo(self, cr, theta_version):
+        if (theta_version):
+            draw_lines(cr, [
+                spline_eval(self.start, self.control1, self.control2, self.end,
+                            alpha)
+                for alpha in subdivide_spline(self.start, self.control1,
+                                              self.control2, self.end)
+            ])
+        else:
+            start = get_xy(self.start)
+            end = get_xy(self.end)
+
+            draw_lines(cr, [
+                get_xy(
+                    spline_eval(self.start, self.control1, self.control2,
+                                self.end, alpha))
+                for alpha in subdivide_spline(self.start, self.control1,
+                                              self.control2, self.end)
+            ])
+
+            cr.move_to(start[0] + xy_end_circle_size, start[1])
+            cr.arc(start[0], start[1], xy_end_circle_size, 0, 2.0 * numpy.pi)
+            cr.move_to(end[0] + xy_end_circle_size, end[1])
+            cr.arc(end[0], end[1], xy_end_circle_size, 0, 2.0 * numpy.pi)
+
+    def ToThetaPoints(self):
+        return [
+            get_derivs(
+                spline_eval(self.start, self.control1, self.control2, self.end,
+                            alpha - 0.00001),
+                spline_eval(self.start, self.control1, self.control2, self.end,
+                            alpha),
+                spline_eval(self.start, self.control1, self.control2, self.end,
+                            alpha + 0.00001))
+            for alpha in subdivide_spline(self.start, self.control1,
+                                          self.control2, self.end)
+        ]
+
+
+tall_box_x = 0.411
+tall_box_y = 0.125
+
+short_box_x = 0.431
+short_box_y = 0.082
+
+ready_above_box = to_theta_with_circular_index(tall_box_x,
+                                               tall_box_y + 0.08,
+                                               circular_index=-1)
+tall_box_grab = to_theta_with_circular_index(tall_box_x,
+                                             tall_box_y,
+                                             circular_index=-1)
+short_box_grab = to_theta_with_circular_index(short_box_x,
+                                              short_box_y,
+                                              circular_index=-1)
+
+# TODO(austin): Drive the front/back off the same numbers a bit better.
+front_high_box = to_theta_with_circular_index(0.378, 2.46, circular_index=-1)
+front_middle3_box = to_theta_with_circular_index(0.700,
+                                                 2.125,
+                                                 circular_index=-1.000000)
+front_middle2_box = to_theta_with_circular_index(0.700,
+                                                 2.268,
+                                                 circular_index=-1)
+front_middle1_box = to_theta_with_circular_index(0.800,
+                                                 1.915,
+                                                 circular_index=-1)
+front_low_box = to_theta_with_circular_index(0.87, 1.572, circular_index=-1)
+back_high_box = to_theta_with_circular_index(-0.75, 2.48, circular_index=0)
+back_middle2_box = to_theta_with_circular_index(-0.700, 2.27, circular_index=0)
+back_middle1_box = to_theta_with_circular_index(-0.800, 1.93, circular_index=0)
+back_low_box = to_theta_with_circular_index(-0.87, 1.64, circular_index=0)
+
+back_extra_low_box = to_theta_with_circular_index(-0.87,
+                                                  1.52,
+                                                  circular_index=0)
+
+front_switch = to_theta_with_circular_index(0.88, 0.967, circular_index=-1)
+back_switch = to_theta_with_circular_index(-0.88, 0.967, circular_index=-2)
+
+neutral = to_theta_with_circular_index(0.0, 0.33, circular_index=-1)
+
+up = to_theta_with_circular_index(0.0, 2.547, circular_index=-1)
+
+front_switch_auto = to_theta_with_circular_index(0.750,
+                                                 2.20,
+                                                 circular_index=-1.000000)
+
+duck = numpy.array([numpy.pi / 2.0 - 0.92, numpy.pi / 2.0 - 4.26])
+
+starting = numpy.array([numpy.pi / 2.0 - 0.593329, numpy.pi / 2.0 - 3.749631])
+vertical_starting = numpy.array([numpy.pi / 2.0, -numpy.pi / 2.0])
+
+self_hang = numpy.array([numpy.pi / 2.0 - 0.191611, numpy.pi / 2.0])
+partner_hang = numpy.array([numpy.pi / 2.0 - (-0.30), numpy.pi / 2.0])
+
+above_hang = numpy.array([numpy.pi / 2.0 - 0.14, numpy.pi / 2.0 - (-0.165)])
+below_hang = numpy.array([numpy.pi / 2.0 - 0.39, numpy.pi / 2.0 - (-0.517)])
+
+up_c1 = to_theta((0.63, 1.17), circular_index=-1)
+up_c2 = to_theta((0.65, 1.62), circular_index=-1)
+
+front_high_box_c1 = to_theta((0.63, 1.04), circular_index=-1)
+front_high_box_c2 = to_theta((0.50, 1.60), circular_index=-1)
+
+front_middle2_box_c1 = to_theta((0.41, 0.83), circular_index=-1)
+front_middle2_box_c2 = to_theta((0.52, 1.30), circular_index=-1)
+
+front_middle1_box_c1 = to_theta((0.34, 0.82), circular_index=-1)
+front_middle1_box_c2 = to_theta((0.48, 1.15), circular_index=-1)
+
+#c1: (1.421433, -1.070254)
+#c2: (1.434384, -1.057803
+ready_above_box_c1 = numpy.array([1.480802, -1.081218])
+ready_above_box_c2 = numpy.array([1.391449, -1.060331])
+
+front_switch_c1 = numpy.array([1.903841, -0.622351])
+front_switch_c2 = numpy.array([1.903841, -0.622351])
+
+
+sparse_front_points = [
+    (front_high_box, "FrontHighBox"),
+    (front_middle2_box, "FrontMiddle2Box"),
+    (front_middle3_box, "FrontMiddle3Box"),
+    (front_middle1_box, "FrontMiddle1Box"),
+    (front_low_box, "FrontLowBox"),
+    (front_switch, "FrontSwitch"),
+]  # yapf: disable
+
+sparse_back_points = [
+    (back_high_box, "BackHighBox"),
+    (back_middle2_box, "BackMiddle2Box"),
+    (back_middle1_box, "BackMiddle1Box"),
+    (back_low_box, "BackLowBox"),
+    (back_extra_low_box, "BackExtraLowBox"),
+]  # yapf: disable
+
+def expand_points(points, max_distance):
+    """Expands a list of points to be at most max_distance apart
+
+    Generates the paths to connect the new points to the closest input points,
+    and the paths connecting the points.
+
+    Args:
+      points, list of tuple of point, name, The points to start with and fill
+          in.
+      max_distance, float, The max distance between two points when expanding
+          the graph.
+
+    Return:
+      points, edges
+    """
+    result_points = [points[0]]
+    result_paths = []
+    for point, name in points[1:]:
+        previous_point = result_points[-1][0]
+        previous_point_xy = get_xy(previous_point)
+        circular_index = get_circular_index(previous_point)
+
+        point_xy = get_xy(point)
+        norm = numpy.linalg.norm(point_xy - previous_point_xy)
+        num_points = int(numpy.ceil(norm / max_distance))
+        last_iteration_point = previous_point
+        for subindex in range(1, num_points):
+            subpoint = to_theta(alpha_blend(previous_point_xy, point_xy,
+                                            float(subindex) / num_points),
+                                circular_index=circular_index)
+            result_points.append(
+                (subpoint, '%s%dof%d' % (name, subindex, num_points)))
+            result_paths.append(
+                XYSegment(last_iteration_point, subpoint, vmax=6.0))
+            if (last_iteration_point != previous_point).any():
+                result_paths.append(XYSegment(previous_point, subpoint))
+            if subindex == num_points - 1:
+                result_paths.append(XYSegment(subpoint, point, vmax=6.0))
+            else:
+                result_paths.append(XYSegment(subpoint, point))
+            last_iteration_point = subpoint
+        result_points.append((point, name))
+
+    return result_points, result_paths
+
+
+front_points, front_paths = expand_points(sparse_front_points, 0.06)
+back_points, back_paths = expand_points(sparse_back_points, 0.06)
+
+points = [(ready_above_box, "ReadyAboveBox"),
+          (tall_box_grab, "TallBoxGrab"),
+          (short_box_grab, "ShortBoxGrab"),
+          (back_switch, "BackSwitch"),
+          (neutral, "Neutral"),
+          (up, "Up"),
+          (above_hang, "AboveHang"),
+          (below_hang, "BelowHang"),
+          (self_hang, "SelfHang"),
+          (partner_hang, "PartnerHang"),
+          (front_switch_auto, "FrontSwitchAuto"),
+          (starting, "Starting"),
+          (duck, "Duck"),
+          (vertical_starting, "VerticalStarting"),
+] + front_points + back_points  # yapf: disable
+
+duck_c1 = numpy.array([1.337111, -1.721008])
+duck_c2 = numpy.array([1.283701, -1.795519])
+
+ready_to_up_c1 = numpy.array([1.792962, 0.198329])
+ready_to_up_c2 = numpy.array([1.792962, 0.198329])
+
+front_switch_auto_c1 = numpy.array([1.792857, -0.372768])
+front_switch_auto_c2 = numpy.array([1.861885, -0.273664])
+
+# We need to define critical points so we can create paths connecting them.
+# TODO(austin): Attach velocities to the slow ones.
+ready_to_back_low_c1 = numpy.array([2.524325, 0.046417])
+
+neutral_to_back_low_c1 = numpy.array([2.381942, -0.070220])
+
+tall_to_back_low_c1 = numpy.array([2.603918, 0.088298])
+tall_to_back_low_c2 = numpy.array([1.605624, 1.003434])
+
+tall_to_back_high_c2 = numpy.array([1.508610, 0.946147])
+
+# If true, only plot the first named segment
+isolate = False
+
+long_alpha_unitizer = numpy.matrix([[1.0 / 17.0, 0.0], [0.0, 1.0 / 17.0]])
+
+neutral_to_back_c1 = numpy.array([0.702527, -2.618276])
+neutral_to_back_c2 = numpy.array([0.526914, -3.109691])
+
+named_segments = [
+    ThetaSplineSegment(neutral, neutral_to_back_c1, neutral_to_back_c2,
+                       back_switch, "BackSwitch"),
+    ThetaSplineSegment(neutral,
+                       neutral_to_back_low_c1,
+                       tall_to_back_high_c2,
+                       back_high_box,
+                       "NeutralBoxToHigh",
+                       alpha_unitizer=long_alpha_unitizer),
+    ThetaSplineSegment(neutral, neutral_to_back_low_c1, tall_to_back_high_c2,
+                       back_middle2_box, "NeutralBoxToMiddle2",
+                       long_alpha_unitizer),
+    ThetaSplineSegment(neutral, neutral_to_back_low_c1, tall_to_back_low_c2,
+                       back_middle1_box, "NeutralBoxToMiddle1",
+                       long_alpha_unitizer),
+    ThetaSplineSegment(neutral, neutral_to_back_low_c1, tall_to_back_low_c2,
+                       back_low_box, "NeutralBoxToLow", long_alpha_unitizer),
+    ThetaSplineSegment(ready_above_box, ready_to_back_low_c1,
+                       tall_to_back_high_c2, back_high_box, "ReadyBoxToHigh",
+                       long_alpha_unitizer),
+    ThetaSplineSegment(ready_above_box, ready_to_back_low_c1,
+                       tall_to_back_high_c2, back_middle2_box,
+                       "ReadyBoxToMiddle2", long_alpha_unitizer),
+    ThetaSplineSegment(ready_above_box, ready_to_back_low_c1,
+                       tall_to_back_low_c2, back_middle1_box,
+                       "ReadyBoxToMiddle1", long_alpha_unitizer),
+    ThetaSplineSegment(ready_above_box, ready_to_back_low_c1,
+                       tall_to_back_low_c2, back_low_box, "ReadyBoxToLow",
+                       long_alpha_unitizer),
+    ThetaSplineSegment(short_box_grab, tall_to_back_low_c1,
+                       tall_to_back_high_c2, back_high_box, "ShortBoxToHigh",
+                       long_alpha_unitizer),
+    ThetaSplineSegment(short_box_grab, tall_to_back_low_c1,
+                       tall_to_back_high_c2, back_middle2_box,
+                       "ShortBoxToMiddle2", long_alpha_unitizer),
+    ThetaSplineSegment(short_box_grab, tall_to_back_low_c1,
+                       tall_to_back_low_c2, back_middle1_box,
+                       "ShortBoxToMiddle1", long_alpha_unitizer),
+    ThetaSplineSegment(short_box_grab, tall_to_back_low_c1,
+                       tall_to_back_low_c2, back_low_box, "ShortBoxToLow",
+                       long_alpha_unitizer),
+    ThetaSplineSegment(tall_box_grab, tall_to_back_low_c1,
+                       tall_to_back_high_c2, back_high_box, "TallBoxToHigh",
+                       long_alpha_unitizer),
+    ThetaSplineSegment(tall_box_grab, tall_to_back_low_c1,
+                       tall_to_back_high_c2, back_middle2_box,
+                       "TallBoxToMiddle2", long_alpha_unitizer),
+    ThetaSplineSegment(tall_box_grab, tall_to_back_low_c1, tall_to_back_low_c2,
+                       back_middle1_box, "TallBoxToMiddle1",
+                       long_alpha_unitizer),
+    ThetaSplineSegment(tall_box_grab, tall_to_back_low_c1, tall_to_back_low_c2,
+                       back_low_box, "TallBoxToLow", long_alpha_unitizer),
+    SplineSegment(neutral, ready_above_box_c1, ready_above_box_c2,
+                  ready_above_box, "ReadyToNeutral"),
+    XYSegment(ready_above_box, tall_box_grab, "ReadyToTallBox", vmax=6.0),
+    XYSegment(ready_above_box, short_box_grab, "ReadyToShortBox", vmax=6.0),
+    XYSegment(tall_box_grab, short_box_grab, "TallToShortBox", vmax=6.0),
+    SplineSegment(neutral, ready_above_box_c1, ready_above_box_c2,
+                  tall_box_grab, "TallToNeutral"),
+    SplineSegment(neutral, ready_above_box_c1, ready_above_box_c2,
+                  short_box_grab, "ShortToNeutral"),
+    SplineSegment(neutral, up_c1, up_c2, up, "NeutralToUp"),
+    SplineSegment(neutral, front_high_box_c1, front_high_box_c2,
+                  front_high_box, "NeutralToFrontHigh"),
+    SplineSegment(neutral, front_middle2_box_c1, front_middle2_box_c2,
+                  front_middle2_box, "NeutralToFrontMiddle2"),
+    SplineSegment(neutral, front_middle1_box_c1, front_middle1_box_c2,
+                  front_middle1_box, "NeutralToFrontMiddle1"),
+]
+
+unnamed_segments = [
+    SplineSegment(neutral, front_switch_auto_c1, front_switch_auto_c2,
+                  front_switch_auto),
+    SplineSegment(tall_box_grab, ready_to_up_c1, ready_to_up_c2, up),
+    SplineSegment(short_box_grab, ready_to_up_c1, ready_to_up_c2, up),
+    SplineSegment(ready_above_box, ready_to_up_c1, ready_to_up_c2, up),
+    ThetaSplineSegment(duck, duck_c1, duck_c2, neutral),
+    SplineSegment(neutral, front_switch_c1, front_switch_c2, front_switch),
+    XYSegment(ready_above_box, front_low_box),
+    XYSegment(ready_above_box, front_switch),
+    XYSegment(ready_above_box, front_middle1_box),
+    XYSegment(ready_above_box, front_middle2_box),
+    XYSegment(ready_above_box, front_middle3_box),
+    SplineSegment(ready_above_box, ready_to_up_c1, ready_to_up_c2,
+                  front_high_box),
+    AngleSegment(starting, vertical_starting),
+    AngleSegment(vertical_starting, neutral),
+    XYSegment(neutral, front_low_box),
+    XYSegment(up, front_high_box),
+    XYSegment(up, front_middle2_box),
+    XYSegment(front_middle3_box, up),
+    XYSegment(front_middle3_box, front_high_box),
+    XYSegment(front_middle3_box, front_middle2_box),
+    XYSegment(front_middle3_box, front_middle1_box),
+    XYSegment(up, front_middle1_box),
+    XYSegment(up, front_low_box),
+    XYSegment(front_high_box, front_middle2_box),
+    XYSegment(front_high_box, front_middle1_box),
+    XYSegment(front_high_box, front_low_box),
+    XYSegment(front_middle2_box, front_middle1_box),
+    XYSegment(front_middle2_box, front_low_box),
+    XYSegment(front_middle1_box, front_low_box),
+    XYSegment(front_switch, front_low_box),
+    XYSegment(front_switch, up),
+    XYSegment(front_switch, front_high_box),
+    AngleSegment(up, back_high_box),
+    AngleSegment(up, back_middle2_box),
+    AngleSegment(up, back_middle1_box),
+    AngleSegment(up, back_low_box),
+    XYSegment(back_high_box, back_middle2_box),
+    XYSegment(back_high_box, back_middle1_box),
+    XYSegment(back_high_box, back_low_box),
+    XYSegment(back_middle2_box, back_middle1_box),
+    XYSegment(back_middle2_box, back_low_box),
+    XYSegment(back_middle1_box, back_low_box),
+    AngleSegment(up, above_hang),
+    AngleSegment(above_hang, below_hang),
+    AngleSegment(up, below_hang),
+    AngleSegment(up, self_hang),
+    AngleSegment(up, partner_hang),
+] + front_paths + back_paths
+
+segments = []
+if isolate:
+    segments += named_segments[:isolate]
+else:
+    segments += named_segments + unnamed_segments