Copy y2018 python arm visualization to y2023
Signed-off-by: Maxwell Henderson <mxwhenderson@gmail.com>
Change-Id: I0e4c2be36e46ab1d88ba04cfdb8e80f1e88ec5fc
diff --git a/y2023/control_loops/python/BUILD b/y2023/control_loops/python/BUILD
index b024676..a2ea6d8 100644
--- a/y2023/control_loops/python/BUILD
+++ b/y2023/control_loops/python/BUILD
@@ -31,6 +31,24 @@
],
)
+py_binary(
+ name = "graph_edit",
+ srcs = [
+ "graph_edit.py",
+ "graph_generate.py",
+ ],
+ legacy_create_init = False,
+ target_compatible_with = ["@platforms//cpu:x86_64"],
+ deps = [
+ ":python_init",
+ "//frc971/control_loops/python:basic_window",
+ "//frc971/control_loops/python:color",
+ "@pip//numpy",
+ "@pip//pygobject",
+ "@pip//shapely",
+ ],
+)
+
py_library(
name = "polydrivetrain_lib",
srcs = [
diff --git a/y2023/control_loops/python/graph_edit.py b/y2023/control_loops/python/graph_edit.py
new file mode 100644
index 0000000..7b6179c
--- /dev/null
+++ b/y2023/control_loops/python/graph_edit.py
@@ -0,0 +1,495 @@
+#!/usr/bin/python3
+
+from __future__ import print_function
+import os
+from frc971.control_loops.python import basic_window
+from frc971.control_loops.python.color import Color, palette
+import random
+import gi
+import numpy
+
+gi.require_version('Gtk', '3.0')
+from gi.repository import Gdk, Gtk
+import cairo
+import graph_generate
+from graph_generate import XYSegment, AngleSegment, to_theta, to_xy, alpha_blend
+from graph_generate import back_to_xy_loop, subdivide_theta, to_theta_loop
+from graph_generate import l1, l2, joint_center
+
+from frc971.control_loops.python.basic_window import OverrideMatrix, identity, quit_main_loop, set_color
+
+import shapely
+from shapely.geometry import Polygon
+
+
+def px(cr):
+ return OverrideMatrix(cr, identity)
+
+
+def draw_px_cross(cr, length_px):
+ """Draws a cross with fixed dimensions in pixel space."""
+ with px(cr):
+ x, y = cr.get_current_point()
+ cr.move_to(x, y - length_px)
+ cr.line_to(x, y + length_px)
+ cr.stroke()
+
+ cr.move_to(x - length_px, y)
+ cr.line_to(x + length_px, y)
+ cr.stroke()
+
+
+def angle_dist_sqr(a1, a2):
+ """Distance between two points in angle space."""
+ return (a1[0] - a2[0])**2 + (a1[1] - a2[1])**2
+
+
+# Find the highest y position that intersects the vertical line defined by x.
+def inter_y(x):
+ return numpy.sqrt((l2 + l1)**2 -
+ (x - joint_center[0])**2) + joint_center[1]
+
+
+# This is the x position where the inner (hyperextension) circle intersects the horizontal line
+derr = numpy.sqrt((l1 - l2)**2 - (joint_center[1] - 0.3048)**2)
+
+
+# Define min and max l1 angles based on vertical constraints.
+def get_angle(boundary):
+ h = numpy.sqrt((l1)**2 - (boundary - joint_center[0])**2) + joint_center[1]
+ return numpy.arctan2(h, boundary - joint_center[0])
+
+
+# left hand side lines
+lines1 = [
+ (-0.826135, inter_y(-0.826135)),
+ (-0.826135, 0.1397),
+ (-23.025 * 0.0254, 0.1397),
+ (-23.025 * 0.0254, 0.3048),
+ (joint_center[0] - derr, 0.3048),
+]
+
+# right hand side lines
+lines2 = [(joint_center[0] + derr, 0.3048), (0.422275, 0.3048),
+ (0.422275, 0.1397), (0.826135, 0.1397),
+ (0.826135, inter_y(0.826135))]
+
+t1_min = get_angle((32.525 - 4.0) * 0.0254)
+t2_min = -7.0 / 4.0 * numpy.pi
+
+t1_max = get_angle((-32.525 + 4.0) * 0.0254)
+t2_max = numpy.pi * 3.0 / 4.0
+
+
+# Draw lines to cr + stroke.
+def draw_lines(cr, lines):
+ cr.move_to(lines[0][0], lines[0][1])
+ for pt in lines[1:]:
+ cr.line_to(pt[0], pt[1])
+ with px(cr):
+ cr.stroke()
+
+
+# Rotate a rasterized loop such that it aligns to when the parameters loop
+def rotate_to_jump_point(points):
+ last_pt = points[0]
+ for pt_i in range(1, len(points)):
+ pt = points[pt_i]
+ delta = last_pt[1] - pt[1]
+ if abs(delta) > numpy.pi:
+ return points[pt_i:] + points[:pt_i]
+ last_pt = pt
+ return points
+
+
+# shift points vertically by dy.
+def y_shift(points, dy):
+ return [(x, y + dy) for x, y in points]
+
+
+lines1_theta_part = rotate_to_jump_point(to_theta_loop(lines1, 0))
+lines2_theta_part = rotate_to_jump_point(to_theta_loop(lines2))
+
+# Some hacks here to make a single polygon by shifting to get an extra copy of the contraints.
+lines1_theta = y_shift(lines1_theta_part, -numpy.pi * 2) + lines1_theta_part + \
+ y_shift(lines1_theta_part, numpy.pi * 2)
+lines2_theta = y_shift(lines2_theta_part, numpy.pi * 2) + lines2_theta_part + \
+ y_shift(lines2_theta_part, -numpy.pi * 2)
+
+lines_theta = lines1_theta + lines2_theta
+
+p1 = Polygon(lines_theta)
+
+p2 = Polygon([(t1_min, t2_min), (t1_max, t2_min), (t1_max, t2_max),
+ (t1_min, t2_max)])
+
+# Fully computed theta constrints.
+lines_theta = list(p1.intersection(p2).exterior.coords)
+
+lines1_theta_back = back_to_xy_loop(lines1_theta)
+lines2_theta_back = back_to_xy_loop(lines2_theta)
+
+lines_theta_back = back_to_xy_loop(lines_theta)
+
+
+# Get the closest point to a line from a test pt.
+def get_closest(prev, cur, pt):
+ dx_ang = (cur[0] - prev[0])
+ dy_ang = (cur[1] - prev[1])
+
+ d = numpy.sqrt(dx_ang**2 + dy_ang**2)
+ if (d < 0.000001):
+ return prev, numpy.sqrt((prev[0] - pt[0])**2 + (prev[1] - pt[1])**2)
+
+ pdx = -dy_ang / d
+ pdy = dx_ang / d
+
+ dpx = pt[0] - prev[0]
+ dpy = pt[1] - prev[1]
+
+ alpha = (dx_ang * dpx + dy_ang * dpy) / d / d
+
+ if (alpha < 0):
+ return prev, numpy.sqrt((prev[0] - pt[0])**2 + (prev[1] - pt[1])**2)
+ elif (alpha > 1):
+ return cur, numpy.sqrt((cur[0] - pt[0])**2 + (cur[1] - pt[1])**2)
+ else:
+ return (alpha_blend(prev[0], cur[0], alpha), alpha_blend(prev[1], cur[1], alpha)), \
+ abs(dpx * pdx + dpy * pdy)
+
+
+def closest_segment(lines, pt):
+ c_pt, c_pt_dist = get_closest(lines[-1], lines[0], pt)
+ for i in range(1, len(lines)):
+ prev = lines[i - 1]
+ cur = lines[i]
+ c_pt_new, c_pt_new_dist = get_closest(prev, cur, pt)
+ if c_pt_new_dist < c_pt_dist:
+ c_pt = c_pt_new
+ c_pt_dist = c_pt_new_dist
+ return c_pt, c_pt_dist
+
+
+# Create a GTK+ widget on which we will draw using Cairo
+class Silly(basic_window.BaseWindow):
+
+ def __init__(self):
+ super(Silly, self).__init__()
+
+ self.window = Gtk.Window()
+ self.window.set_title("DrawingArea")
+
+ self.window.set_events(Gdk.EventMask.BUTTON_PRESS_MASK
+ | Gdk.EventMask.BUTTON_RELEASE_MASK
+ | Gdk.EventMask.POINTER_MOTION_MASK
+ | Gdk.EventMask.SCROLL_MASK
+ | Gdk.EventMask.KEY_PRESS_MASK)
+ self.method_connect("key-press-event", self.do_key_press)
+ self.method_connect("button-press-event",
+ self._do_button_press_internal)
+ self.method_connect("configure-event", self._do_configure)
+ self.window.add(self)
+ self.window.show_all()
+
+ self.theta_version = False
+ self.reinit_extents()
+
+ self.last_pos = (numpy.pi / 2.0, 1.0)
+ self.circular_index_select = -1
+
+ # Extra stuff for drawing lines.
+ self.segments = []
+ self.prev_segment_pt = None
+ self.now_segment_pt = None
+ self.spline_edit = 0
+ self.edit_control1 = True
+
+ def do_key_press(self, event):
+ pass
+
+ def _do_button_press_internal(self, event):
+ o_x = event.x
+ o_y = event.y
+ x = event.x - self.window_shape[0] / 2
+ y = self.window_shape[1] / 2 - event.y
+ scale = self.get_current_scale()
+ event.x = x / scale + self.center[0]
+ event.y = y / scale + self.center[1]
+ self.do_button_press(event)
+ event.x = o_x
+ event.y = o_y
+
+ def do_button_press(self, event):
+ pass
+
+ def _do_configure(self, event):
+ self.window_shape = (event.width, event.height)
+
+ def redraw(self):
+ if not self.needs_redraw:
+ self.needs_redraw = True
+ self.window.queue_draw()
+
+ def method_connect(self, event, cb):
+
+ def handler(obj, *args):
+ cb(*args)
+
+ self.window.connect(event, handler)
+
+ def reinit_extents(self):
+ if self.theta_version:
+ self.extents_x_min = -numpy.pi * 2
+ self.extents_x_max = numpy.pi * 2
+ self.extents_y_min = -numpy.pi * 2
+ self.extents_y_max = numpy.pi * 2
+ else:
+ self.extents_x_min = -40.0 * 0.0254
+ self.extents_x_max = 40.0 * 0.0254
+ self.extents_y_min = -4.0 * 0.0254
+ self.extents_y_max = 110.0 * 0.0254
+
+ self.init_extents(
+ (0.5 * (self.extents_x_min + self.extents_x_max), 0.5 *
+ (self.extents_y_max + self.extents_y_min)),
+ (1.0 * (self.extents_x_max - self.extents_x_min), 1.0 *
+ (self.extents_y_max - self.extents_y_min)))
+
+ # Handle the expose-event by drawing
+ def handle_draw(self, cr):
+ # use "with px(cr): blah;" to transform to pixel coordinates.
+
+ # Fill the background color of the window with grey
+ set_color(cr, palette["GREY"])
+ cr.paint()
+
+ # Draw a extents rectangle
+ set_color(cr, palette["WHITE"])
+ cr.rectangle(self.extents_x_min, self.extents_y_min,
+ (self.extents_x_max - self.extents_x_min),
+ self.extents_y_max - self.extents_y_min)
+ cr.fill()
+
+ if not self.theta_version:
+ # Draw a filled white rectangle.
+ set_color(cr, palette["WHITE"])
+ cr.rectangle(-2.0, -2.0, 4.0, 4.0)
+ cr.fill()
+
+ set_color(cr, palette["BLUE"])
+ cr.arc(joint_center[0], joint_center[1], l2 + l1, 0,
+ 2.0 * numpy.pi)
+ with px(cr):
+ cr.stroke()
+ cr.arc(joint_center[0], joint_center[1], l1 - l2, 0,
+ 2.0 * numpy.pi)
+ with px(cr):
+ cr.stroke()
+ else:
+ # Draw a filled white rectangle.
+ set_color(cr, palette["WHITE"])
+ cr.rectangle(-numpy.pi, -numpy.pi, numpy.pi * 2.0, numpy.pi * 2.0)
+ cr.fill()
+
+ if self.theta_version:
+ set_color(cr, palette["BLUE"])
+ for i in range(-6, 6):
+ cr.move_to(-40, -40 + i * numpy.pi)
+ cr.line_to(40, 40 + i * numpy.pi)
+ with px(cr):
+ cr.stroke()
+
+ if self.theta_version:
+ set_color(cr, Color(0.5, 0.5, 1.0))
+ draw_lines(cr, lines_theta)
+ else:
+ set_color(cr, Color(0.5, 1.0, 1.0))
+ draw_lines(cr, lines1)
+ draw_lines(cr, lines2)
+
+ def get_circular_index(pt):
+ theta1, theta2 = pt
+ circular_index = int(numpy.floor((theta2 - theta1) / numpy.pi))
+ return circular_index
+
+ set_color(cr, palette["BLUE"])
+ lines = subdivide_theta(lines_theta)
+ o_circular_index = circular_index = get_circular_index(lines[0])
+ p_xy = to_xy(lines[0][0], lines[0][1])
+ if circular_index == self.circular_index_select:
+ cr.move_to(p_xy[0] + circular_index * 0, p_xy[1])
+ for pt in lines[1:]:
+ p_xy = to_xy(pt[0], pt[1])
+ circular_index = get_circular_index(pt)
+ if o_circular_index == self.circular_index_select:
+ cr.line_to(p_xy[0] + o_circular_index * 0, p_xy[1])
+ if circular_index != o_circular_index:
+ o_circular_index = circular_index
+ with px(cr):
+ cr.stroke()
+ if circular_index == self.circular_index_select:
+ cr.move_to(p_xy[0] + circular_index * 0, p_xy[1])
+
+ with px(cr):
+ cr.stroke()
+
+ if not self.theta_version:
+ theta1, theta2 = to_theta(self.last_pos,
+ self.circular_index_select)
+ x, y = joint_center[0], joint_center[1]
+ cr.move_to(x, y)
+
+ x += numpy.cos(theta1) * l1
+ y += numpy.sin(theta1) * l1
+ cr.line_to(x, y)
+ x += numpy.cos(theta2) * l2
+ y += numpy.sin(theta2) * l2
+ cr.line_to(x, y)
+ with px(cr):
+ cr.stroke()
+
+ cr.move_to(self.last_pos[0], self.last_pos[1])
+ set_color(cr, Color(0.0, 1.0, 0.2))
+ draw_px_cross(cr, 20)
+
+ if self.theta_version:
+ set_color(cr, Color(0.0, 1.0, 0.2))
+ cr.move_to(self.last_pos[0], self.last_pos[1])
+ draw_px_cross(cr, 5)
+
+ c_pt, dist = closest_segment(lines_theta, self.last_pos)
+ print("dist:", dist, c_pt, self.last_pos)
+ set_color(cr, palette["CYAN"])
+ cr.move_to(c_pt[0], c_pt[1])
+ draw_px_cross(cr, 5)
+
+ set_color(cr, Color(0.0, 0.5, 1.0))
+ for segment in self.segments:
+ color = [0, random.random(), 1]
+ random.shuffle(color)
+ set_color(cr, Color(color[0], color[1], color[2]))
+ segment.DrawTo(cr, self.theta_version)
+ with px(cr):
+ cr.stroke()
+
+ set_color(cr, Color(0.0, 1.0, 0.5))
+ segment = self.current_seg()
+ if segment:
+ print(segment)
+ segment.DrawTo(cr, self.theta_version)
+ with px(cr):
+ cr.stroke()
+
+ def cur_pt_in_theta(self):
+ if self.theta_version: return self.last_pos
+ return to_theta(self.last_pos, self.circular_index_select)
+
+ # Current segment based on which mode the drawing system is in.
+ def current_seg(self):
+ if self.prev_segment_pt and self.now_segment_pt:
+ if self.theta_version:
+ return AngleSegment(self.prev_segment_pt, self.now_segment_pt)
+ else:
+ return XYSegment(self.prev_segment_pt, self.now_segment_pt)
+
+ def do_key_press(self, event):
+ keyval = Gdk.keyval_to_lower(event.keyval)
+ print("Gdk.KEY_" + Gdk.keyval_name(keyval))
+ if keyval == Gdk.KEY_q:
+ print("Found q key and exiting.")
+ quit_main_loop()
+ elif keyval == Gdk.KEY_c:
+ # Increment which arm solution we render
+ self.circular_index_select += 1
+ print(self.circular_index_select)
+ elif keyval == Gdk.KEY_v:
+ # Decrement which arm solution we render
+ self.circular_index_select -= 1
+ print(self.circular_index_select)
+ elif keyval == Gdk.KEY_w:
+ # Add this segment to the segment list.
+ segment = self.current_seg()
+ if segment: self.segments.append(segment)
+ self.prev_segment_pt = self.now_segment_pt
+
+ elif keyval == Gdk.KEY_r:
+ self.prev_segment_pt = self.now_segment_pt
+
+ elif keyval == Gdk.KEY_p:
+ # Print out the segments.
+ print(repr(self.segments))
+ elif keyval == Gdk.KEY_g:
+ # Generate theta points.
+ if self.segments:
+ print(repr(self.segments[0].ToThetaPoints()))
+ elif keyval == Gdk.KEY_e:
+ best_pt = self.now_segment_pt
+ best_dist = 1e10
+ for segment in self.segments:
+ d = angle_dist_sqr(segment.start, self.now_segment_pt)
+ if (d < best_dist):
+ best_pt = segment.start
+ best_dist = d
+ d = angle_dist_sqr(segment.end, self.now_segment_pt)
+ if (d < best_dist):
+ best_pt = segment.end
+ best_dist = d
+ self.now_segment_pt = best_pt
+
+ elif keyval == Gdk.KEY_t:
+ # Toggle between theta and xy renderings
+ if self.theta_version:
+ theta1, theta2 = self.last_pos
+ data = to_xy(theta1, theta2)
+ self.circular_index_select = int(
+ numpy.floor((theta2 - theta1) / numpy.pi))
+ self.last_pos = (data[0], data[1])
+ else:
+ self.last_pos = self.cur_pt_in_theta()
+
+ self.theta_version = not self.theta_version
+ self.reinit_extents()
+
+ elif keyval == Gdk.KEY_z:
+ self.edit_control1 = not self.edit_control1
+ if self.edit_control1:
+ self.now_segment_pt = self.segments[0].control1
+ else:
+ self.now_segment_pt = self.segments[0].control2
+ if not self.theta_version:
+ data = to_xy(self.now_segment_pt[0], self.now_segment_pt[1])
+ self.last_pos = (data[0], data[1])
+ else:
+ self.last_pos = self.now_segment_pt
+
+ print("self.last_pos: ", self.last_pos, " ci: ",
+ self.circular_index_select)
+
+ self.redraw()
+
+ def do_button_press(self, event):
+ self.last_pos = (event.x, event.y)
+ self.now_segment_pt = self.cur_pt_in_theta()
+
+ if self.edit_control1:
+ self.segments[0].control1 = self.now_segment_pt
+ else:
+ self.segments[0].control2 = self.now_segment_pt
+
+ print('Clicked at theta: %s' % (repr(self.now_segment_pt, )))
+ if not self.theta_version:
+ print('Clicked at xy, circular index: (%f, %f, %f)' %
+ (self.last_pos[0], self.last_pos[1],
+ self.circular_index_select))
+
+ print('c1: numpy.array([%f, %f])' %
+ (self.segments[0].control1[0], self.segments[0].control1[1]))
+ print('c2: numpy.array([%f, %f])' %
+ (self.segments[0].control2[0], self.segments[0].control2[1]))
+
+ self.redraw()
+
+
+silly = Silly()
+silly.segments = graph_generate.segments
+basic_window.RunApp()
diff --git a/y2023/control_loops/python/graph_generate.py b/y2023/control_loops/python/graph_generate.py
new file mode 100644
index 0000000..046b9dd
--- /dev/null
+++ b/y2023/control_loops/python/graph_generate.py
@@ -0,0 +1,798 @@
+import numpy
+
+# joint_center in x-y space.
+joint_center = (-0.299, 0.299)
+
+# Joint distances (l1 = "proximal", l2 = "distal")
+l1 = 46.25 * 0.0254
+l2 = 43.75 * 0.0254
+
+
+# Convert from x-y coordinates to theta coordinates.
+# orientation is a bool. This orientation is circular_index mod 2.
+# where circular_index is the circular index, or the position in the
+# "hyperextension" zones. "cross_point" allows shifting the place where
+# it rounds the result so that it draws nicer (no other functional differences).
+def to_theta(pt, circular_index, cross_point=-numpy.pi):
+ orient = (circular_index % 2) == 0
+ x = pt[0]
+ y = pt[1]
+ x -= joint_center[0]
+ y -= joint_center[1]
+ l3 = numpy.hypot(x, y)
+ t3 = numpy.arctan2(y, x)
+ theta1 = numpy.arccos((l1**2 + l3**2 - l2**2) / (2 * l1 * l3))
+
+ if orient:
+ theta1 = -theta1
+ theta1 += t3
+ theta1 = (theta1 - cross_point) % (2 * numpy.pi) + cross_point
+ theta2 = numpy.arctan2(y - l1 * numpy.sin(theta1),
+ x - l1 * numpy.cos(theta1))
+ return numpy.array((theta1, theta2))
+
+
+# Simple trig to go back from theta1, theta2 to x-y
+def to_xy(theta1, theta2):
+ x = numpy.cos(theta1) * l1 + numpy.cos(theta2) * l2 + joint_center[0]
+ y = numpy.sin(theta1) * l1 + numpy.sin(theta2) * l2 + joint_center[1]
+ orient = ((theta2 - theta1) % (2.0 * numpy.pi)) < numpy.pi
+ return (x, y, orient)
+
+
+def get_circular_index(theta):
+ return int(numpy.floor((theta[1] - theta[0]) / numpy.pi))
+
+
+def get_xy(theta):
+ theta1 = theta[0]
+ theta2 = theta[1]
+ x = numpy.cos(theta1) * l1 + numpy.cos(theta2) * l2 + joint_center[0]
+ y = numpy.sin(theta1) * l1 + numpy.sin(theta2) * l2 + joint_center[1]
+ return numpy.array((x, y))
+
+
+# Draw a list of lines to a cairo context.
+def draw_lines(cr, lines):
+ cr.move_to(lines[0][0], lines[0][1])
+ for pt in lines[1:]:
+ cr.line_to(pt[0], pt[1])
+
+
+max_dist = 0.01
+max_dist_theta = numpy.pi / 64
+xy_end_circle_size = 0.01
+theta_end_circle_size = 0.07
+
+
+# Subdivide in theta space.
+def subdivide_theta(lines):
+ out = []
+ last_pt = lines[0]
+ out.append(last_pt)
+ for n_pt in lines[1:]:
+ for pt in subdivide(last_pt, n_pt, max_dist_theta):
+ out.append(pt)
+ last_pt = n_pt
+
+ return out
+
+
+# subdivide in xy space.
+def subdivide_xy(lines, max_dist=max_dist):
+ out = []
+ last_pt = lines[0]
+ out.append(last_pt)
+ for n_pt in lines[1:]:
+ for pt in subdivide(last_pt, n_pt, max_dist):
+ out.append(pt)
+ last_pt = n_pt
+
+ return out
+
+
+def to_theta_with_ci(pt, circular_index):
+ return to_theta_with_circular_index(pt[0], pt[1], circular_index)
+
+
+# to_theta, but distinguishes between
+def to_theta_with_circular_index(x, y, circular_index):
+ theta1, theta2 = to_theta((x, y), circular_index)
+ n_circular_index = int(numpy.floor((theta2 - theta1) / numpy.pi))
+ theta2 = theta2 + ((circular_index - n_circular_index)) * numpy.pi
+ return numpy.array((theta1, theta2))
+
+
+# alpha is in [0, 1] and is the weight to merge a and b.
+def alpha_blend(a, b, alpha):
+ """Blends a and b.
+
+ Args:
+ alpha: double, Ratio. Needs to be in [0, 1] and is the weight to blend a
+ and b.
+ """
+ return b * alpha + (1.0 - alpha) * a
+
+
+def normalize(v):
+ """Normalize a vector while handling 0 length vectors."""
+ norm = numpy.linalg.norm(v)
+ if norm == 0:
+ return v
+ return v / norm
+
+
+# CI is circular index and allows selecting between all the stats that map
+# to the same x-y state (by giving them an integer index).
+# This will compute approximate first and second derivatives with respect
+# to path length.
+def to_theta_with_circular_index_and_derivs(x, y, dx, dy,
+ circular_index_select):
+ a = to_theta_with_circular_index(x, y, circular_index_select)
+ b = to_theta_with_circular_index(x + dx * 0.0001, y + dy * 0.0001,
+ circular_index_select)
+ c = to_theta_with_circular_index(x - dx * 0.0001, y - dy * 0.0001,
+ circular_index_select)
+ d1 = normalize(b - a)
+ d2 = normalize(c - a)
+ accel = (d1 + d2) / numpy.linalg.norm(a - b)
+ return (a[0], a[1], d1[0], d1[1], accel[0], accel[1])
+
+
+def to_theta_with_ci_and_derivs(p_prev, p, p_next, c_i_select):
+ a = to_theta(p, c_i_select)
+ b = to_theta(p_next, c_i_select)
+ c = to_theta(p_prev, c_i_select)
+ d1 = normalize(b - a)
+ d2 = normalize(c - a)
+ accel = (d1 + d2) / numpy.linalg.norm(a - b)
+ return (a[0], a[1], d1[0], d1[1], accel[0], accel[1])
+
+
+# Generic subdivision algorithm.
+def subdivide(p1, p2, max_dist):
+ dx = p2[0] - p1[0]
+ dy = p2[1] - p1[1]
+ dist = numpy.sqrt(dx**2 + dy**2)
+ n = int(numpy.ceil(dist / max_dist))
+ return [(alpha_blend(p1[0], p2[0],
+ float(i) / n), alpha_blend(p1[1], p2[1],
+ float(i) / n))
+ for i in range(1, n + 1)]
+
+
+# convert from an xy space loop into a theta loop.
+# All segements are expected go from one "hyper-extension" boundary
+# to another, thus we must go backwards over the "loop" to get a loop in
+# x-y space.
+def to_theta_loop(lines, cross_point=-numpy.pi):
+ out = []
+ last_pt = lines[0]
+ for n_pt in lines[1:]:
+ for pt in subdivide(last_pt, n_pt, max_dist):
+ out.append(to_theta(pt, 0, cross_point))
+ last_pt = n_pt
+ for n_pt in reversed(lines[:-1]):
+ for pt in subdivide(last_pt, n_pt, max_dist):
+ out.append(to_theta(pt, 1, cross_point))
+ last_pt = n_pt
+ return out
+
+
+# Convert a loop (list of line segments) into
+# The name incorrectly suggests that it is cyclic.
+def back_to_xy_loop(lines):
+ out = []
+ last_pt = lines[0]
+ out.append(to_xy(last_pt[0], last_pt[1]))
+ for n_pt in lines[1:]:
+ for pt in subdivide(last_pt, n_pt, max_dist_theta):
+ out.append(to_xy(pt[0], pt[1]))
+ last_pt = n_pt
+
+ return out
+
+
+# Segment in angle space.
+class AngleSegment:
+
+ def __init__(self, start, end, name=None, alpha_unitizer=None, vmax=None):
+ """Creates an angle segment.
+
+ Args:
+ start: (double, double), The start of the segment in theta1, theta2
+ coordinates in radians
+ end: (double, double), The end of the segment in theta1, theta2
+ coordinates in radians
+ """
+ self.start = start
+ self.end = end
+ self.name = name
+ self.alpha_unitizer = alpha_unitizer
+ self.vmax = vmax
+
+ def __repr__(self):
+ return "AngleSegment(%s, %s)" % (repr(self.start), repr(self.end))
+
+ def DrawTo(self, cr, theta_version):
+ if theta_version:
+ cr.move_to(self.start[0], self.start[1] + theta_end_circle_size)
+ cr.arc(self.start[0], self.start[1], theta_end_circle_size, 0,
+ 2.0 * numpy.pi)
+ cr.move_to(self.end[0], self.end[1] + theta_end_circle_size)
+ cr.arc(self.end[0], self.end[1], theta_end_circle_size, 0,
+ 2.0 * numpy.pi)
+ cr.move_to(self.start[0], self.start[1])
+ cr.line_to(self.end[0], self.end[1])
+ else:
+ start_xy = to_xy(self.start[0], self.start[1])
+ end_xy = to_xy(self.end[0], self.end[1])
+ draw_lines(cr, back_to_xy_loop([self.start, self.end]))
+ cr.move_to(start_xy[0] + xy_end_circle_size, start_xy[1])
+ cr.arc(start_xy[0], start_xy[1], xy_end_circle_size, 0,
+ 2.0 * numpy.pi)
+ cr.move_to(end_xy[0] + xy_end_circle_size, end_xy[1])
+ cr.arc(end_xy[0], end_xy[1], xy_end_circle_size, 0, 2.0 * numpy.pi)
+
+ def ToThetaPoints(self):
+ dx = self.end[0] - self.start[0]
+ dy = self.end[1] - self.start[1]
+ mag = numpy.hypot(dx, dy)
+ dx /= mag
+ dy /= mag
+
+ return [(self.start[0], self.start[1], dx, dy, 0.0, 0.0),
+ (self.end[0], self.end[1], dx, dy, 0.0, 0.0)]
+
+
+class XYSegment:
+ """Straight line in XY space."""
+
+ def __init__(self, start, end, name=None, alpha_unitizer=None, vmax=None):
+ """Creates an XY segment.
+
+ Args:
+ start: (double, double), The start of the segment in theta1, theta2
+ coordinates in radians
+ end: (double, double), The end of the segment in theta1, theta2
+ coordinates in radians
+ """
+ self.start = start
+ self.end = end
+ self.name = name
+ self.alpha_unitizer = alpha_unitizer
+ self.vmax = vmax
+
+ def __repr__(self):
+ return "XYSegment(%s, %s)" % (repr(self.start), repr(self.end))
+
+ def DrawTo(self, cr, theta_version):
+ if theta_version:
+ theta1, theta2 = self.start
+ circular_index_select = int(
+ numpy.floor((self.start[1] - self.start[0]) / numpy.pi))
+ start = get_xy(self.start)
+ end = get_xy(self.end)
+
+ ln = [(start[0], start[1]), (end[0], end[1])]
+ draw_lines(cr, [
+ to_theta_with_circular_index(x, y, circular_index_select)
+ for x, y in subdivide_xy(ln)
+ ])
+ cr.move_to(self.start[0] + theta_end_circle_size, self.start[1])
+ cr.arc(self.start[0], self.start[1], theta_end_circle_size, 0,
+ 2.0 * numpy.pi)
+ cr.move_to(self.end[0] + theta_end_circle_size, self.end[1])
+ cr.arc(self.end[0], self.end[1], theta_end_circle_size, 0,
+ 2.0 * numpy.pi)
+ else:
+ start = get_xy(self.start)
+ end = get_xy(self.end)
+ cr.move_to(start[0], start[1])
+ cr.line_to(end[0], end[1])
+ cr.move_to(start[0] + xy_end_circle_size, start[1])
+ cr.arc(start[0], start[1], xy_end_circle_size, 0, 2.0 * numpy.pi)
+ cr.move_to(end[0] + xy_end_circle_size, end[1])
+ cr.arc(end[0], end[1], xy_end_circle_size, 0, 2.0 * numpy.pi)
+
+ def ToThetaPoints(self):
+ """ Converts to points in theta space via to_theta_with_circular_index_and_derivs"""
+ theta1, theta2 = self.start
+ circular_index_select = int(
+ numpy.floor((self.start[1] - self.start[0]) / numpy.pi))
+ start = get_xy(self.start)
+ end = get_xy(self.end)
+
+ ln = [(start[0], start[1]), (end[0], end[1])]
+
+ dx = end[0] - start[0]
+ dy = end[1] - start[1]
+ mag = numpy.hypot(dx, dy)
+ dx /= mag
+ dy /= mag
+
+ return [
+ to_theta_with_circular_index_and_derivs(x, y, dx, dy,
+ circular_index_select)
+ for x, y in subdivide_xy(ln, 0.01)
+ ]
+
+
+def spline_eval(start, control1, control2, end, alpha):
+ a = alpha_blend(start, control1, alpha)
+ b = alpha_blend(control1, control2, alpha)
+ c = alpha_blend(control2, end, alpha)
+ return alpha_blend(alpha_blend(a, b, alpha), alpha_blend(b, c, alpha),
+ alpha)
+
+
+def subdivide_spline(start, control1, control2, end):
+ # TODO: pick N based on spline parameters? or otherwise change it to be more evenly spaced?
+ n = 100
+ for i in range(0, n + 1):
+ yield i / float(n)
+
+
+class SplineSegment:
+
+ def __init__(self,
+ start,
+ control1,
+ control2,
+ end,
+ name=None,
+ alpha_unitizer=None,
+ vmax=None):
+ self.start = start
+ self.control1 = control1
+ self.control2 = control2
+ self.end = end
+ self.name = name
+ self.alpha_unitizer = alpha_unitizer
+ self.vmax = vmax
+
+ def __repr__(self):
+ return "SplineSegment(%s, %s, %s, %s)" % (repr(
+ self.start), repr(self.control1), repr(
+ self.control2), repr(self.end))
+
+ def DrawTo(self, cr, theta_version):
+ if theta_version:
+ c_i_select = get_circular_index(self.start)
+ start = get_xy(self.start)
+ control1 = get_xy(self.control1)
+ control2 = get_xy(self.control2)
+ end = get_xy(self.end)
+
+ draw_lines(cr, [
+ to_theta(spline_eval(start, control1, control2, end, alpha),
+ c_i_select)
+ for alpha in subdivide_spline(start, control1, control2, end)
+ ])
+ cr.move_to(self.start[0] + theta_end_circle_size, self.start[1])
+ cr.arc(self.start[0], self.start[1], theta_end_circle_size, 0,
+ 2.0 * numpy.pi)
+ cr.move_to(self.end[0] + theta_end_circle_size, self.end[1])
+ cr.arc(self.end[0], self.end[1], theta_end_circle_size, 0,
+ 2.0 * numpy.pi)
+ else:
+ start = get_xy(self.start)
+ control1 = get_xy(self.control1)
+ control2 = get_xy(self.control2)
+ end = get_xy(self.end)
+
+ draw_lines(cr, [
+ spline_eval(start, control1, control2, end, alpha)
+ for alpha in subdivide_spline(start, control1, control2, end)
+ ])
+
+ cr.move_to(start[0] + xy_end_circle_size, start[1])
+ cr.arc(start[0], start[1], xy_end_circle_size, 0, 2.0 * numpy.pi)
+ cr.move_to(end[0] + xy_end_circle_size, end[1])
+ cr.arc(end[0], end[1], xy_end_circle_size, 0, 2.0 * numpy.pi)
+
+ def ToThetaPoints(self):
+ t1, t2 = self.start
+ c_i_select = get_circular_index(self.start)
+ start = get_xy(self.start)
+ control1 = get_xy(self.control1)
+ control2 = get_xy(self.control2)
+ end = get_xy(self.end)
+
+ return [
+ to_theta_with_ci_and_derivs(
+ spline_eval(start, control1, control2, end, alpha - 0.00001),
+ spline_eval(start, control1, control2, end, alpha),
+ spline_eval(start, control1, control2, end, alpha + 0.00001),
+ c_i_select)
+ for alpha in subdivide_spline(start, control1, control2, end)
+ ]
+
+
+def get_derivs(t_prev, t, t_next):
+ c, a, b = t_prev, t, t_next
+ d1 = normalize(b - a)
+ d2 = normalize(c - a)
+ accel = (d1 + d2) / numpy.linalg.norm(a - b)
+ return (a[0], a[1], d1[0], d1[1], accel[0], accel[1])
+
+
+class ThetaSplineSegment:
+
+ def __init__(self,
+ start,
+ control1,
+ control2,
+ end,
+ name=None,
+ alpha_unitizer=None,
+ vmax=None):
+ self.start = start
+ self.control1 = control1
+ self.control2 = control2
+ self.end = end
+ self.name = name
+ self.alpha_unitizer = alpha_unitizer
+ self.vmax = vmax
+
+ def __repr__(self):
+ return "ThetaSplineSegment(%s, %s, &s, %s)" % (repr(
+ self.start), repr(self.control1), repr(
+ self.control2), repr(self.end))
+
+ def DrawTo(self, cr, theta_version):
+ if (theta_version):
+ draw_lines(cr, [
+ spline_eval(self.start, self.control1, self.control2, self.end,
+ alpha)
+ for alpha in subdivide_spline(self.start, self.control1,
+ self.control2, self.end)
+ ])
+ else:
+ start = get_xy(self.start)
+ end = get_xy(self.end)
+
+ draw_lines(cr, [
+ get_xy(
+ spline_eval(self.start, self.control1, self.control2,
+ self.end, alpha))
+ for alpha in subdivide_spline(self.start, self.control1,
+ self.control2, self.end)
+ ])
+
+ cr.move_to(start[0] + xy_end_circle_size, start[1])
+ cr.arc(start[0], start[1], xy_end_circle_size, 0, 2.0 * numpy.pi)
+ cr.move_to(end[0] + xy_end_circle_size, end[1])
+ cr.arc(end[0], end[1], xy_end_circle_size, 0, 2.0 * numpy.pi)
+
+ def ToThetaPoints(self):
+ return [
+ get_derivs(
+ spline_eval(self.start, self.control1, self.control2, self.end,
+ alpha - 0.00001),
+ spline_eval(self.start, self.control1, self.control2, self.end,
+ alpha),
+ spline_eval(self.start, self.control1, self.control2, self.end,
+ alpha + 0.00001))
+ for alpha in subdivide_spline(self.start, self.control1,
+ self.control2, self.end)
+ ]
+
+
+tall_box_x = 0.411
+tall_box_y = 0.125
+
+short_box_x = 0.431
+short_box_y = 0.082
+
+ready_above_box = to_theta_with_circular_index(tall_box_x,
+ tall_box_y + 0.08,
+ circular_index=-1)
+tall_box_grab = to_theta_with_circular_index(tall_box_x,
+ tall_box_y,
+ circular_index=-1)
+short_box_grab = to_theta_with_circular_index(short_box_x,
+ short_box_y,
+ circular_index=-1)
+
+# TODO(austin): Drive the front/back off the same numbers a bit better.
+front_high_box = to_theta_with_circular_index(0.378, 2.46, circular_index=-1)
+front_middle3_box = to_theta_with_circular_index(0.700,
+ 2.125,
+ circular_index=-1.000000)
+front_middle2_box = to_theta_with_circular_index(0.700,
+ 2.268,
+ circular_index=-1)
+front_middle1_box = to_theta_with_circular_index(0.800,
+ 1.915,
+ circular_index=-1)
+front_low_box = to_theta_with_circular_index(0.87, 1.572, circular_index=-1)
+back_high_box = to_theta_with_circular_index(-0.75, 2.48, circular_index=0)
+back_middle2_box = to_theta_with_circular_index(-0.700, 2.27, circular_index=0)
+back_middle1_box = to_theta_with_circular_index(-0.800, 1.93, circular_index=0)
+back_low_box = to_theta_with_circular_index(-0.87, 1.64, circular_index=0)
+
+back_extra_low_box = to_theta_with_circular_index(-0.87,
+ 1.52,
+ circular_index=0)
+
+front_switch = to_theta_with_circular_index(0.88, 0.967, circular_index=-1)
+back_switch = to_theta_with_circular_index(-0.88, 0.967, circular_index=-2)
+
+neutral = to_theta_with_circular_index(0.0, 0.33, circular_index=-1)
+
+up = to_theta_with_circular_index(0.0, 2.547, circular_index=-1)
+
+front_switch_auto = to_theta_with_circular_index(0.750,
+ 2.20,
+ circular_index=-1.000000)
+
+duck = numpy.array([numpy.pi / 2.0 - 0.92, numpy.pi / 2.0 - 4.26])
+
+starting = numpy.array([numpy.pi / 2.0 - 0.593329, numpy.pi / 2.0 - 3.749631])
+vertical_starting = numpy.array([numpy.pi / 2.0, -numpy.pi / 2.0])
+
+self_hang = numpy.array([numpy.pi / 2.0 - 0.191611, numpy.pi / 2.0])
+partner_hang = numpy.array([numpy.pi / 2.0 - (-0.30), numpy.pi / 2.0])
+
+above_hang = numpy.array([numpy.pi / 2.0 - 0.14, numpy.pi / 2.0 - (-0.165)])
+below_hang = numpy.array([numpy.pi / 2.0 - 0.39, numpy.pi / 2.0 - (-0.517)])
+
+up_c1 = to_theta((0.63, 1.17), circular_index=-1)
+up_c2 = to_theta((0.65, 1.62), circular_index=-1)
+
+front_high_box_c1 = to_theta((0.63, 1.04), circular_index=-1)
+front_high_box_c2 = to_theta((0.50, 1.60), circular_index=-1)
+
+front_middle2_box_c1 = to_theta((0.41, 0.83), circular_index=-1)
+front_middle2_box_c2 = to_theta((0.52, 1.30), circular_index=-1)
+
+front_middle1_box_c1 = to_theta((0.34, 0.82), circular_index=-1)
+front_middle1_box_c2 = to_theta((0.48, 1.15), circular_index=-1)
+
+#c1: (1.421433, -1.070254)
+#c2: (1.434384, -1.057803
+ready_above_box_c1 = numpy.array([1.480802, -1.081218])
+ready_above_box_c2 = numpy.array([1.391449, -1.060331])
+
+front_switch_c1 = numpy.array([1.903841, -0.622351])
+front_switch_c2 = numpy.array([1.903841, -0.622351])
+
+
+sparse_front_points = [
+ (front_high_box, "FrontHighBox"),
+ (front_middle2_box, "FrontMiddle2Box"),
+ (front_middle3_box, "FrontMiddle3Box"),
+ (front_middle1_box, "FrontMiddle1Box"),
+ (front_low_box, "FrontLowBox"),
+ (front_switch, "FrontSwitch"),
+] # yapf: disable
+
+sparse_back_points = [
+ (back_high_box, "BackHighBox"),
+ (back_middle2_box, "BackMiddle2Box"),
+ (back_middle1_box, "BackMiddle1Box"),
+ (back_low_box, "BackLowBox"),
+ (back_extra_low_box, "BackExtraLowBox"),
+] # yapf: disable
+
+def expand_points(points, max_distance):
+ """Expands a list of points to be at most max_distance apart
+
+ Generates the paths to connect the new points to the closest input points,
+ and the paths connecting the points.
+
+ Args:
+ points, list of tuple of point, name, The points to start with and fill
+ in.
+ max_distance, float, The max distance between two points when expanding
+ the graph.
+
+ Return:
+ points, edges
+ """
+ result_points = [points[0]]
+ result_paths = []
+ for point, name in points[1:]:
+ previous_point = result_points[-1][0]
+ previous_point_xy = get_xy(previous_point)
+ circular_index = get_circular_index(previous_point)
+
+ point_xy = get_xy(point)
+ norm = numpy.linalg.norm(point_xy - previous_point_xy)
+ num_points = int(numpy.ceil(norm / max_distance))
+ last_iteration_point = previous_point
+ for subindex in range(1, num_points):
+ subpoint = to_theta(alpha_blend(previous_point_xy, point_xy,
+ float(subindex) / num_points),
+ circular_index=circular_index)
+ result_points.append(
+ (subpoint, '%s%dof%d' % (name, subindex, num_points)))
+ result_paths.append(
+ XYSegment(last_iteration_point, subpoint, vmax=6.0))
+ if (last_iteration_point != previous_point).any():
+ result_paths.append(XYSegment(previous_point, subpoint))
+ if subindex == num_points - 1:
+ result_paths.append(XYSegment(subpoint, point, vmax=6.0))
+ else:
+ result_paths.append(XYSegment(subpoint, point))
+ last_iteration_point = subpoint
+ result_points.append((point, name))
+
+ return result_points, result_paths
+
+
+front_points, front_paths = expand_points(sparse_front_points, 0.06)
+back_points, back_paths = expand_points(sparse_back_points, 0.06)
+
+points = [(ready_above_box, "ReadyAboveBox"),
+ (tall_box_grab, "TallBoxGrab"),
+ (short_box_grab, "ShortBoxGrab"),
+ (back_switch, "BackSwitch"),
+ (neutral, "Neutral"),
+ (up, "Up"),
+ (above_hang, "AboveHang"),
+ (below_hang, "BelowHang"),
+ (self_hang, "SelfHang"),
+ (partner_hang, "PartnerHang"),
+ (front_switch_auto, "FrontSwitchAuto"),
+ (starting, "Starting"),
+ (duck, "Duck"),
+ (vertical_starting, "VerticalStarting"),
+] + front_points + back_points # yapf: disable
+
+duck_c1 = numpy.array([1.337111, -1.721008])
+duck_c2 = numpy.array([1.283701, -1.795519])
+
+ready_to_up_c1 = numpy.array([1.792962, 0.198329])
+ready_to_up_c2 = numpy.array([1.792962, 0.198329])
+
+front_switch_auto_c1 = numpy.array([1.792857, -0.372768])
+front_switch_auto_c2 = numpy.array([1.861885, -0.273664])
+
+# We need to define critical points so we can create paths connecting them.
+# TODO(austin): Attach velocities to the slow ones.
+ready_to_back_low_c1 = numpy.array([2.524325, 0.046417])
+
+neutral_to_back_low_c1 = numpy.array([2.381942, -0.070220])
+
+tall_to_back_low_c1 = numpy.array([2.603918, 0.088298])
+tall_to_back_low_c2 = numpy.array([1.605624, 1.003434])
+
+tall_to_back_high_c2 = numpy.array([1.508610, 0.946147])
+
+# If true, only plot the first named segment
+isolate = False
+
+long_alpha_unitizer = numpy.matrix([[1.0 / 17.0, 0.0], [0.0, 1.0 / 17.0]])
+
+neutral_to_back_c1 = numpy.array([0.702527, -2.618276])
+neutral_to_back_c2 = numpy.array([0.526914, -3.109691])
+
+named_segments = [
+ ThetaSplineSegment(neutral, neutral_to_back_c1, neutral_to_back_c2,
+ back_switch, "BackSwitch"),
+ ThetaSplineSegment(neutral,
+ neutral_to_back_low_c1,
+ tall_to_back_high_c2,
+ back_high_box,
+ "NeutralBoxToHigh",
+ alpha_unitizer=long_alpha_unitizer),
+ ThetaSplineSegment(neutral, neutral_to_back_low_c1, tall_to_back_high_c2,
+ back_middle2_box, "NeutralBoxToMiddle2",
+ long_alpha_unitizer),
+ ThetaSplineSegment(neutral, neutral_to_back_low_c1, tall_to_back_low_c2,
+ back_middle1_box, "NeutralBoxToMiddle1",
+ long_alpha_unitizer),
+ ThetaSplineSegment(neutral, neutral_to_back_low_c1, tall_to_back_low_c2,
+ back_low_box, "NeutralBoxToLow", long_alpha_unitizer),
+ ThetaSplineSegment(ready_above_box, ready_to_back_low_c1,
+ tall_to_back_high_c2, back_high_box, "ReadyBoxToHigh",
+ long_alpha_unitizer),
+ ThetaSplineSegment(ready_above_box, ready_to_back_low_c1,
+ tall_to_back_high_c2, back_middle2_box,
+ "ReadyBoxToMiddle2", long_alpha_unitizer),
+ ThetaSplineSegment(ready_above_box, ready_to_back_low_c1,
+ tall_to_back_low_c2, back_middle1_box,
+ "ReadyBoxToMiddle1", long_alpha_unitizer),
+ ThetaSplineSegment(ready_above_box, ready_to_back_low_c1,
+ tall_to_back_low_c2, back_low_box, "ReadyBoxToLow",
+ long_alpha_unitizer),
+ ThetaSplineSegment(short_box_grab, tall_to_back_low_c1,
+ tall_to_back_high_c2, back_high_box, "ShortBoxToHigh",
+ long_alpha_unitizer),
+ ThetaSplineSegment(short_box_grab, tall_to_back_low_c1,
+ tall_to_back_high_c2, back_middle2_box,
+ "ShortBoxToMiddle2", long_alpha_unitizer),
+ ThetaSplineSegment(short_box_grab, tall_to_back_low_c1,
+ tall_to_back_low_c2, back_middle1_box,
+ "ShortBoxToMiddle1", long_alpha_unitizer),
+ ThetaSplineSegment(short_box_grab, tall_to_back_low_c1,
+ tall_to_back_low_c2, back_low_box, "ShortBoxToLow",
+ long_alpha_unitizer),
+ ThetaSplineSegment(tall_box_grab, tall_to_back_low_c1,
+ tall_to_back_high_c2, back_high_box, "TallBoxToHigh",
+ long_alpha_unitizer),
+ ThetaSplineSegment(tall_box_grab, tall_to_back_low_c1,
+ tall_to_back_high_c2, back_middle2_box,
+ "TallBoxToMiddle2", long_alpha_unitizer),
+ ThetaSplineSegment(tall_box_grab, tall_to_back_low_c1, tall_to_back_low_c2,
+ back_middle1_box, "TallBoxToMiddle1",
+ long_alpha_unitizer),
+ ThetaSplineSegment(tall_box_grab, tall_to_back_low_c1, tall_to_back_low_c2,
+ back_low_box, "TallBoxToLow", long_alpha_unitizer),
+ SplineSegment(neutral, ready_above_box_c1, ready_above_box_c2,
+ ready_above_box, "ReadyToNeutral"),
+ XYSegment(ready_above_box, tall_box_grab, "ReadyToTallBox", vmax=6.0),
+ XYSegment(ready_above_box, short_box_grab, "ReadyToShortBox", vmax=6.0),
+ XYSegment(tall_box_grab, short_box_grab, "TallToShortBox", vmax=6.0),
+ SplineSegment(neutral, ready_above_box_c1, ready_above_box_c2,
+ tall_box_grab, "TallToNeutral"),
+ SplineSegment(neutral, ready_above_box_c1, ready_above_box_c2,
+ short_box_grab, "ShortToNeutral"),
+ SplineSegment(neutral, up_c1, up_c2, up, "NeutralToUp"),
+ SplineSegment(neutral, front_high_box_c1, front_high_box_c2,
+ front_high_box, "NeutralToFrontHigh"),
+ SplineSegment(neutral, front_middle2_box_c1, front_middle2_box_c2,
+ front_middle2_box, "NeutralToFrontMiddle2"),
+ SplineSegment(neutral, front_middle1_box_c1, front_middle1_box_c2,
+ front_middle1_box, "NeutralToFrontMiddle1"),
+]
+
+unnamed_segments = [
+ SplineSegment(neutral, front_switch_auto_c1, front_switch_auto_c2,
+ front_switch_auto),
+ SplineSegment(tall_box_grab, ready_to_up_c1, ready_to_up_c2, up),
+ SplineSegment(short_box_grab, ready_to_up_c1, ready_to_up_c2, up),
+ SplineSegment(ready_above_box, ready_to_up_c1, ready_to_up_c2, up),
+ ThetaSplineSegment(duck, duck_c1, duck_c2, neutral),
+ SplineSegment(neutral, front_switch_c1, front_switch_c2, front_switch),
+ XYSegment(ready_above_box, front_low_box),
+ XYSegment(ready_above_box, front_switch),
+ XYSegment(ready_above_box, front_middle1_box),
+ XYSegment(ready_above_box, front_middle2_box),
+ XYSegment(ready_above_box, front_middle3_box),
+ SplineSegment(ready_above_box, ready_to_up_c1, ready_to_up_c2,
+ front_high_box),
+ AngleSegment(starting, vertical_starting),
+ AngleSegment(vertical_starting, neutral),
+ XYSegment(neutral, front_low_box),
+ XYSegment(up, front_high_box),
+ XYSegment(up, front_middle2_box),
+ XYSegment(front_middle3_box, up),
+ XYSegment(front_middle3_box, front_high_box),
+ XYSegment(front_middle3_box, front_middle2_box),
+ XYSegment(front_middle3_box, front_middle1_box),
+ XYSegment(up, front_middle1_box),
+ XYSegment(up, front_low_box),
+ XYSegment(front_high_box, front_middle2_box),
+ XYSegment(front_high_box, front_middle1_box),
+ XYSegment(front_high_box, front_low_box),
+ XYSegment(front_middle2_box, front_middle1_box),
+ XYSegment(front_middle2_box, front_low_box),
+ XYSegment(front_middle1_box, front_low_box),
+ XYSegment(front_switch, front_low_box),
+ XYSegment(front_switch, up),
+ XYSegment(front_switch, front_high_box),
+ AngleSegment(up, back_high_box),
+ AngleSegment(up, back_middle2_box),
+ AngleSegment(up, back_middle1_box),
+ AngleSegment(up, back_low_box),
+ XYSegment(back_high_box, back_middle2_box),
+ XYSegment(back_high_box, back_middle1_box),
+ XYSegment(back_high_box, back_low_box),
+ XYSegment(back_middle2_box, back_middle1_box),
+ XYSegment(back_middle2_box, back_low_box),
+ XYSegment(back_middle1_box, back_low_box),
+ AngleSegment(up, above_hang),
+ AngleSegment(above_hang, below_hang),
+ AngleSegment(up, below_hang),
+ AngleSegment(up, self_hang),
+ AngleSegment(up, partner_hang),
+] + front_paths + back_paths
+
+segments = []
+if isolate:
+ segments += named_segments[:isolate]
+else:
+ segments += named_segments + unnamed_segments